A Memory Allocation Profiler for C and Lisp Programs

Benjamin Zorn
Department of Computer Science
University of Colorado at Boulder

Paul Hilfinger
Computer Science Division, Dept. of EECS
University of California at Berkeley

Abstract

This paper describes mprof, a tool used to study the dynamic memory allocation
behavior of programs. Mprof records the amount of memory that a function allocates,
breaks down allocation information by type and size, and displays a program’s dynamic
call graph so that functions indirectly responsible for memory allocation are easy to
identify. Mprof is a two-phase tool. The monitor phase is linked into executing programs
and records information each time memory is allocated. The display phase reduces the
data generated by the monitor and presents the information to a user in several tables.
Mprof has been implemented for C and Kyoto Common Lisp. Measurements of these
implementations are presented.

1 Introduction

Dynamic memory allocation, hereafter referred to simply as memory allocation, is an im-
portant part of many programs. By dynamic allocation, we mean the memory allocated
from the heap. Unnecessary allocation can decrease program locality and increase execution
time for the allocation itself and for possible memory reclamation. If reclamation is not
performed, or if some objects are accidently not reclaimed (a “memory leak”), programs can
fail when they reach the memory size limit. Programmers often write their own versions of
memory allocation routines to measure and reduce allocation overhead. It is estimated that
Mesa programmers spent 40% of their time solving storage-management related problems
before automatic storage reclamation techniques were introduced in Cedar [7]. Even with
automatic storage management, in which reclamation occurs transparently, memory alloca-
tion has a strong effect on the performance of programs [4]. Although memory allocation is
important, few software tools exist to help programmers understand the memory allocation
behavior of their programs.

Mprof is a tool that allows programmers to identify where and why dynamic memory
is allocated in a program. It records which functions are directly responsible for memory

This research was funded by DARPA contract number N00039-85-C-0269 as part of the SPUR research
project.

allocation and also records the dynamic call chain at an allocation to show which functions
were indirectly responsible for the allocation. The design of mprof was inspired by the tool
gprof, a dynamic execution profiler [2]. gprof is a very useful tool for understanding the
execution behavior of programs; mprof extends the ideas of gprof to give programmers
information about the dynamic memory allocation behavior of their programs. Mprof is a
two-phase tool. A monitor phase is linked into an executing application and collects data
as the application executes. A reduction and display phase takes the data collected by the
monitor and presents it to the user in concise tables.

A profiling program such as mprof should satisfy several criteria. First, a program
monitor should not significantly alter the behavior of the program being monitored. In
particular, a monitor should not impose so much overhead on the program being monitored
that large programs cannot be profiled. Second, a monitor should be easy to integrate into
existing applications. To use mprof, programmers simply have to relink their applications
with a special version of the system library. No source code modifications are required.
Finally, a monitor should provide a programmer with information that he can understand
and use to reduce the memory allocation overhead of his programs. We will present an
example that illustrates such a use of mprof.

In Section 2, we present a simple program and describe the use of mprof with respect to
the example. In Section 3 we discuss techniques for the effective implementation of mprof .
Section 4 presents some measurements of mprof. Section 5 describes other memory profiling
tools and previous work on which mprof is based, while Section 6 contains our conclusions.

2 Using mprof

2.1 A Producer/Consumer Example

To illustrate how mprof helps a programmer understand the memory allocation in his pro-
gram, consider the C program in Figure 1. In this program, a simplified producer/consumer
simulation, objects are randomly allocated by two producers and freed by the consumer.
The function random f1ip, which is not shown, randomly returns 1 or 0 with equal proba-
bility. The function consume widget, which is responsible for freeing the memory allocated,
contains a bug and does not free red widgets. If the simulation ran for a long time, memory
would eventually be exhausted, and the program would fail.

In the example, make widget is the only function that allocates memory directly. To
fully understand the allocation behavior of the program, we must know which functions
called make widget and hence were indirectly responsible for memory allocation. Mprof
provides this information.

To use mprof, programmers link in special versions of the system functions malloc and
free, which are called each time memory is allocated and freed, respectively. The appli-
cation is then run normally. The mprof monitor function, linked in with malloc, gathers
statistics as the program runs and writes this information to a file when the application
exits. The programmer then runs a display program over the data file, and four tables

typedef struct {
enum color c;
int datal[50];
} widget;

#define WSIZE sizeof (widget)
widget =*

make_widget ()

{

widget *W;

w = (widget *) malloc(WSIZE);

return w;
}
widget =*
make_blue_widget ()
{
widget *W;
w = make_widget();
w->c = BLUE;
return w;
}
widget =*
make_red_widget ()
{
widget *W;
w = make_widget();
w->c = RED;
return w;
}

void
consume_widget (w)
widget *w;

{
if (w->c == BLUE) {
/* record blue widget */
free(w);
} else {
/* record red widget */
}
}
#define NUM_WIDGETS 10000
int
main()
{
int i;
widget *wqueue [NUM_WIDGETS] ;
for (i = 0; i < NUM_WIDGETS; i++)
if (random_flip())
wqueue [i] = make_blue_widget();
else
wqueue [i] = make_red_widget();
for (i = 0; i < NUM_WIDGETS; i++)
consume_widget (wqueue [i]) ;
return 0O;
}

Figure 1: A Simple Producer/Consumer Simulation Program

are printed: a list of memory leaks, an allocation bin table, a direct allocation table, and
a dynamic call graph. Each table presents the allocation behavior of the program from a
different perspective. The rest of this section describes each of the tables for the C program
in Figure 1.

2.2 The Memory Leak Table

C programmers must explicitly free memory objects when they are done using them. Mem-
ory leaks arise when programmers accidently forget to release memory. Because Lisp re-
claims memory automatically, the memory leak table is not necessary in the Lisp version of
mprof.

The memory leak table tells a programmer which functions allocated the memory as-
sociated with memory leaks. The table contains a list of partial call paths that resulted
in memory that was allocated and not subsequently freed. The paths are partial because
complete path information is not recorded; only the last five callers on the call stack are
listed in the memory leak table. In our simple example, there is only one such path, and it
tells us immediately what objects are not freed. Figure 2 contains the memory leak table
for our example.

allocs bytes (%) path

5019 1023876 (99) || > main > make_red_widget > make_widget

Figure 2: Memory Leak Table for Producer/Consumer Example

In larger examples, more than one path through a particular function is possible. We
provide an option that distinguishes individual call sites within the same function in the
memory leak table if such a distinction is needed.

2.3 The Allocation Bin Table

A major part of understanding the memory allocation behavior of a program is knowing
what objects were allocated. In C, memory allocation is done by object size; the type of
object being allocated is not known at allocation time. The allocation bin table provides
information about what sizes of objects were allocated and what program types correspond
to the sizes listed. This knowledge helps a programmer recognize which data structures
consume the most memory and allows him to concentrate any space optimizations on them.

The allocation bin table breaks down object allocation by the size, in bytes, of allocated
objects. Figure 3 shows the allocation bin table for the program in Figure 1.

size: allocs bytes (%) frees kept (%) types

204 10000 2040000 (99) 4981 1023876 (99) widget
> 1024 0 0 0 0
<TOTAL> 10000 2040000 4981 1023876

Figure 3: Allocation Bin Table for Producer/Consumer Example

The allocation bin table contains information about objects of each byte size from 0 to
1024 bytes and groups objects larger than 1024 bytes into a single bin. For each byte size
in which memory was allocated, the allocation bin table shows the number of allocations
of that size (allocs), the total number of bytes allocated to objects of that size (bytes),
the number of frees of objects of that size (frees), the number of bytes not freed that
were allocated to objects of that size (kept!), and user types whose size is the same as
the bin size (types). From the example, we can see that 10,000 widgets were allocated by
the program, but only 4,981 of these were eventually freed, resulting in 1,023,876 bytes of
memory lost to the memory leak. The percentages show what fraction of all bins a particular
bin contributed. This information is provided to allow a user to rapidly determine which
bins are of interest (i.e., contribute a substantial percentage). 99% is the largest percentage
possible because we chose to use a 2 character field width.

2.4 The Direct Allocation Table

Another facet of understanding memory allocation is knowing which functions allocated
memory and how much they allocated. In C, memory allocation is performed explicitly by
calling malloc, and so programmers are often aware of the functions that allocate memory.
Even in C, however, knowing how much memory was allocated can point out functions that
do unnecessary allocation and guide the programmer when he attempts to optimize the
space consumption of his program. In Lisp, memory allocation happens implicitly in many
primitive routines such as mapcar, *, and intern. The direct allocation table can reveal
unsuspected sources of allocation to Lisp programmers.

Figure 4 contains the direct allocation table for our example. The direct allocation table
corresponds to the flat profile generated by gprof.

The first line of the direct allocation table contains the totals for all functions allocating
memory. In this example, only one function, make widget, allocates memory. The direct
allocation table prints percent of total allocation that took place in each function (% mem),
the number of bytes allocated by each function (bytes), the number of bytes allocated by

IThe label kept is used throughout the paper to refer to objects that were never freed.

% mem bytes | % mem(size) | bytes kept | % all kept | calls name

s—-m--1--x -s—-m--l--X----——----———--
————— 2040000 | 99 | 1023876 | 99 | 10000 <TOTAL>
100.0 2040000 | 99 | 1023876 | 99 | 10000 make_widget

Figure 4: Direct Allocation Table for Producer/Consumer Example

the function and never freed (bytes kept), and the number of calls made to the function
that resulted in allocation (calls). The % mem(size) fields contain a size breakdown?
of the memory allocated by each function as a fraction of the memory allocated by all
functions. In this example, 99% of the memory allocated by the program was allocated
in make widget for medium-sized objects. Blank columns indicate values less than 1%.
The other size breakdown given in the direct allocation table is for the memory that was
allocated and never freed. The % all kept field contains a size breakdown of the memory
not freed by a particular function as a fraction of all the memory not freed. In the example,
99% of the unfreed memory was of medium-sized objects allocated by make widget.

2.5 The Allocation Call Graph

Understanding the memory allocation behavior of a programs sometimes requires more
information than just knowing the functions that are directly responsible for memory allo-
cation. Sometimes, as happens in Figure 1, the same allocation function is called by several
different functions for different purposes. The allocation call graph shows all the functions
that were indirect callers of functions that allocated memory.

Because the dynamic caller/callee relations of a program are numerous, the dynamic call
graph is a complex table with many entries. Often, the information provided by the first
three tables is enough to allow programmers to understand the memory allocation of their
program. Nevertheless, for a full understanding of the allocation behavior of programs
the allocation call graph is useful. Figure 5 contains the allocation call graph for the
producer/consumer example and corresponds to the call graph profile generated by gprof.

The allocation call graph is a large table with an entry for each function that was on a
call chain when memory was allocated. Each table entry is divided into three parts. The
line for the function itself (called the entry function); lines above that line, each of which
represents a caller of the entry function (the ancestors), and lines below that line, each
of which represents a function called by the entry function (the descendents). The entry

2Both the direct allocation table and the dynamic call graph break down object allocation into four
categories of object size: small (s), from 0-32 bytes; medium (m), from 33-256 bytes; large (1), from 257—
2048 bytes; and extra large (x), larger than 2048 bytes. For Lisp, categorization is by type rather than size:
cons cell (¢), floating point number (f), structure or vector (s), and other (o).

self | /ances | /ances | called/total ancestors

index + self (%) | size-func | frac | called/recur name [index]
desc | \desc | \desc | called/total descendents
S m 1--x S m 1--x-—-
(o] 100.0 0 (0) | | ———————— | 0 main [0]
1023876 (50) | 99 | 50 | 5019/5019 make_red_widget [2]
1016124 (49) | 99 | 49 | 4981/4981 make_blue_widget [3]
all 2040000 | 99 | |
S m 1--x S m 1--x-——-
all 2040000 | 99 | |
1023876 (50) | 99 | 50 | 5019/5019 make_red_widget [2]
1016124 (49) | 99 | 49 | 4981/4981 make_blue_widget [3]
[1] 100.0 2040000 (100) | 99 | === | 10000 make_widget [1]
S m 1--x S m 1--x-——-
1023876 (100) | 99 | 99 | 5019/10000 main [0]
[2] 50.2 0 (0) | | = | 5019 make_red_widget [2]
1023876 (100) | 99 | 99 | 5019/10000 make_widget [1]
S m 1--x s—--m--1--x---
1016124 (100) | 99 | 99 | 4981/10000 main [0]
[3] 49.8 0 (0) | | == | 4981 make_blue_widget [3]
1016124 (100) | 99 | 99 | 4981/10000 make_widget [1]
S m 1--x s—--m--1--x---

Figure 5: Allocation Call Graph for Producer/Consumer Example

function is easy to identify in each table entry because a large rule appears in the frac
column on that row. In the first entry of Figure 5, main is the entry function; there are no
ancestors and two descendents.

The entry function line of the allocation call graph contains information about the
function itself. The index field provides a unique index to help users navigate through the
call graph. The self + desc field contains the percent of total memory allocated that was
allocated in this function and its descendents. The call graph is sorted by decreasing values
in this field. The self field contains the number of bytes that were allocated directly in the
entry function. The size-func fields contain a size breakdown of the memory allocated in
the function itself. Some functions, like main (index 0) allocated no memory directly, so the
size-func fields are all blank. The called field shows the number of times this function
was called during a memory allocation, with the number of recursive calls recorded in the
adjacent field.

Each caller of the entry function is listed on a separate line above it. A summary of
all callers is given on the top line of the entry if there is more than one ancestor. The
self field of ancestors lists the number of bytes that the entry function and its descendents
allocated on behalf of the ancestor. The size-ances field breaks down those bytes into size

categories, while the frac-ances field shows the size breakdown of the bytes requested by
this ancestor as a fraction of bytes allocated at the request of all ancestors. For example,
in the entry for function make widget (index 1), the ancestor make red widget can be seen
to have requested 1,023,876 bytes of data from make widget, 99% of which was of medium-
sized objects. Furthermore, calls from make red widget accounted for 50% of the total
memory allocated by make widget and its descendents. Other fields show how many calls
the ancestor made to the entry function and how many calls the ancestor made in total.
In a similar fashion, information about the function’s descendents appears below the entry
function.

Had the memory leak table not already told us what objects were not being freed, we
could use the allocation call graph for the same purpose. The direct allocation table told
us that make widget allocated 1,023,876 bytes of unfreed memory, all for medium-sized
objects. From the allocation call graph, we can see that the function make red widget was
the function calling make widget that requested 1,023,876 bytes of medium-sized objects.

Cycles in the call graph are not illustrated in Figure 5. As described in the next section,
cycles obscure allocation information among functions that are members of a cycle. When
the parent/child relationships that appear in the graph are between members of the same
cycle, most of the fields in the graph must be omitted.

3 Implementation

We have implemented mprof for use with C and Common Lisp programs. Since the im-
plementations are quite similar, the C implementation will be described in detail, and the
minor differences in the Lisp implementation will be noted at the end of the section.

3.1 The Monitor

The first phase of mprof is a monitor that is linked into the executing application. The
monitor includes modified versions of malloc and free that record information each time
they are invoked. Along with malloc and free, mprof provides its own exit function, so
that when the application program exits, the data collected by the monitor is written to a
file. The monitor maintains several data structures needed to construct the tables.

To construct the leak table, the monitor associates a list of the last five callers in the
call chain, the partial call chain, with the object allocated. mprof augments every object
allocated with two items: an integer which is the object size as requested by the user (since
the allocator may allocate an object of a different size for convenience), and a pointer to a
structure that contains the object’s partial call chain and a count of allocations and frees
of objects with that call chain. A hash table is used to map a partial call chain to the
structure containing the counters. When an object is allocated, its partial call chain is used
as a hash key to retrieve the structure containing the counters. A pointer to the structure is
placed in the allocated object and the allocation counter is incremented. When the object
is later freed, the pointer is followed and the counter of frees is incremented. Any partial

call chain in which the number of allocations does not match the number of frees indicates
a memory leak and is printed in the leak table.

To construct the allocation bin table, the monitor has a 1026-element array of integers
to count allocations and another 1026-element array to count frees. When objects of a
particular size from 0-1024 bytes are allocated or freed, the appropriated bin is incremented.
Objects larger than 1024 bytes are grouped into the same bin.

The construction of the direct allocation table falls out directly from maintaining the
allocation call graph information, which is described in the next section.

3.2 Constructing the Allocation Call Graph

To construct the allocation call graph, the monitor must associate the number of bytes
allocated with every function on the current dynamic call chain, each time malloc is called.
Consider the sample call chain in Figure 6, which we abbreviate: main->foo->bar(24).

CALL STACK: MPROF RECORDS:
main calls foo 24 bytes over main -> foo
foo calls bar 24 bytes over foo -> bar
bar calls malloc(24) 24 bytes allocated in bar

Figure 6: Example of a Dynamic Call Chain

In mprof, the monitor traverses the entire call chain by following return addresses. This
differs from gprof, where only the immediate caller of the current function is recorded.
gprof makes the assumption that each call takes an equal amount of time and uses this
assumption to reconstruct the complete dynamic call graph from information only about
the immediate callers. In mprof, we actually traverse the entire dynamic call chain and
need to make no assumptions.

In choosing to traverse the entire call chain, we have elected to perform an operation that
is potentially expensive both in time and space. One implementation would simply record
every function in every chain and write the information to a file (i.e., in the example we
would output [main->foo->bar, 24]). Considering that many programs execute millions of
calls to malloc and that the depth of a call chain can be hundreds of functions, the amount
of information could be prohibitive.

An alternative to recording the entire chain of callers is to break the call chain into
a set of caller/callee pairs, and associate the bytes allocated with each pair in the chain.
For the call in the example, we could maintain the pairs [main, foo| and [foo, bar], and
associate 24 bytes with each pair. Conceptually, the data structure our monitor maintains is
an association between caller/callee pairs and the cumulative bytes allocated over the pair,
which we denote (jmain, fool, 24). To continue with the example, if the next allocation
was: main->foo->otherbar(10), where this is the first call to otherbar, we would update
the byte count associated with the [main, foo] pair to 34 from 24. Furthermore, we would

create a new association between [foo, otherbar| and the byte count, 10. A disadvantage
with this implementation is that the exact call chains are no longer available. However,
from the pairs we can construct the correct dynamic call graph of the program, which is
the information that we need for the allocation call graph.

For the overhead imposed by the monitor to be reasonable, we have to make the asso-
ciation between caller/callee pairs and cumulative byte counts fast. We use a hash table in
which the hash function is a simple byte-swap XOR of the callee address. Each callee has a
list of its callers and the number of allocated bytes associated with each pair. In an effort
to decrease the number of hash lookups, we noted that from allocation to allocation, most
of the call chain remains the same. Our measurements show that on the average, 60-75%
of the call chain remains the same between allocations. This observation allows us to cache
the pairs associated with the current caller chain and to use most of these pairs the next
time a caller chain is recorded. Thus, on any particular allocation, only a few addresses
need to be hashed. Here are the events that take place when a call to malloc is monitored:

1. The chain of return addresses is stored in a vector.

2. The new chain is compared with the previous chain, and the point at which they differ
is noted.

3. For the addresses in the chain that have not changed, the caller/callee byte count for
each pair is already available and is incremented.

4. For new addresses in the chain, each caller/callee byte count is looked up and updated.

5. For the tail of the chain (i.e., the function that called malloc directly), the direct
allocation information is recorded.

Maintaining allocation call graph information requires a byte count for every distinct
caller/callee pair in every call chain that allocates memory. Our experience is that there
are a limited number of such pairs, even in very large C programs, so that the memory
requirements of the mprof monitor are not large (see section 4.2).

3.3 Reduction and Display

The second phase of mprof reads the output of the monitor, reduces the data to create
a dynamic call graph, and displays the data in four tables. The first part of the data
reduction is to map the caller/callee address pairs to actual function names. A program
mpfilt reads the executable file that created the monitor trace (compiled so that symbol
table information is retained), and outputs a new set of function caller/callee relations.
These relations are then used to construct the subset of the program’s dynamic call graph
that involved memory allocation.

The call graph initially can contain cycles due to recursion in the program’s execution.
Cycles in the call graph introduce spurious allocation relations, as is illustrated in Figure 7.
In this example, main is credited as being indirectly responsible for 10 bytes, but because

10

we only keep track of caller/callee pairs, F appears to have requested 20 bytes from G, even
though only 10 bytes were allocated.

CALL STACK: MPROF RECORDS:
main calls F (10 bytes over main -> F)
F calls G (10 bytes over F -> G)
G calls F (10 bytes over G -> F)
F calls G (10 MORE bytes over F -> G)

G calls malloc(10) (10 bytes allocated in G)

Figure 7: Problems Caused by Recursive Calls

We considered several solutions to the problems caused by cycles and adopted the most
conservative solution. One way to avoid recording spurious allocation caused by recursion
is for the monitor to identify the cycles before recording the allocation. For example, in
Figure 7, the monitor could realize that it had already credited F with the 10 bytes when it
encountered F calling G the second time. This solution adds overhead to the monitor and
conflicts with our goal to make the monitor as unobtrusive as possible.

The solution that we adopted was to merge functions that are in a cycle into a single
node in the reduction phase. Thus, each strongly connected component in the dynamic
call graph is merged into a single node. The result is a call graph with no cycles. This
process is also used by gprof, and described carefully elsewhere [2]. Such an approach works
well in gprof because C programs, for which gprof was primarily intended, tend to have
limited amounts of recursion. Lisp programs, for which mprof is also intended, intuitively
contain much more recursion. We have experience profiling a number of large Common Lisp
programs. We observe several recursive cycles in most programs, but the cycles generally
contain a small percentage of the total functions and mprof is quite effective.

3.4 Lisp Implementation

So far, we have described the implementation of mprof for C. The Lisp implementation is
quite similar, and here we describe the major differences. C has a single function, malloc,
that is called to allocate memory explicitly. Lisp has a large number of primitives that allo-
cate memory implicitly (i.e., cons, *, intern, etc.). To make mprof work, these primitives
must be modified so that every allocation is recorded. Fortunately, at the Lisp implemen-
tation level, all memory allocations may be channeled through a single routine. We worked
with KCL (Kyoto Common Lisp), which is implemented in C. In KCL, all Lisp memory
allocations are handled by a single function, alloc object. Just as we had modified malloc
in C, we were able to simply patch alloc_object to monitor memory allocation in KCL.

The other major difference in monitoring Lisp is that the addresses recorded by the
monitor must be translated into Lisp function names. Again, KCL makes this quite easy
because Lisp functions are defined in a central place in KCL and the names of the functions
are known when they are defined. Many other Lisp systems are designed to allow return

11

addresses to be mapped to symbolic function names so that the call stack can be printed
at a breakpoint. In this case, the monitor can use the same mechanism to map return
addresses to function names. Therefore, in Lisp systems in which addresses can be quickly
mapped to function names, memory profiling in the style of mprof is not a difficult problem.
In systems in which symbolic names are not available in compiled code, profiling is more
difficult. Furthermore, many systems open-code important allocation functions, like cons.
Because open-coded allocation functions will not necessarily call a central allocation function
(like alloc_object), such allocations will not be observed by mprof. To avoid such a loss
of information, mprof should be used in conjunction with program declarations that will
force allocation functions such as cons to be coded out-of-line.

4 Measurements

We have measured the C implementation of mprof by instrumenting four programs using
mprof. The first program, example, is our example program with the number of widgets
allocated increased to 100,000 to increase program execution time. The second program,
fidilrt, is the runtime library of FIDIL, a programming language for finite difference
computations [3]. The third program, epoxy, is an electrical and physical layout optimizer
written by Fred Obermeier [5]. The fourth program, crystal, is a VLSI timing analysis
program [6]. These tests represent a small program (example, 100 lines); a medium-sized
program (fidilrt, 7,100 lines); and two large programs (epoxy, 11,000 lines and crystal,
10,500 lines). In the remainder of this section, we will look at the resource consumption of
mprof from two perspectives: execution time overhead and space consumption.

4.1 Execution Time Overhead

There are two sources of execution time overhead associated with mprof: additional time
spent monitoring an application and the time to reduce and print the data produced by
the monitor. The largest source of monitor overhead is the time required to traverse the
complete call chain and associate allocations with caller/callee pairs. We implemented a
version of mprof, called mprof-, which does not create the allocation call graph. With this
version, we can see the relative cost of the allocation call graph. The ratio of the time
spent with profiling to the time spent without profiling is called the slowdown factor. Table
1 summarizes the execution time overheads for our four applications. Measurements were
gathered running the test programs on a VAX 8800 with 80 megabytes of physical memory.

The slowdown associated with mprof varies widely, from 1.5 to 10. crystal suffered the
worst degradation from profiling because crystal uses a depth-first algorithm that results
in long call chains. Programs without long call chains appear to slow down by a factor of
2—4. If the allocation call graph is not generated and long call chains are not traversed, the
slowdown is significantly less, especially in the extreme cases. Since mprof is a prototype
and has not been carefully optimized, this overhead seems acceptable. From the table, we
see the reduction and display time is typically less than a minute.

12

Cost

Resource Description example | fidilrt | epoxy | crystal
Number of allocations 100000 77376 | 306295 31158
Execution time with mprof (seconds) 62.7 132.7 | 188.8 134.1
Execution time with mprof- (seconds) 44.1 116.0 149.7 25.5
Execution time without mprof (seconds) 17.9 107.1 52.1 13.2
Slowdown using mprof 3.5 1.2 3.6 10.1
Slowdown using mprof- 2.5 1.1 2.9 1.9
Reduction and display time (seconds) 10.3 28.8 28.3 36.8

Table 1: Execution Time Overhead of mprof

4.2 Storage Consumption

The storage consumption of mprof is divided into the additional memory needed by the
monitor as an application executes, and the external storage required by the profile data
file. The most significant source of memory used by the monitor is the data stored with each
object allocated: an object size and a pointer needed to construct the memory leak table.
The monitor also uses memory to record the memory bins and caller/callee byte counts
and must write this information to a file when the application is finished. We measured
how many bytes of memory and disk space are needed to store this information. Table 2
summarizes the measurements of storage consumption associated with mprof.

Cost

Resource Description example | fidilrt | epoxy | crystal
Number of allocations 100000 61163 | 306295 31158
User memory allocated (Kbytes) 20000 2425 6418 21464
Per object memory (Kbytes) 781 477 2393 168
Other monitor memory (Kbytes) 8.7 23.3 52.3 17.5
Total monitor memory (Kbytes) 790 500 2445 186
Monitor fraction (% memory allocated) 4 17 28 1
Data file size (Kbytes) 4.5 8.1 28.6 9.6

Table 2: Storage Consumption of mprof

The memory overhead of mprof is small, except that an additional 8 bytes of storage
are allocated with every object. In programs in which many small objects are allocated,
like epoxy, mprof can contribute significantly to the total memory allocated. Nevertheless,
in the worst case, mprof increases application size by 1/3, and since mprof is a development
tool, this overhead seems acceptable. From the table we also see that the data files created
by mprof are quite small (< 30 Kbytes).

13

5 Related Work

Mprof is similar to the tool gprof [2], a dynamic execution profiler. Because some of the
problems of interpreting the dynamic call graph are the same, we have borrowed these
ideas from gprof. Also, we have used ideas from the user interface of gprof for two
reasons: because the information being displayed is quite similar and because users familiar
with gprof would probably also be interested in mprof and would benefit from a similar
presentation.

Barach, Taenzer, and Wells developed a tool for finding storage allocation errors in C
programs [1]. Their approach concentrated on finding two specific storage allocation errors:
memory leaks and duplicate frees. They modified malloc and free so that every time that
these functions were called, information about the memory block being manipulated was
recorded in a file. A program that examines this file, prleak, prints out which memory
blocks were never freed or were freed twice. This approach differs from mprof in two ways.
First, mprof provides more information about the memory allocation of programs than
prleak, which just reports on storage errors. Second, prleak generates extremely large
intermediate files that are comparable in size to the total amount of memory allocated by
the program (often megabytes of data). Although mprof records more useful information,
the data files it generates are of modest size (see the table above).

6 Conclusions

We have implemented a memory allocation profiling program for both C and Common Lisp.
Our example has shown that mprof can be effective in elucidating the allocation behavior
of a program so that a programmer can detect memory leaks and identify major sources of
allocation.

Unlike gprof, mprof records every caller in the call chain every time an object is allo-
cated. The overhead for this recording is large but not impractically so, because we take
advantage of the fact that a call chain changes little between allocations. Moreover, record-
ing this information does not require large amounts of memory because there are relatively
few unique caller/callee address pairs on call chains in which allocation takes place, even
in very large programs. We have measured the overhead of mprof, and find that typically
it slows applications by a factor of 2-4 times, and adds up to 33% to the memory allo-
cated by the application. Because mprof is intended as a development tool, these costs are
acceptable.

Because mprof merges cycles caused by recursive function calls, mprof may be ineffective
for programs with large cycles in their call graph. Only with more data will we be able to
decide if many programs (especially those written in Lisp) contain so many recursive calls
that cycle merging makes mprof ineffective. Nevertheless, mprof has already been effective
in detecting KCL system functions that allocate memory extraneously.?

3Using mprof, we noted that for a large object-oriented program written in KCL, the system function

14

As a final note, we have received feedback from C application programmers who have
used mprof. They report that the memory leak table and the allocation bin table are
both extremely useful, while the direct allocation table and the allocation call graph are
harder to understand and also less useful. Considering the execution overhead associated
with the allocation call graph and the complexity of the table, it is questionable whether
the allocation call graph will ever be as helpful C programmers as the memory leak table.
On the other hand, with automatic storage reclamation, the memory leak table becomes
unnecessary. Yet for memory intensive languages, such as Lisp, the need for effective use of
the memory is more important, and tools such as the allocation call graph might prove very
useful. Because we have limited feedback from Lisp programmers using mprof, we cannot
report their response to this tool.

References

[1] David R. Barach, David H. Taenzer, and Robert E. Wells. A technique for finding
storage allocation errors in C-language programs. ACM SIGPLAN Notices, 17(5):16—
23, May 1982.

[2] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An execution profiler
for modular programs. Software Practice & FExperience, 13:671-685, 1983.

[3] Paul N. Hilfinger and Phillip Collela. FIDIL: A language for scientific programming.
Technical Report UCRL-PREPRINT 98057, Lawrence Livermore National Laboratory,
January 1988.

[4] David A. Moon. Garbage collection in a large Lisp system. In Conference Record of the
1984 ACM Symposium on LISP and Functional Programming, pages 235246, Austin,
Texas, August 1984.

[5] Fred Obermeier and Randy Katz. EPOXY: An electrical and physical layout optimizer
that considers changes. Technical Report UCB/CSD 87/388, UCBCS, November 1987.

[6] John Ousterhout. A switch-level timing verifier for digital MOS VLSI. IEEE Transac-
tions on CAD, CAD-4(3), July 1985.

[7] Paul Rovner. On adding garbage collection and runtime types to a strongly-typed,
statically checked, concurrent language. Technical Report CSL-84-7, Xerox Palo Alto
Research Center, Palo Alto, California, July 1985.

every accounted for 13% of the memory allocated. We rewrote every so it would not allocate any memory,
and decreased the memory consumption of the program by 13%.

15

