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Abstract
Format-string bugs are a relatively common security vulnerability,
and can lead to arbitrary code execution. In collaboration with
others, we designed and implemented a system to eliminate format
string vulnerabilities from an entire Linux distribution, using type-
qualifier inference, a static analysis technique that can find taint
violations.

We successfully analyze 66% of C/C++ source packages in the
Debian 3.1 Linux distribution. Our system finds 1,533 format string
taint warnings. We estimate that 85% of these are true positives,
i.e., real bugs; ignoring duplicates from libraries, about 75% are
real bugs.

We suggest that the technology exists to render format string
vulnerabilities extinct in the near future.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Invasive Software

General Terms Security, Languages

Keywords Format string vulnerability, Large-scale analysis, Type-
qualifier inference

1. Introduction
A format string bug is a software bug involving printf(3)-style
function calls. When calling printf, the first parameter speci-
fies the format string, a control string with which to interpret
the remaining parameters. A common mistake is to call printf
with a string containing arbitrary characters as the first parame-
ter, as in printf(string), instead of the correct printf("%s",
string). The former works as intended most of the time, but is
a security vulnerability that can lead to arbitrary code execution.
Such mistakes are easy to make, hard to notice unless one is look-
ing for them, and dangerous when latent. In a setting where input is
untrustworthy, such a bug is a format string vulnerability. A format
string vulnerability, like other input validation bugs such as SQL
injection, arises because untrustworthy input is interpreted as con-
taining trusted control data.

Format string bugs, originally thought to be harmless, were first
publicly identified as a security attack vector in 1999. Since then,
researchers have proposed a number of defenses; yet hundreds of
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format string vulnerabilities continue to be found. As of 2007, there
are over 400 entries in the Common Vulnerabilities and Exposures
(CVE) database for format string vulnerabilities [35].

We want to eliminate format string vulnerabilities from the
entire Debian distribution. One way to do that would be to establish
a quality gate for the Debian release process based on a sound static
analysis tool for format string bugs. That is, no package would be
distributed until after a developer had resolved all warnings from a
format string detection tool. The key question is whether the false
positive rate of such a tool, and the manual effort required, are
low enough that this could be an acceptable barrier to inclusion in
Debian. The main finding of our work is that the answer is yes.
We have successfully completed analysis of 3,692 of the 5,589
packages in Debian with C/C++ code (92 million lines of code),
using a month of wallclock time. Our system reports that 1,533 of
these packages have taint violations, and we estimate 85% of these
represent real format string bugs. There is no major technological
barrier to establishing “format string clean” as a prerequisite for
inclusion in Debian or other large Linux distribution.

2. Contributions
In collaboration with others, we have designed and implemented
a system that can eliminate unintentional format string bugs from
an entire Linux distribution. The system is composed of multiple
components:

1. Elkhound and Elsa

2. Oink and CQual++

3. The Platform Model

4. Vulnivore and Build-Interceptor

Elkhound [27] is a Generalized LR (GLR) parser-generator.
Elsa [2] is a C and C++ lexer, parser, and type-checker generated
using Elkhound. Oink [3] is a static analysis framework using Elsa;
it computes a whole-program data-flow graph (data dependency
graph) at the subexpression granularity. CQual++ is an Oink client
providing a CQual-like type-qualifier inference analysis for both
C and C++. The Platform Model is a set of annotations to the
standard C library. Vulnivore is a system for automatic analysis of a
large software distribution. Vulnivore uses Build-Interceptor [1] to
obtain the .i files from a target build process and uses CQual++
and the Platform Model to perform the analysis. We have built
or improved each of these components for the purpose of doing a
large-scale format string analysis; however, each component itself
is also applicable to more general problems.

2.1 Project roles
The analysis system composes the work of many people, not all
of whom are authors on this paper. Jeff Foster designed and im-



plemented CQual, the first generation type qualifier inference anal-
ysis [15, 14, 17, 4, 23, 22, 16]. Scott McPeak designed and im-
plemented Elkhound and Elsa [2, 27], the C and C++ front-end.
Daniel S. Wilkerson designed and implemented Oink/CQual++ [3]
and Build-Interceptor, and also assisted with the implementation of
Elsa. Robert Johnson designed and implemented the polymorphic
serializing compactifying data-flow backend [23]. David Gay wrote
a regions-based memory management library [18] used by both the
original CQual backend and Robert Johnson’s new backend. Karl
Chen designed and implemented Vulnivore and the Platform Model
and also worked on Elsa, Oink, CQual++, Johnson’s backend, and
Build-Interceptor.

2.2 Comparison to previous work
We build on prior work using CQual for format string analysis in
the following ways.

• Soundness. Prior work considered finding any bugs with a rea-
sonable false-positive rate a success, without regard to sound-
ness or false negatives. In contrast, this work focuses on sound
analysis algorithms, so that no format string vulnerability goes
undetected. (We use the convention that an analysis is sound if it
has no false negatives, and complete if it has no false positives.)

• Scale: number of packages. Prior work [31, 6] reported the
results of applying static analysis to 10–12 carefully selected
packages. In contrast, in the experiments reported here we have
applied our tools to all C/C++ code in the Debian Linux repos-
itory, and completed analysis of 3,692 packages.

• Scale: size of individual programs. The largest package ana-
lyzed in prior work on format string vulnerabilities had in total
220,000 lines of code after pre-processing. The largest single
program we have analyzed so far has 8,000,000 lines of C code,
after pre-processing.

• C++ and code diversity. CQual++ is re-engineered to sup-
port C++ and has support for more programming language con-
structs (standards-compliant or not) that are seen in the wild.

Our system can analyze thousands packages in an automated
fashion; the only manual input to the system is literally a pointer to
the Debian repository. No per-package annotations are required.

In addition to the analysis itself, an important but often ignored
problem is obtaining the code to analyze. To scalably analyze an en-
tire distribution, one cannot manually collect source code or mod-
ify makefiles; each package has its own idiosyncratic compilation
strategy and build dependencies, and may interact with the host
system. We solve the problem of obtaining code automatically as
described in Section 5.2.

3. Background
Consider the following program:

char *getenv(char const* varname);
int printf(char const* format_string, ...);

int main() {
char *home = getenv("HOME");
printf(home); // Oops!

}

Here, the variable home is untrustworthy, since its contents may
be set by the user. However, it is used by printf in a trusting
way: the format string may allow an attacker to get arbitrary stack
contents (using “%s”, “%d”, etc.), or set a memory location (using
“%n”), by setting the HOME environment variable appropriately (for
example, one may use a number of “%d” specifiers followed by

“%n” specifiers to overwrite the return address on the stack). Con-
sequently, the code above contains a format string vulnerability.

Format string bugs can be statically detected using type-qualifier
inference. Type-qualifier inference is a static analysis that can be
used to statically find many classes of bugs. We use type qualifiers
to perform taint analysis, which finds security vulnerabilities such
as SQL injection and format string vulnerabilities [31].

3.1 Type-qualifier inference
A type qualifier is an extra qualifier which can appear on any level
of a variable’s type. The C++ language has two built-in type qual-
ifiers: const and volatile. CQual, a type-qualifier inference en-
gine for C created by Foster et al. [15, 14, 17, 4, 23, 22, 16], allows
one to annotate variables with additional user-defined type quali-
fiers. In CQual, user-defined type qualifiers are prefixed with “$”
by convention. Unannotated variables’ type qualifiers are inferred,
using ML-style type inference.

Type-qualifier inference can be used to implement taint analy-
sis by introducing the type qualifiers $tainted and $untainted.
Data that comes from the environment and is untrustworthy is
marked $tainted. Function parameters that must be trustwor-
thy are marked $untainted. If data flows from $tainted to
$untainted, this is a taint violation, or in more general type-
qualifier inference terms, a type error. The approach of using type
qualifier inference to find format string bugs was first articulated by
Shankar et al. [31], and we adopt it in this work.

Continuing the above example of a format string vulnerability,
to find the bug using type-qualifier inference we annotate the re-
turn value of getenv as $tainted and the input to printf as
$untainted. In other words:

char $tainted *getenv(char const *varname);
int printf(char const $untainted
*format_string, ...);

With these annotations, the format string vulnerability is detected:
the type of home is inferred to be char $tainted *, which is not
compatible with the type of printf’s first formal parameter.

Note that detecting the bug required only annotations to the
prototypes of standard C library functions. This is an important
property of our system, because it allows application of our tool
to legacy code without annotating or changing the legacy code.

4. Related work
CQual has been used to find format string vulnerabilities [31] and
other kinds of security bugs, such as user-kernel bugs [22], and for
redacting crash dumps [7].

We group defenses against format string attacks as follows:

1. Language restriction. The language may in effect be changed
by removing the “%n” specifier at the library level. This may
break existing programs, and also does not protect against infor-
mation disclosure attacks that dump the contents of the stack. It
also does not generalize to any other kind of software bug.

2. Lexical analysis. Lexical analysis includes lint-like tools that
search for the most common type of error (e.g., “printf(
variable)”) [34]. PScan [11] finds calls to printf where the
format string is non-static and no arguments are given. GCC
version 4 also checks for this when -Wformat-security is
enabled. FormatGuard [10] uses the C preprocessor to detect er-
rors in the number of arguments passed to printf, but does not
check calls to vprintf or changes in the kind of format string.
Though easy to implement, these are inherently less powerful
than static analysis, and have false positives and false nega-
tives; for example, a helper function that passes its parameters
to vfprintf will hide taint errors. Indeed, many of the format



string vulnerabilities we have found are of this form and conse-
quently would not be found by lexical analysis.

3. Static analysis. Static analysis can analyze program semantics,
not just look for syntactic/lexical bugs, and hence can be more
effective. Shankar et al. used CQual to find format string vulner-
abilities in C code [31]. Later, Avots et al. showed how to find
format string vulnerabilities with fewer false positives, by us-
ing a context-sensitive points-to analysis [6]. Livshits and Lam
used a custom taint analysis to find input validation vulnera-
bilities in Java applications, with no false negatives [26]. Also,
static analysis has been used for finding many other kinds of
security vulnerabilities [36, 8, 13, 39, 24, 37, 28, 20, 38, 21].

4. Dynamic analysis. Another approach is to detect format string
vulnerabilities when they are exploited, by analyzing the flow
of tainted data at run time. For instance, perl includes a taint-
checking mode. The libformat library [30] inserts itself into
a program via the dynamic linker and aborts the program if
the format string is in writable memory and contains the “%n”
specifier. The libsafe library [33] checks that a “%n” specifier is
not writing to a function return address. Libformat and libsafe
have the advantage of applying to binary programs, but they do
not protect against information disclosure. More recently, Rin-
genburg and Grossman use a hybrid approach combining static
analysis and program transformation [29]. Purely dynamic de-
fenses in general may defend against attacks without having to
patch or recompile applications, and can more easily be sound.

The advantage of static analysis over dynamic analysis is that it
can be used to find and fix bugs before software is deployed, and it
incurs no run-time overhead or change.

5. Implementation of the analysis
Since we are doing static analysis, we must obtain the source code
to the programs under analysis. We need the source code as seen
by the compiler-proper, that is, we need the pre-processed code, in
the form of .i files. For soundness, we must analyze all source files
used by each program, including all static and dynamic libraries
(recursively) used — we call this whole-program analysis.

5.1 Whole-program analysis
We analyze the whole program. This includes all of a program’s
source code, as well as the source of all libraries it uses, recursively.
We chose Debian Linux to analyze because it has a large number of
packages, each with appropriate package dependency information.

Debian is composed of a number of source packages. Building
a source package yields corresponding binary packages, which are
installed by the end-user. Source packages depend on other binary
packages for their header and library files.

5.2 Getting and analyzing the code
We have created Vulnivore, a system that, given the version number
of a Debian release and a cluster of machines to run on, automates
running the entire analysis cycle. The process is entirely automated;
when provided with the input source packages, Vulnivore outputs
the list of packages with taint warnings with no manual interven-
tion, and provides a user interface to view results.

The process of getting all the code to analyze for whole-
program analysis is involved. We need to analyze pre-processed
C and C++ files (.i files). Since each source package has its own
idiosyncratic build process, we obtain the set of .i files for each
program by intercepting the build and capturing the pre-processed
files along the way using Build-Interceptor [1]; following Lib-
lit [25] and Chen [9] this tool embeds .i files into object files as
they are compiled, which travel through the linking process into

the final executable. We run the builds separately by using vir-
tual machines. Originally, we created a chroot per task, but this
proved insufficient as installing the build dependencies of some
packages require running network daemons and doing other things
that “escape” a chroot. The second generation of Vulnivore uses
User-Mode-Linux [12] as the virtual machine, which allows for
easy communication between processes in the host and the client.

For each source package, we create a new virtual machine,
install the required dependencies, run the build under interception,
and capture the .i files for each executable. Since programs may
statically link against libraries from other packages, this must be
done in a particular order.

Vulnivore defines a number of stages. The stages up to the
application-specific analysis include:

1. Building a source package in the virtual machine,

2. Collating sources from dynamic libraries that this source pack-
age depends on,

3. Re-compiling the collected source files to make sure they can
be compiled in a vanilla environment, and checking whether
special compiler flags are needed,

4. Linking to minimize the number of objects needed from dy-
namic libraries, and

5. Administrative tasks such as collecting statistics.

When the above stages are completed for one package, Vulnivore
has produced a tar archive of all .i files needed to compile or an-
alyze each program. (Exception: We do not include the source to
libc, as our static analysis tool provides a model for the behavior of
every libc function.) For example, once Vulnivore has finished its
build interception, one can type essentially g++ *.i *.ii to com-
pile the entire program, without needing any headers or libraries.

Once the above steps are complete, Vulnivore begins program
analysis, which proceeds in 5 stages:

1. Parsing each source file using Elsa,

2. Making a data-flow graph for each source file using Oink,

3. Making a data-flow graph for the whole program using Oink,

4. Format-string taint analysis of each source file, using CQual++,

5. Format-string taint analysis of the whole program, using CQual++.

When function-granularity linking is enabled as described in
section 5.6, we add additional stages after parsing:

1. Construction of function-call graph for individual source files,

2. Reachability analysis to filter out unused functions.

Each of these stages is pipelined, and the separation into mul-
tiple stages allows errors to be identified at the appropriate stage.
The factoring of stages also enables an optimization: if two exe-
cutable programs from different packages share source files (which
will happen for example when they use the same library), we avoid
repeating work by caching the results of all per-source-file stages.

Vulnivore is designed for parallel execution on a large cluster
of machines. Vulnivore analyzes the dependency graph and creates
a work queue with new tasks added as work is completed. The
work queue and the finite state machine that governs it is based
on BOINC [5]. Since a run on the entire Debian distribution takes
a long time and bugs in the analysis are discovered as results are
streamed out, Vulnivore’s work queue allows fixes to the analysis
and other stages to be made while minimizing the amount of CPU
time to re-analyze the affected stages and packages.

Unfortunately, the process is complicated by cycles in the de-
pendency graph of source packages. We solve this by building
packages in layers. Suppose package A indirectly depends on pack-



age B at build time, and package B depends on package A at build
time. We first do an incompletely-intercepted build of package A
to use as input for building package B. Then we build package A
using the fully-intercepted build of package B.

5.3 Oink and CQual++
As discussed earlier, CQual++ is a type-qualifier engine based on
CQual. It has been rewritten by creating a new framework, Oink,
for static analysis of C and C++ code. Oink, which uses the Elsa
front-end, is designed to easily write new static analysis back-
ends that may cooperate with each other. Other analyses have now
been written. CQual++ integrates various extensions to the orig-
inal CQual engine including automatic inference of polymorphic
types (context-sensitivity) [22], instance sensitivity1 [22], com-
paction [23, §4.4], well-formedness constraints [22], and void*
auto-unions[23]. These techniques have been previously published,
and they are summarized in Appendix B. Also, numerous internal
changes have been made for scalability and performance.

CQual++ has new features to make the analysis more precise,
including:

• Handling of variable-argument (vararg) functions. Previ-
ous work required each vararg function to be manually anno-
tated, especially printf wrappers. In CQual++, taint automati-
cally flows from caller arguments passed through the “...” pa-
rameter and retrieved in the callee via va arg. Taint also flows
through va copy to allow functions that wrap around another
vararg function.
To reduce false positives, CQual++ refines the analysis by sepa-
rating the data flow for each type of parameter. To prevent over-
refinement, separation is actually done on equivalence classes
of similar types (for example, all integer types are in the same
class). In the following code:

void foo(long $tainted i0,
unsigned char $untainted *s0) {

bar("is", i0, s0);
}

void bar(char const *fmt, ...) {
va_list va; va_start(va, fmt);
for (; *fmt; ++fmt) {
if (*fmt == ’i’) {
int i = va_arg(va, int); ...

} else if (*fmt == ’s’) {
char *s = va_arg(va, char *); ...

} else { ... }
}

}

the type of i is correctly inferred as tainted, while the type of
s is correctly inferred as untainted. “...” may also be annotated
with qualifiers (even polymorphic ones) if needed.

• Handling of tainted array indices. In CQual++, taint flows
from array indices and from pointers to referents. (This feature
is optional.) This propagates taint through code such as:

extern char uppercase[256];
unsigned char c = read_from_network();
char upper = uppercase[c];
char upper2 = *(uppercase + c);

1 Previous work called this feature “field sensitivity”; however CQual++
now calls it “instance sensitivity” as the feature is characterized by the abil-
ity to allow different instances of a given struct to be analyzed separately.

Here, taint flows from c to upper and upper2 as follows. The
first array indexing case is reduced to pointer arithmetic plus a
dereference as in the second case. (When this feature is on) the
addition of a tainted integer to the (untainted) pointer value of
uppercase creates a tainted pointer value. Dereferencing the
tainted char * then returns a tainted char value.

5.4 Platform Model
Much of the standard C library is written in assembly, invokes
syscalls, or otherwise uses C in a non-type-safe or unportable way,
and thus would be difficult to analyze automatically. Therefore, we
make no attempt to analyze it directly. Instead, we manually created
a model of the semantics of each library call.

We assume that the C library is standards-compliant and we use
the C language specification as our specification of the behavior
of each library function. In practice, there are some variations in
function semantics across operating systems and versions, but we
model all possible behaviors that can occur on the systems we have
used. (We detect differences in parameter types and signal them as
errors.)

The Platform Model is a set of annotations to the C library (and
other system libraries) that accurately models data-flow semantics
in sufficient detail to ensure the correctness of CQual++’s type
inference, though we do not try to model the full library semantics.
For example, strcpy(3) might be modeled as follows:

char *strcpy(char *dest, char const *src) {
dest[0] = src[0]; return dest;

}

While this stub is valid C code that could be compiled and run, it
does not behave in the same way as the standard strcpy. Nonethe-
less, from the point of view of CQual++’s type inference analysis,
it is equivalent to the real strcpy. We use stubs like these to con-
cisely model how library functions affect the flow of taint through
the program.

CQual++ supports another way to express the above model:

char $_1_2 *strcpy(char $_1_2 *dest,
char const $_1 *src) {}

This annotation indicates that the value pointed to by src flows,
polymorphically, to the value pointed to by dest, and moreover
that the type of the value pointed to by dest is the same as the type
of the value pointed to by strcpy’s return value. The $ 1 2 syntax
specifies that dest has a type qualifier which is higher than that of
src in the type-qualifier lattice. In this example, if src is tainted,
then dest and the return value must be tainted; if src is untainted,
then dest and the return value may be untainted or tainted but
must have the same type qualifier. The type-qualifier lattice and
the special syntax are described by Shankar et al. [31].

To create the model, we started with GNU libc version 2.3.5
and replaced every function declaration or definition with a stub or
annotation. The Platform Model has three types of annotations:

1. Taint flow from one parameter to another or to the return value.

2. Trusting sinks, which for this application are mainly the
printf(3) family of functions and their cousins such as
syslog(3). Passing a tainted value to a trusting sink triggers a
type error. There are currently 64 trusting sinks.

3. Untrustworthy sources, such as read(2) and getenv(3).
Untrustworthy sources create new tainted values. There are
currently about 500 untrustworthy sources.

In all, the Platform Model contains annotations for about 2600
library functions defined by GNU libc.



The Platform Model currently is designed for finding format
string vulnerabilities only. Thus, the Platform Model only annotates
parameters of character type. For instance, the return value of
fread(3) — the number of characters read — is not annotated as
tainted, even though it can potentially be controlled by an attacker.
Similarly, other system calls and other external mechanisms that
may return untrustworthy integer data are not marked tainted. In
particular, we explicitly assume that the program will not take the
return value from fread(3), cast it to a character type, and use it
as part of the format string passed to a printf(3)-like function.
(See the last rule in Appendix A.)

We assume that all character input read from the user, the
network, the filesystem, or any other input source (such as stdin)
is untrustworthy. We also treat all character data provided as part
of the environment (such as argv and environ) as untrustworthy.
This may be overly conservative. For example, a format string bug
caused by user input in a local non-setuid program may not be
exploitable, since the program is running in the user’s own privilege
domain. Nonetheless, we consider it at least a bug that should be
fixed, since it may become a vulnerability when this program is
composed with other systems. If another program, say a CGI script,
were to invoke this one, it would not know to check certain inputs
for format strings.

Our philosophy in developing the Platform Model was to err on
the side of soundness, to ensure we would not miss any vulnera-
bilities. This has generally been effective, with only a few excep-
tions. Our experience with analyzing a large number of packages
revealed that our initial annotations for a few functions nearly al-
ways yielded false positives:

1. gettext(1) and catgets(3) family: We initially annotated
these as always returning a tainted string. However, this leads to
many false positives. We changed the annotation to a polymor-
phic signature: the return value is tainted if the message input
to gettext is tainted. Thus we assume that the system transla-
tion files are not under the attacker’s control. We also assume
that the translation files do not contain any accidental errors that
would cause a mismatch between the format specifiers in the in-
put message and the translated message. Of course, if either of
these assumptions are incorrect, we might miss vulnerabilities.

2. strerror(3): We initially annotated the string returned by
strerror as tainted, because the attacker might be able to
control which error message is selected. However, none of the
standard error messages have “%” in them, so to reduce false
positives we decided to remove this annotation.

5.5 Linking
When a program contains multiple translation units (files), uses of
undefined symbols (functions and variables) must be linked to their
definitions in other files.

We wish to map use of a symbol to the appropriate definition.
Naively one would create a one-to-one map from symbol names
to definitions, and compose this with the many-to-one map from
uses of symbols to symbol names. Missing symbol definitions are
an error, and by default we stop analysis if any symbol is used
but has no definition. (Even if unsound, it may still be useful to
find as many bugs as possible, so this can be downgraded to a
warning.) C++ names are mangled in a namespace separate from
C names, and orthogonally, functions have a namespace separate
from variables. This resolves the difference clashes with symbols
such as clog (both a C++ iostream variable and a C math function).

Unfortunately, things get complicated in the presence of mul-
tiple symbol definitions with the same name in the same class; in
reality there is a one-to-many relation between symbol names and
definitions of symbols. Composing the many-to-one mapping from

use of symbols to names of symbols, and the one-to-many relation
from symbol name to definitions, would lead to a many-to-many
relation from uses of symbols to definitions. At link time, there is
indeed a many-to-one mapping directly from the use of a symbol to
the definition of a symbol, defined by operating system linker se-
mantics. The semantics differ across operating systems, depend on
the order of linker command-line arguments, and can even depend
on run-time settings. For example, in Linux, the run-time environ-
ment variable LD BIND NOW selects whether the dynamic linker re-
solves all symbols immediately, or lazily upon first reference of
each symbol, potentially affecting which definition gets used. In
either case, symbol resolution depends on the order in which li-
braries are loaded. Library symbols may also have flags specify-
ing whether their scope is global or local and versioning informa-
tion. Some uses of a name may refer to one definition, while other
uses refer to a different definition with the same name. These is-
sues present a problem for a static analysis that must link uses of
symbols to definitions.

We have considered the following approaches to handling mul-
tiple symbol definitions with the same name.

1. Disallow: All symbol definitions must have unique names; find-
ing multiple definitions with the same name triggers a link er-
ror. This was the behavior of the original Oink/CQual++ linker.
However, this is too restrictive since many real-world programs
do use multiple symbols with the same name.

2. Link all: For each symbol name n, we find all uses of n and all
definitions of n, and then proceed as though any use of n might
potentially refer to any definition of n. For instance, a function
call n() is treated as though it may execute any of the defini-
tions (as though the program chose one non-deterministically).
This was the behavior of the second version of linker. This strat-
egy is conservative against false negatives, but resulted in false
positives. It worked well when the user had defined his own def-
inition of a function also provided by a library, typically with
the same semantics. However, we discovered that this approach
introduces problems when the semantics of the two definitions
are widely different. For example, the GNU C library defines
the error(3) function (which takes a format string), and some
user programs use it, but the name error is also commonly
used by user programs with unrelated semantics.

3. Imitate linker: Emulate the dynamic linker of a specific oper-
ating system and version with a specific set of run-time flags.
This would accurately model the behavior under specific con-
ditions. In many programs, multiple function definitions may
in fact be identical, such as a user defining strlcpy in case
the system library doesn’t have it. However, when the choice
matters, imitating the linker exactly is fragile because subtle
changes in makefile order, operating system versions, and run-
time settings may affect which definition gets used.
In Linux, this strategy could be implemented by instrumenting
the Linux dynamic linker, ld.so, forcing all symbols to be
resolved greedily, and observing how it resolves each symbol.
However, we have not yet implemented this.

4. Hybrid: Partially model the behavior of the system linker. The
current version of the Oink linker behaves as follows: We label
each symbol definition as either “strong” or “weak”. This is
modeled after the ELF “strong”/“weak” notion, but we do not
look at actual ELF symbol attributes. If there is more than one
strong definition for any name, this is a link error. If there is
a strong definition, any weak definitions are ignored. If there
is no strong definition but at least one weak definition, we link
all weak definitions. (Normally there will only be at most one
weak definition per symbol.)



In the current system, all symbols in the Platform Model are la-
beled “weak”, while all others are “strong”. This strategy han-
dles the common cases where the user has redefined a symbol
already defined in glibc: for portability, accidentally, or to in-
tentionally change its behavior. It also works well with the way
our build interception flattens the link structure of user code,
excluding the Platform Model. The order of files listed does not
matter to the Oink linker; this is desirable because the order is
a fragile property of the source program.
We have not found the “one strong definition” rule too restric-
tive, and have seen zero false positives due to it. There is, in
theory, a potential for false negatives if some uses of a function
use the definition from libc, while others, due to library order,
use a user-defined one with different semantics.

5.6 Performance and scalability
As we began to apply our infrastructure to thousands of appli-
cations from Debian Linux, we encountered two scalability chal-
lenges. The first is the large number of programs to be analyzed
and the heterogeneity in their build systems. Many packages come
with their own ad-hoc process and scripts for customizing and com-
piling the code, and the diversity is considerable. To address this
challenge, we finally settled on a design that uses virtual machines
to collect the code and compiler flags that are provided to the com-
piler. See Section 5.2 for details.

The second scalability challenge is the large size of individual
programs to be analyzed. In our experience, the key limiting fac-
tor to scalability is the amount of RAM used by our algorithms.
To address this challenge, CQual++ incorporates recent algorithmic
advances that reduce the memory consumption of type-qualifier in-
ference, including techniques for matched-parenthesis CFL reach-
ability [16], special treatment of global variables [16], and modular
analysis using graph compaction [23]. In the first phase of modular
analysis, we analyze each source file by itself to generate a graph
of type-qualifier constraints. We compact the type-qualifier graph,
removing unnecessary internal nodes, and serialize the state. After
this phase, all nodes that correspond to globally visible variables
remain, but many of the other nodes have been removed. Then to
analyze the whole program, we de-serialize the graph correspond-
ing to each source file, link these graphs together, and process the
result.

Oink provides a feature to optimize space consumption by fil-
tering out unused functions before performing type-qualifier infer-
ence. Since dynamic libraries linked into a program2 often contain
many functions not used by the program, this reduces the amount
of the code that we must analyze. Uncalled functions are filtered
out as follows:

1. For each translation unit, emit a data-flow graph at the whole-
function granularity; that is, entire function bodies are nodes.

2. Find the set of all functions that are reachable from main() or
the constructor of any global object.

3. Run the format string analysis, ignoring functions not in the set.

Our implementation correctly recognizes signal handler functions
as used: if their address is passed to the signal(2) system call,
they will be reachable.

With these scalability improvements, the largest program we
can currently analyze on a 32-bit 4 GB machine consists of
8,000,000 lines of pre-processed C. Because our 32-bit machines
cannot address more than 3 GB of virtual memory per process,
adding more than 4 GB of RAM does not help.

2 For static libraries, we are able to tell which translation units are entirely
unused, but not for dynamic libraries.

A complete run from scratch, including building and analyzing
all Debian Linux packages, takes a month of wallclock time on a
shared 64-node 2 GHz IA-32 Linux cluster, with on average half the
nodes devoted to this task. (At the package granularity, analyzing
all packages is very parallelizable once the common dependencies
are analyzed.)

6. Experimental results
We applied our tool to all packages distributed with Debian Linux
3.1. Each package provides the source for a single application or
for several related programs. Debian Linux 3.1 is composed of
8,624 source packages (which produce 15,197 binary packages),
of which 5,589 contain C/C++ programs, with 261 million lines
of C/C++ code before pre-processing. (Line numbers specified
“before pre-processing” include comments and blank lines. The
2,733 packages without C/C++ programs are considered trivially
analyzed and excluded from discussion below.) Our counts of lines
of code include source code in libraries used by these packages,
but we are careful to avoid double-counting library code: if two
packages use the same library, we only count the code in the library
once.

We are able to build 5,404 packages (211 million lines of C/C++
before pre-processing) of the 5,589 using the virtual machine pro-
cess described in Section 5.2. Vulnivore succeeds at creating com-
pilable and linkable whole-program tar archives of all relevant
source files for 5,123 of these packages (201 million lines).

We succeed at parsing the whole program in 4,527 of these
packages (164 million lines). The format string taint analysis can
individually analyze the source files in 4,514 of these packages
(151 million lines). We succeed in whole-program analysis of 3,692
of these packages. This comprises 92 million lines before pre-
processing, including blank lines, and not repeat-counting library
code; these correspond to 2,112 million lines of code after pre-
processing, repeat-counting library code.

The failure to successfully complete analysis of a package is
typically caused either by scalability limits or by implementation
deficiencies that prevent us from parsing or analyzing certain rare
code constructs. Developing a complete implementation that can
handle all of the code idiosyncrasies found in the wild has proven
beyond the resources of our research group, but we are confi-
dent that a commercial-scale implementation could eliminate these
shortcomings.

Of these 3,692 packages we analyzed, 1,533 packages have taint
warnings. It was beyond our capabilities to manually inspect each
of these 1,533 packages. Therefore, we selected 100 of these pack-
ages (in an ad-hoc, semi-random way), and we manually inspected
the warnings our tool emits for these 100 packages. Of these 100
packages, we determined that 87 have true format string bugs, and
13 are false positives. The 87 packages account for 40 unique
bugs. The other 47 are duplicates: a single bug in one particular
commonly-used library, ncurses, makes many packages suscepti-
ble to format string attacks. Incidentally, we feel that the ncurses
bug validates our decision to analyze library source code together
with the program source code.

Based on this experiment, if this experience is representative,
we estimate that between 80% and 94% of packages with taint
warnings contain true format string bugs (assuming a binomial
distribution, and using a 95% confidence interval). Note that this
counts the number of packages affected, not the number of pack-
ages whose own source code contains bugs. This suggests that over
a thousand Debian packages contain format string bugs, and that
our techniques could help find them.



6.1 True positives
The most common source of format string vulnerabilities we found
were the regular printf kind, where the programmer had forgot-
ten that the function takes a format string. These include library
functions such as syslog(3) and error(3), as well as custom
wrappers written by the programmer. For example, syslog(0,
danger) should instead be syslog(0, "%s", danger).

The second most common mistake arises from calling sprintf
to construct a string that is then used as a format string. For exam-
ple, one package has the following code:

int Error(const char *format, ...)
{
va_list ap; va_start(ap, format);
char msgbuf[256];
vsnprintf(msgbuf, sizeof(msgbuf), format, ap);
syslog(3, msgbuf);

}

The call to vsnprintf dynamically constructs a string from un-
trusted input and thus may contain a ’%’ character. To fix this
bug, the vsnprintf and syslog calls should be replaced by
vsyslog(3, format, ap).

Other common sources of bugs include:

• Using a flag or other control flow to indicate whether a character
buffer contains a format string or not. For example, one package
contains code of the form:

void myerror(int err, char *p, ...)
{
va_list args; va_start(args, p);
if (err==0) {
fprintf(stderr, "%s:unknown error!\n", p);

} else {
vfprintf(stderr, p, args);
fprintf(stderr, ":%s\n", strerror(err));

}
exit(err);

}

Here, if and only if err == 0, then it is safe to pass a tainted
string as param. Even if used correctly, we consider this bad
design. As with other format string bugs, such code mostly
works for as long as it is not under attack, insidiously hiding
a potential vulnerability.

• Using program arguments (argv) directly as format string spec-
ifiers. If the caller provides an argument that contains a ’%’
character, the program may crash, or worse.
For non-setuid programs, these bugs may not be directly ex-
ploitable. Nonetheless, they are a security risk, if these pro-
grams are invoked by network daemons or automatic scripts, as
discussed in Section 5.4. For instance, if a CGI script invokes
one of these programs, this may create a remotely exploitable
vulnerability. If a temporary file cleaner that is run automati-
cally once a day invokes one of these programs with the name
of each file under /tmp, this may create a locally exploitable
vulnerability where a local user can create a filename contain-
ing a ’%’ character and escalate their privileges.
If these bugs are considered uninteresting, it is straightforward
to re-run the analysis without the taint annotations on argv.

• Blatant user-supplied format strings. The programmer expects
the user to supply a format string and trusts it without valida-
tion. We consider this to be a design error. For example:

char *fmt_string = getenv("FOO_CONFIG", "%s");

printf(fmt_string, data);

6.2 False positives
In the warning reports we looked at, the false positives fell into a
few general categories.

• Flow sensitivity. Some programs re-use variables, for example:

strcpy(buf, tainted_string);
// ...
strcpy(buf, untainted_string);
printf(buf);

The workaround is to use new variables for new data. In most
cases this can be done without any extra run-time overhead, and
may be desirable in any case for software engineering reasons.

• Input validation. Some programs do manual input validation
on a user-supplied format string or otherwise propagate data
flow in a safe way. Example:

char fmt[3] = "%x";
switch (tainted_char) {
case ’o’: case ’d’:
fmt[1] = tainted_char; break;

//...
}
printf(fmt, number);

Here, the programmer could alter the code to not copy any
characters from the tainted string (as a limited form of taint
laundering).
In the general input validation case, the programmer must be
cognizant of the analysis and “cast” the taintedness away:

char *str = read_from_user();
if (format_string_validate(str)) {
char *safe_str = (char $untainted*) str;
printf(safe_str, data);

} else {
abort();

}

This is a current limitation with our system and there is no
general automated solution; however, this situation is not very
common.

• Program logic that is outside of type-qualifier inference. The
most common false positive in this category takes this form:

snprintf(fmt, 10, "%%%ds", tainted_integer);
printf(fmt, str);

Here, CQual++ considers fmt tainted, but in fact the program-
mer knows it is safe. To avoid the taint warning, one could re-
place the above with:

printf("%*s", tainted_integer, str);

6.3 Soundness
Our goal was to analyze source code as accurately and soundly as
possible, and secondarily as completely as possible. We believe we
have achieved this under certain assumptions, as follows.

We define a set of rules that programmers should follow in writ-
ing new C code. We conjecture that if all of these rules are fol-
lowed, then the analysis will be sound. In practice it is unavoidable
to intentionally violate some rules in industrial code, but in many
cases it will be possible for the programmer to be convinced that



the intent of the rule has been followed. An abbreviated listing of
the rules is in Appendix A.

We make no claims about the soundness of our analysis of
Debian Linux: existing Linux packages were not written with these
rules in mind, so there is no guarantee that our analysis will find
all format string bugs in Debian Linux. Nonetheless, we feel that
the shift in perspective from finding bugs to trying to prove their
absence has paid significant benefits: our experience has been that
the push towards soundness has enabled us to find many more bugs
than we otherwise would have found. Anecdotally, as we added
features that brought CQual++ closer to full soundness, we found
many additional bugs.

6.4 Limitations
There are issues limiting our system from universal applicability.

1. Scalability. The primary obstacle to analyzing the rest of De-
bian is the virtual memory usage when analyzing extremely
large programs. We are currently limited to 3 GB virtual mem-
ory on each machine of our IA32 cluster.

2. Dynamic linking. If the program uses dlopen to load dy-
namic shared objects at run-time, all bets are off, as we ignore
functions called through pointers returned by dlsym. Currently,
Oink emits an unsoundness warning during analysis if dlopen
or dlsym (and related) functions are used. In the worst case,
analyzing such code would require solving the halting problem.
However, in practice, many uses of dynamic shared objects use
a standardized “plugin” architecture. An interesting research di-
rection is to devise a solution to allow analysis of such code.

3. Implicit flows. CQual++ currently assumes there are no im-
plicit flows. This means taint may be laundered through the
program counter, for example:

char translate_char(char c) {
switch(c) { case ’a’: return ’A’;

//...
case ’z’: return ’Z’; }

}

Tainting the program counter based on conditional branches on
tainted data is possible, but would lead to an unreasonable num-
ber of false positives: taint would quickly propagate to almost
all data via conditional branches on tainted data. A promising
direction is to heuristically recognize specific constructs, such
as switch statements, to identify common idioms.

Promising directions for further scalability improvements include:

1. An idea of Daniel S. Wilkerson: instead of de-serializing all
files of the program at once, aggregate them in a particular
order. For example, link all modules of a single library together,
before linking it to the program. This might reduce the memory
consumption of CQual++. For this to work well, a new concept
of “externally-visible” is defined so that functions which are not
used outside of this library can be compacted.

2. Identify additional common libraries to manually annotate, for
example the X libraries, instead of analyzing them.

3. Port and optimize Oink and CQual++ for 64-bit architectures.
Currently the system requires nearly twice as much memory on
64-bit architectures due to the use of pointers.

7. Conclusions and Future Work
We have analyzed a large fraction of the Debian Linux distribu-
tion, which contains 8,600 open source packages. Analyzing the
remaining packages would require scalability and incremental im-

provements to CQual++. If this system is properly integrated into
an OS distribution release cycle such as Debian’s, such that all taint
warnings are removed, it is reasonable to forecast victory over for-
mat string vulnerabilities.

The success of our system is also promising for ridding other
kinds of bugs amenable to taint analysis, such as SQL injection
attacks. It would be necessary to extend the Platform Model to
annotate the appropriate trusting sinks. Code that performs input
validation for SQL statements may require manual annotation, or
preferably, be rewritten using SQL prepared statements.

This approach can also apply scalably to languages other than
C/C++, for example JQual [19] can find bugs using taint analysis
of Java code. Thus, entire classes of security bugs can in the future
be eliminated from widely deployed software.

Oink and CQual++ are available under the BSD license at http:
//www.cubewano.org/oink/. The release of the Vulnivore analysis
framework is pending.
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A. Appendix A: Programming rules to avoid
unsoundness

This document is intended for programmers writing C code and
using CQual++ to search for format string vulnerabilities in that
code. This version is abbreviated; for the full version see http:

//www.cubewano.org/cqual++_rules. We describe a set of pro-
gramming rules that we recommend such C code should follow.
The goal is that if you, the programmer, follow all of these rules,
then CQual++ will be guaranteed to detect any format string vul-
nerabilities in your code3.

More specifically, the claim is as follows: If your C program
obeys all of these rules and if CQual++ issues no warnings (i.e.,
CQual++ says the code type-checks), then your program is guaran-
teed to be free of format string vulnerabilities. Conversely, if your
code contains any format string vulnerabilities, then CQual++ is
guaranteed to detect this fact so long as your code obeys all of the
rules below. Disclaimer: if any of the rules below are violated, then
CQual++ might find format string bugs that are in your code, but
there are no guarantees. Moreover, CQual++ does not attempt to
detect that you have violated the rules below. Rules:

• Your program must be written entirely in C. (We currently posit
that our analysis is sound in C, but do not make this claim for
C++ due to limitations in CQual++’s current implementation.)
Your program must not contain any assembly code, any code in
any other language, or self-generating or self-modifying code.

• Your program must be C99 compliant and compile successfully
with gcc. (CQual++ does not duplicate all of the checks that gcc
performs; it assumes that the program is valid C code.)

• You must provide all of the source code to your program. This
includes the source code to all libraries and any other code
linked into your program, except the C library.

• Do not use dlopen() to dynamically load and link libraries into
the program at runtime. (Static and dynamic linking managed
by the linker is ok.)

• Annotate all taint sources and trusting sinks with $tainted and
$untainted, respectively. This has been done for the C library.

• Avoid undefined behavior. The C language standard defines a
number of constructions as having “undefined behavior,” mean-
ing the compiler implementation may choose how to handle it.
Dangerous undefined behavior includes but is not limited to:

3 Note that the authors of his paper make this claim of soundness, and not
the implementor of CQual++, Daniel S. Wilkerson.



Buffer-overruns and array bounds violations

Casts that can violate memory safety and other undefined
behavior

Using deallocated memory or uninitialized memory.
• The CQual++ linker assumes certain things are consistent

across files (translation units), after pre-processing. Generally,
declare everything in a header file that is included in all source
files that need those declarations. In particular:

Use the same declaration for any type that appears in multi-
ple files, including structs, unions, typedefs.

Declare functions with prototypes before use, and use the
same prototype for all function declarations and definitions
in all files.

Symbols which link together in different translation units
should have the same names, except that Oink also honors
the gcc feature attribute ((alias)).

A formal set of rules for proper header file usage is enumerated
by Srivastava et al., whose CMod tool checks these rules. [32]

• Avoid laundering taint through the program counter (implicit
flows). This includes all control-flow, including but not lim-
ited to: for, while, and do-while loops; if and switch statements;
computed goto; the ternary “?:” operator; short-circuiting op-
erators, like “&&” and “||”, and also any operating system calls
that affect control, such as the use of signals.

• Be type-safe; avoid unsafe casts. CQual++ uses as its model
of the program the C type system itself; the primary rule is
therefore: honor the type system. Unfortunately many casts by
definition break the type-system and the use of such casts is
frequent in C. Casts can cause a problem for CQual++ if po-
tentially untrustworthy data can flow across them. (In general,
casts can also violate memory safety.) For example, casting the
return value of malloc() is safe as malloc() generates data
internally and is not annotated as returning untrustworthy data.
We support a subset of casts as safe.
Formal rules are defined in the full version of this rules doc-
ument; examples of specific behavior that is allowed include
casting between scalars, such as int to short, long to unsigned
and casting a Foo* to a void* and then back to a Foo*. Exam-
ples of disallowed behavior including using a union to perform
a hidden cast or passing a parameter of the wrong type to a
variable-argument function.

• Do not cast or convert integer data into character data, because
we make no attempt to track the taintedness of integer data. This
especially applies to external operating system calls returning
tainted integer data and to implicit flow via the program counter.

B. Appendix B: CQual extensions
We summarize some recent extensions to both CQual and CQual++
that made their analyses more precise.

B.1 Context sensitivity
The original CQual assigned a single type qualifier to the parame-
ters of a function, which connected the arguments of all callers of
the function. For example, in the following code:

int identity(int x) { return x; }
int foo($tainted t) { return identity(t); }
int $untainted bar($untainted u)
{ return identity(u); }

CQual would find a type violation at the return value of identity,
yielding a false positive. Context sensitivity adds automatic infer-
ence of polymorphic types so that the type of identity’s parame-
ters depends on the call site. [22]

B.2 Instance sensitivity
The original CQual treated struct members as regular variables.
This yielded false positives if some instances of a struct had tainted
data but others had untainted data, for example in:

struct S { char buf[100]; }
int foo(char $tainted *t, char $untainted *u) {
struct S s1, s2;
strcpy(s1.buf, t);
strcpy(s2.buf, u);

}

Instance sensitivity (previously known as field sensitivity) treats the
fields of each instance of a struct as separate variables. [22] An
important optimization is to create the in-memory data structures
for the instance members lazily.

B.3 Graph compaction
To reduce the memory footprint, Johnson’s graph compaction tech-
niques allow CQual++ to analyze each translation unit separately
and produce a summary to be used when linking. This type of mod-
ular analysis can allow much larger programs to be analyzed. [23,
§4.4]. Compaction does not affect the false positive or false nega-
tive rate, but it does significantly reduce memory usage.

B.4 Well-formedness constraints
CQual++ uses well-formedness constraints to capture the flow of
taint from structs to their fields:

struct S { char data[100]; } s1;
read(socket, &s1, sizeof(struct S));
printf(s1.data);

Here, taint flows from s1 (which became tainted by the read()
call) to its member, s1.data. This technique has been previously
used for finding user/kernel vulnerabilities [22, 16] and in our
experience, it is necessary for finding many of the format string
vulnerabilities we have seen in practice.

B.5 void* auto-unions
While C does not explicitly have polymorphic types, void* is
commonly used to represent an “unknown type”. CQual++ handles
void* similarly to how it handles unions: In a union, each type has
its own bucket. So if a union contained an int and a pointer, flow
into the union instance as a pointer would connect to flows out as a
pointer, but not as an integer. CQual++ treats void* as a pointer to
an object whose type is the union of all possible types; a cast to a
type t lazily adds t as a type. Thus, in the following example:

int foo(int $tainted i,
char $untainted *s, int flag) {

void *p; int i1; char *s1;
if (flag) p = (void*) i;
else p = (void*) s;
if (flag) i1 = (int) p;
else s1 = (char*) p;

}

i1 is correctly inferred as tainted, and s1 as untainted. If the rule for
use of void* as described in Appendix A is followed, the analysis
is sound. Another extension allows pointer-length integer types to
also behave as void*, since this is a commonly used idiom. [23].


