
Internet Insecurities Are Not Diseases

Paul N. Hilfinger∗

University of California at Berkeley

13 July 2000†

As the Internet grows in size and importance, so too do malicious or mis-
chievous attacks on it and on the computers it connects. After each such
attack, the public is treated to the opinions of experts conveying a consis-
tent set of messages. We are told that (1) computer criminals will always
be able to kick holes in computer security at will; (2) these incursions will
always cause some initial damage, which can be limited only by vigilant and
repeated installation of the latest virus-scanning software; and (3) although
there are methods by which users can avoid such damage, they all involve
giving up significant useful functionality or convenience (such as the ability
to click freely on e-mail attachments). In fact, these statements are all false.
Their constant repetition has led the public to accept a significantly lower
level of security than is possible. It is entirely feasible for software vendors
to radically and continuously improve computer security with virtually no
impact on the convenience of their customers, and it is the responsibility of
the public to insist that vendors do so.

In the wake of a well-publicized attack, experts typically advise the public
to take various draconian protective measures: don’t click on attachments;
turn your machine off when not in use; don’t open spreadsheets or Word
documents unless you are absolutely sure of their provenance. Likewise,
manufacturers, in lieu of building the secure infrastructure they could, will
instead simply disable or otherwise increase the inconvenience of the prob-
lematic features, as Microsoft did to its Outlook e-mail program in response

∗Author’s address: 387 Soda Hall M.C. 1776, Department of Electrical En-
gineering and Computer Science, University of California, Berkeley, CA 94720.
Telephone: (510) 642-8401. E-mail: Hilfinger@cs.berkeley.edu.

†Fixed typos 12 January 2003. Thanks to Bradford Wilson.

1



to the recent Love Bug. Of course if e-mail attachment really is a valuable
feature and not a mere frill, one can’t reasonably avoid clicking on attach-
ments; active attacks on your machine can happen even as you use it, so
turning it off provides limited protection (and is impossible if your machine
acts as some kind of server); and if one has to deal with the general public, it
is rather difficult in practice to vet every single sender or application. None
of these measures are inherently necessary. The technology exists to allow
safe and uninhibited use of most of the features of modern mailers, browsers,
and other office software.

The prime culprit in the public’s current state of misinformation is what
we might call the disease metaphor for computer break-ins. This pictures
a malicious program as an active agent (hence the term virus) that, like
a biological disease, is contracted by contact with the outside environment
and is often infectious. A perfectly healthy human, free of disease or genetic
defect, will nevertheless fall victim to a new infection different from what his
immune system has previously encountered. This difference, furthermore,
needn’t be fundamental—a relatively small mutation will do. In other words,
it is perfectly normal and expected that humans will inevitably fall victim to
an endless succession of diseases during their lifetimes. Although protective
vaccines are possible, they are in general imperfect, are developed only after
some members of the population get seriously ill from a new strain of disease,
and cannot be manufactured quickly enough to deal with all infections. These
properties are very familiar to us, which is what makes the disease metaphor
useful as an explanatory device, and also powerfully misleading.

A more accurate metaphor is that of the computer (or operating system)
as a fortress armored with an impregnable sheathing in which, due to hasty
construction, there are numerous chinks. According to this metaphor, there
are finitely many chinks and as they are repaired, the fortress more and more
closely approaches invulnerability. Furthermore, no simple variation (read,
mutation) of an attack that once succeeded in getting through a chink will
ever succeed again, once that chink has been repaired; the would-be attacker
must find an entirely different chink. In other words, the task of breaking into
the fortress becomes increasingly difficult, and the information that led one
attacker to a chink in the armor is useless to his successors. Furthermore, it
is not the attacker’s prerogative to blast a new chink, but rather he must find
previously existing chinks, an enterprise that becomes effectively impossible
to larger and larger classes of would-be criminal. It is this metaphor that
should inform public thinking about the security of their systems, and the

2



properties they may reasonably demand of their vendors.

1 What you are entitled to expect

Given the state of technology I will describe below, you might legitimately
expect a great deal more in the way of convenient security than current
software provides.

• It can and should be safe to open any attachment or document—be it
text document, spreadsheet, or executable program—without fear that
your data or programs will be damaged, or any worms inserted in your
computer.

• Executable attachments and documents from sources that you have
previously arranged to trust can be reliably verified to come from those
sources and be executed without your further intervention.

• Executable attachments and documents from sources in which you have
not indicated trust can be run without intervention, and reliably re-
stricted by your system so as not to perform potentially damaging acts.

• In those cases where such untrusted executables actually require oper-
ations that change parts of your data, your system can automatically
ask permission for the specific operations to be performed and reliably
restrict access to what you have explicitly permitted.

• You can arrange to partially trust certain sources of executable objects,
and to pre-arrange permission for exactly the operations these objects
require.

• All of this can be engineered to be convenient.

2 The good old days

The technology I refer to is not new or experimental, nor is the (perhaps
even more important) attitude that security loopholes are repairable security
bugs. Unfortunately, computer software went through a kind of “historical
knothole” with the advent of the personal computer. Previous systems, being

3



very expensive, had to be shared, and the need to share brought with it
a need to protect users from each other. As a result, in the 1960s and
1970s, computer security was an important issue, and an active research
topic. The early designers of the personal computer, unfortunately, suffered
from a collective failure of the imagination, and as the name implied, saw
the new systems exclusively as isolated, private computers. Thus was over
a decade of computer security technology discarded. It has gradually been
restored in more recent versions of Windows and MacOS, but a legacy of
careless security practice and culture still remains to be corrected (even, to
some extent, on UNIX systems, which largely retained the older attitudes).

In the abstract, the problem of computer security is to somehow monitor
the operations performed on a system—whether it be a single computer or
a network of them—so as to enforce some security policy about which users
(or agents) may perform what operations on what data. The challenges
are to formulate policies that correctly reflect our needs, and then to find
mechanisms that enforce these policies reliably and quickly. I’m not going to
address the first challenge here, since I don’t think this is the most pressing
problem, and will instead concentrate on enforcement.

The single computer. Before the personal computer, security problems
involved single computers shared by mutually distrustful users. Proper secu-
rity boiled down to preventing one user’s programs from writing to or reading
from another’s files without authorization to preventing them from reading
or writing the primary memory of any other user’s program. Implementing
security in this world is, in principle, easy. Computer processors typically
provide ways to restrict the memory available to a running program, and to
allow input and output operations or changes to memory restrictions only to
programs that run in a “privileged mode.” Any program can enter privileged
mode, but only by transferring control to a pre-arranged program, which is
typically part of the operating system (and located in memory that the pro-
gram cannot change). These arrangements are enforced by the computer
hardware; by design there is no way to change them or to trick the hardware
into breaking the rules. The effect is to give all control over damaging oper-
ations to the operating system. Significantly—and as evidence of the failure
of imagination I mentioned earlier—the hardware of early PCs lacked a priv-
ileged mode. The legacy of this gap still persists in widely used operating
systems.

4



Attacking the single system. There are three ways for a security breach
to occur in single-computer systems as I’ve described them. First, there
can be an error—a bug—in the operating system so that it fails to enforce
the restrictions it was designed to (possibly allowing itself to be corrupted).
Second, the method of identifying a user to the operating system (as needed
by security policies that allow only certain users to touch certain data) can
be subverted, which typically boils down to guessing a password. While this
means of break-in is significant, it is also controllable: passwords can be
made longer so as to reduce the probability of guessing them to acceptably
infinitesimal levels; likewise, systems can limit the rate at which they accept
passwords when incorrect ones are proffered; and users can be educated in
proper “password hygiene.” The system side of the password problem, in
other words, is readily solved and hygiene is legitimately the responsibility
of the user. For the rest of this paper, therefore, I will concentrate on what I
see as the more difficult problem: closing security holes due to software bugs.

Third, it is also possible for a malicious user to do as he pleases by
modifying the hardware. This is one reason that expensive, shared machines
were physically secured in locked rooms. But of course, physical security is
not a new problem, and not peculiar to computers; it applies just as well to
one’s wallet. The security of individual computers is not really the source
of current problems, and in any case, the same old-fashioned methods that
apply to banks and personal possessions apply to it. We will have to return
to the issue of physical security when we get to the Internet.

Sandboxes. There is no particular reason why the security policy applied
to a particular program has to be “allow unlimited access to all of Smith’s
files.” In fact, one could design a system to allow any programmable test,
including “Allow reading only of all Smith’s files in directories (folders) X,
Y , and Z” or “Allow creation only of up to 20 files, and only with names
that have the form F ,” as well as resource limitations such as “Allow the
program only 10 seconds of CPU time” or “Allow the program to write a
total of at most 100K bytes.” Such restrictions can be quite general, can in
principle be programmed quite easily, and in fact have been implemented in
some operating systems. The Java system provides the notion of a “security
manager,” which it consults to know if a user program’s requested operation
is legal. The security manager can be changed only once, so a monitor
program can set up a desired policy and then call an untrusted application

5



that must then abide by it. Such restricted environments for programs go
under the general title of sandbox. The concept of a security manager is
certainly not new; the established (decades-old) term is “reference monitor.”

3 On to the Internet.

Sun Microsystems uses the slogan “the network is the computer.” I’ve seen
this sentiment called cryptic, and it probably was to those who saw personal
computers as isolated computers. By now, though, the enormous value of in-
terconnection is obvious. In effect, the power and memory of one’s computer
is extended to those it connects to, making the computers and the network
that connects them one entity. This introduces two classes of problem.

First, if an operating-system implementer is not careful, the effective op-
erating system of this machine is now distributed among many computers.
Security bugs in operating systems can be quite subtle, and as my armored-
fortress metaphor suggests, a chink at one point is all it takes for a successful
attack. Therefore, when the operating system becomes distributed onto ma-
chines outside one’s control, including to machines under enemy (or at least,
miscreant) control, it again seems possible for adversaries to attack at will
on their own terms. If another computer tells yours “here’s a request from
user Smith” or “here’s a system program to run,” then unquestioning belief
on the part of your computer allows many obvious possible abuses. Clearly,
therefore, foreign computers must in general be treated with suspicion.

Nevertheless, we will always have good reason to trust some select set of
remote computers in particular ways. The basis for this trust is not really
a technical matter: we might trust upgrades to our system software from
Microsoft, for example, on the grounds of the company’s reputation and of
its assumed desire to avoid the legal repercussions of liability. This part of
the security problem therefore reduces to reliably identifying (authenticating)
the sources of data and commands that come over the network (that is, the
agents supplying them) and enforcing the same sorts of security policy as
previously.

Second, even if you believe that you have secured a trusted set of ma-
chines, the network connecting them is (and probably always will be) subject
to outside interference from untrusted machines, and from physical attack.
Internet messages arrive containing the addresses of their purported senders,
but messages with forged addresses can be inserted in a number of ways, even

6



without splicing physical wires. Likewise, intruders can listen to messages
on the internet in some of the same ways as on telephones and if they use
the same local network, they again don’t need to modify any hardware.

The solutions to this problem involve cryptography, which allows us to
hide data from a would-be intruder, and to recognize data that comes from an
intruder rather than its intended source. Modern techniques rely on one-way
functions: computations that are easy to perform in one direction (such as
encrypting a message), but extraordinarily difficult to reverse (to decrypt)
without the right secret key, even for someone who knows exactly how to
produce encrypted messages. With the aid of such functions, one can estab-
lish communication channels between computers without prior arrangement
between the two. One can arrange also to reliably authenticate the source of
any transmission. In effect, one can get the effect of having the network con-
necting your computer to another be as secure as if it were a wire housed on
your premises (although considerably more prone to breakdown), reducing
the security problem to something like the single-computer problem.

Of course, an attacker could simply guess the secret key protecting an
encrypted transmission. Therefore, the cryptographic techniques I refer to
will fail in the face of a phenomenally lucky attacker or one with enough
computing power to try all possible keys in a reasonable length of time.
However, this is not an insuperable objection, because the amount of luck
or computing power required can be increased arbitrarily until break-ins are
entirely out of reach of any desired class of attacker.

Denial of service. So far, I have dealt with attacks that damage or steal
data. Recently, we’ve seen another kind of attack launched against such
companies as Yahoo, Amazon.com, and AOL: the denial-of-service attack.
Here, the network is flooded with legitimate-looking traffic that overwhelms
its target. This kind of problem is not easily prevented altogether for a simple
reason: the same effect could be produced if a large number of users were to
simultaneously decide—perfectly innocently—to visit a certain site. There
is no easy way to detect electronically the intent behind a flood of messages.

First, however, denial-of-service attacks, while harmful, do not do the
sort of permanent damage to data and software wrought by typical viral
attacks. Secondly, and more to the point of this paper, it should be possible
to sharply reduce the largest subclass of these attacks: those carried out
by individuals who want to remain unidentified. For example, the attacks

7



in February 2000 involved breaking into servers and planting programs that
issued requests on behalf of the cracked servers. Tracing the origins of the
flood of messages, therefore, would lead only to other unwitting victims of the
attack. Obviously, this approach was intended to disguise the real villains.
Had it not been possible to break into the servers—or in general to run in the
guise of another user—the attack would have been considerably more limited
at worst and probably would not have occurred at all.

4 Obstacles

It will not be easy to achieve the security improvements I advocate here.
First, the industry’s passage through the historical knothole I referred to
earlier scraped off traditional security considerations, so that current software
has evolved from systems that did not properly address the subject. Security
measures are particularly hard to retrofit. Second, it is not at all clear how
to motivate software vendors to address security properly, especially given
certain unfortunate trends in the law.

Messy systems mean many chinks

One recurring comment on drafts of this paper was that the current state of
personal-computer software makes the kinds of improvements I am suggesting
extremely difficult. I have tried to keep my remarks relatively neutral in
treating operating systems, but this is one area where Windows has come in
for particular criticism.

The problem is that the boundary between operating system and applica-
tion is blurred in the case of the Windows line. This complicates application
of the sandbox strategy referred to earlier, which requires monitoring the set
of possibly destructive requests to the operating system. It’s essentially the
difference between building a wall across a narrow isthmus separating oper-
ating system and applications (the “classical” notion) and building a wall
around a complexly gerrymandered election district.

In their defense, Microsoft has claimed that their system structure is dic-
tated by a desire to provide tightly integrated systems to their customers.
The goal is laudable, but this oft-repeated explanation is nonetheless a non
sequitur: the visible behavior of a system does not dictate its internal struc-
ture. Two icons may look radically different and seem geographically sepa-

8



rated on your screen, but the same program produces both of them, and the
applications they denote make use of many shared components. Saying that
an operating system will not function if its browser is replaced is like admit-
ting that one has designed a car so that its transmission falls out when one
changes the hub-caps. Tight integration as users see it comes from the care-
ful design and documentation of the components available to programmers
who write application software, and from widely published and clearly enun-
ciated standards for interface design—not from mashing everything together
into one vast, holistic mass of software.

Nevertheless, I feel some justification for guarded optimism. First, one
can circumvent a messy operating system if necessary: Java implementa-
tions, for example, do not rely on the native operating system’s security
procedures to implement their own security. Secondly, every software com-
pany must periodically renew its software base to remain healthy. I have
every reason to believe that Microsoft’s technical staff is perfectly cognizant
of basic principles of software engineering. After all, Steve McConnell’s ex-
cellent book, Code Complete, treats of them, and is published by Microsoft
Press. If the company eventually is broken into an applications company and
an operating-system company, it will be an obvious opportunity to under-
take a clean and well-documented definition of an isthmus to the operating
system—to the benefit of the public and their own long-term profit.

Motivation and liability.

A big problem with really good security is its invisibility; you tend not to
notice break-ins that don’t happen. This property fits poorly with a culture
geared to selling features. The automobile industry had a similar motiva-
tional problem. However, in the case of cars, there is a countervailing force
at work: liability law. Litigation or the threat of it motivates manufacturers
to address safety issues.

UCITA. The software industry, however, has had an entirely different cul-
ture. Typical end-user license agreements (EULAs) for software seem to
disclaim responsibility even for basic functionality, let alone damage from
attacks on security. It has not been entirely clear how effectively these shield
software vendors, which, I would argue, is a good thing. Unfortunately, the
part of the Uniform Commercial Code known as the Uniform Computer In-
formation Technology Act (UCITA), which is now making its way through

9



the state legislatures, would strengthen the protection enjoyed by vendors
from the disclaimers in their EULAs. One good way to further the cause of
computer security, therefore, would be through modifications of this Act.

Inevitable error. Software vendors will claim that they need blanket dis-
claimers because software, being extremely complex, will always have errors,
and that therefore, they need to be protected from their own mistakes to stay
in business. Yet there are examples of manufacturers who appear quite will-
ing to bet their companies on the safe, if not perfect, performance of some
piece of software. Aviation companies are one example (high-performance
aircraft can’t remain stable without computer control, and civilian aircraft
rely on computer-assisted navigation). Banks, with their computer-assisted
funds transfer, are another. We know techniques of testing and internal
checking for assuring an acceptable level of security (or any other correctness
property) in software. It is just a matter of having the motivation to apply
them.

Customer indifference. Again, software vendors will claim that their
users don’t care about security, and that in a free market, vendors’ actions
are dictated by customers’ demands. First, this argument ignores our ten-
dency to get fatalistic about situations we believe to be inevitable. That’s
why people are willing to live on earthquake faults. If, as I’ve argued, the
disease metaphor has convinced the public that true security is impossible,
then of course they will not insist on it. Second, the value of security in oper-
ating systems, like safety in cars, is not something that customers can easily
detect, let alone evaluate. This value, after all, consists in not incurring the
costs of break-ins, certainly a rather difficult figure to pin down. Without
help, therefore, the free market will not necessarily arrive at the right mix of
programming resources devoted to security vs. those devoted to functionality.
Third, there is a collective component to security. Someone who breaks into
my system gets another platform from which to attack yours. Your security
therefore depends to some extent on mine. In other words, society as a whole
has an interest in computer security that is not necessarily reflected in our
preferences as individuals.

10



5 Answers to objections

There seem to be a number of standard responses to the criticisms and pro-
posals I’ve made here that I’ll try to rebut.

1. You can never make system security perfect. Probably, but it has been
said that the best is the enemy of the good. Houses burn down despite
our best efforts, yet we do not use this as an excuse to stop develop-
ing fire-resistant building materials. I only argue that we can reduce
gaping holes to at worst very slow leaks. There used to be a tendency
among journalists (declining now, I like to think) to describe anyone
who succeeded in breaking into a system as “brilliant.” In fact, one
scandalous aspect of the current state of affairs is that the vast major-
ity of successful attacks come from people who are at best mediocre
programmers, using relatively simple programs. Even if it is always
possible for a mad genius to break into our systems, we can at least
prevent the much more common average, disaffected idiot from break-
ing in. Indeed, we can do better: we can limit the class of successful
criminals to extremely lucky and extremely wealthy evil geniuses, and
require of them ever more luck and ever more expense.

2. There are also holes in Sun/Linux/Microsoft/. . . software’s security.
Also no doubt true, but quite irrelevant. My purpose is not to convince
anyone to switch operating systems, but to insist on improvements to
what they have. The fact that General Motors must occasionally recall
vehicles does not insulate Ford from the need to improve its product.
The fact that security holes are common does not indicate that they
are inherent, but merely that system implementors in general have paid
less attention to them than they could.

3. It has always been easy to create Trojan horses, worms, and viruses
for all modern operating systems, because all modern software systems
make it easy for one program to call another. This statement was part
of a response from Microsoft’s Security Response Center to a critical
article by James Gleick on the “Love Bug” virus. It is, to say the
least, misleading. It is true that the ability for one program (say a mail
reader) to call another (say a Visual Basic interpreter) figures into many
security breaches. But the real problem is that the actual functionality
that’s needed is that of calling another program with certain constraints

11



applied to its execution. Adding restrictions is often as much work as
adding features, and does not result in snazzy new functionality, so
implementors tend to get a bit lazy about security. Contrary to the
Security Response Center’s intended implication, there is no inherent
reason that the ability of one program to call another must breach
security.

4. It’s not the software vendors, but the virus writers who are at fault for
the damage done by malicious documents. The virus writers should
incur penalties for the damage they do, but this does not diminish
the responsibility of all those who could reasonably have prevented the
damage. When a car runs a red light and collides with another, its
driver is responsible for the damage done, but that is cold comfort to
the victims if their air bags failed to deploy.

5. Users are responsible for their own safety. In buying vendor X’s soft-
ware, you should be aware of the damage that it can be made to do. It is
certainly true that any operator of a machine is to some degree respon-
sible for that machine’s effects. However, most users are not equipped
to distinguish, for example, safe executable attachments from unsafe
ones. Even an expert would find such a task tedious and error prone.

6. Our software warns users when they are about to perform a potentially
unsafe operation, such as clicking on an attachment. Such warnings,
when they are given at all, typically are not terribly discriminating. A
safe executable attachment is treated the same as a malicious one. This
is no service to a user who lacks the expertise (or the leisure) to make
an informed judgment. As I have argued, we can make our software
much more finely discriminating, so that often even such warnings could
safely be avoided.

7. There is a trade-off between ease of use and security; we are doing the
best we can to find the best compromise. I regularly use security soft-
ware that gives me authenticated, encrypted access to any of a number
of remote systems—essentially as if I were sitting at their consoles. I
establish one of these connections by clicking on the appropriate system
from a menu, period. I could arrange that a single command would ar-
range for secure access to a new system. You may use your browser to
buy things on the Web. Such connections are generally secure, but you

12



generally wouldn’t know that unless the browser or the Web page made
a point of telling you, usually for the sake of customer relations. These
examples, I claim, are typical of the “inconvenience” that well-designed
security software needs to involve, almost regardless of functionality.

6 Summary

Computer security problems are generally the result of bugs—errors in oper-
ating systems and application programs. They are within the power of soft-
ware vendors to solve. Successful data-damaging attacks are not inevitable;
the world’s computer community need not be the permanent victim of ma-
licious teenagers. To accomplish this increase in security, we must abandon
the disease metaphor, which sees constant vulnerability as normal, and stop
relying on virus-detection programs as a primary line of defense.

I have argued that the computer user community can reasonably insist on
applications that provide security with essentially no decrease in their current
functionality and convenience of use. Furthermore, they can reasonably insist
on “low-maintenance” security that does not require their constant vigilance
(and expenditure) to keep their system informed of the latest batch of disease
agents. We must not forget, however, that from a vendor’s point of view, it
is difficult to sell software that is invisible and trouble-free, but provides no
additional capabilities. Therefore we users do share a collective responsibility
to sell ourselves on the idea, and then, using both the market and the law,
to push vendors to provide it.

Acknowledgements. My thanks to L. Peter Deutsch, Robert B. K. De-
war, Michael Harrison, Josh MacDonald, Doug Tygar, and David Wagner
for many very helpful comments, discussions, and disagreements about this
paper. The opinions and errors in it are mine.

13


	What you are entitled to expect
	The good old days
	On to the Internet.
	Obstacles
	Answers to objections
	Summary

