
A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing Protocols

Josh Broch David A. Maltz David B. Johnson Yih-Chun Hu Jorjeta Jetcheva

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

http://www.monarch.cs.cmu.edu/

Abstract
An ad hoc network is a collection of wireless mobile nodes dynamically
forming a temporary network without the use of any existing network infras-
tructure or centralized administration. Due to the limited transmission range
of wireless network interfaces, multiple network "hops" may be needed for
one node to exchange data with another across the network. In recent years,
a variety of new routing protocols targeted specifically at this environment
have been developed, but little performance information on each protocol
and no realistic performance comparison between them is available. This
paper presents the results of a detailed packet-level simulation comparing
four multi-hop wireless ad hoc network routing protocols that cover a range
of design choices: DSDV, TORA, DSR, and AODV. We have extended
the ns-2 network simulator to accurately model the MAC and physical-layer
behavior of the IEEE 802.11 wireless LAN standard, including a realistic
wireless transmission channel model, and present the results of simulations
of networks of 50 mobile nodes.

1 Introduction
In areas in which there is little or no communication infrastructure
or the existing infrastructure is expensive or inconvenient to use,
wireless mobile users may still be able to communicate through the
formation of an ad hoc network. In such a network, each mobile node
operates not only as a host but also as a router, forwarding packets
for other mobile nodes in the network that may not be within direct
wireless transmission range of each other. Each node participates in
an ad hoc routing protocol that allows it to discover “multi-hop” paths
through the network to any other node. The idea of ad hoc networking
is sometimes also called infrastructureless networking [13], since the
mobile nodes in the network dynamically establish routing among
themselves to form their own network “on the fly.” Some examples of
the possible uses of ad hoc networking include students using laptop
computers to participate in an interactive lecture, business associates
sharing information during a meeting, soldiers relaying information
for situational awareness on the battlefield [12, 21], and emergency
disaster relief personnel coordinating efforts after a hurricane or
earthquake.

This work was supported in part by the National Science Foundation (NSF) under
CAREER Award NCR-9502725, by the Air Force Materiel Command (AFMC) under
DARPA contract number F19628-96-C-0061, and by the AT&T Foundation under a
Special Purpose Grant in Science and Engineering. David Maltz was also supported
under an IBM Cooperative Fellowship, and Yih-Chun Hu was also supported by an
NSF Graduate Fellowship. The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies or
endorsements, either express or implied, ofNSF,AFMC,DARPA, theAT&TFoundation,
IBM, Carnegie Mellon University, or the U.S. Government.

To appear inProceedings of the Fourth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom’98),
October 25–30, 1998, Dallas, Texas, USA. Copyright ! 1998 ACM.

Many different protocols have been proposed to solve the multi-
hop routing problem in ad hoc networks, each based on different
assumptions and intuitions. However, little is known about the actual
performance of these protocols, and no attempt has previously been
made to directly compare them in a realistic manner.
This paper is the first to provide a realistic, quantitative analysis

comparing the performance of a variety of multi-hop wireless ad hoc
network routing protocols. We present results of detailed simulations
showing the relative performance of four recently proposed ad hoc
routing protocols: DSDV [18], TORA [14, 15], DSR [9, 10, 2], and
AODV [17]. To enable these simulations, we extended the ns-2
network simulator [6] to include:

Node mobility.
A realistic physical layer including a radio propagation model
supporting propagation delay, capture effects, and carrier
sense [20].
Radio network interfaces with properties such as transmission
power, antenna gain, and receiver sensitivity.
The IEEE 802.11 Medium Access Control (MAC) protocol using
the Distributed Coordination Function (DCF) [8].

Our results in this paper are based on simulations of an ad hoc network
of 50 wireless mobile nodes moving about and communicating with
each other. We analyze the performance of each protocol and explain
the design choices that account for their performance.

2 Simulation Environment
ns is a discrete event simulator developed by the University of
California at Berkeley and the VINT project [6]. While it provides
substantial support for simulating TCP and other protocols over con-
ventional networks, it provides no support for accurately simulating
the physical aspects of multi-hop wireless networks or the MAC pro-
tocols needed in such environments. Berkeley has recently released
ns code that provides some support for modeling wireless LANs, but
this code cannot be used for studying multi-hop ad hoc networks as
it does not support the notion of node position; there is no spatial
diversity (all nodes are in the same collision domain), and it can only
model directly connected nodes.
In this section, we describe some of the modifications we made to

ns to allow accurate simulation of mobile wireless networks.

2.1 Physical and Data Link Layer Model
To accurately model the attenuation of radio waves between anten-
nas close to the ground, radio engineers typically use a model that
attenuates the power of a signal as 1 2 at short distances (is the
distance between the antennas), and as 1 4 at longer distances.
The crossover point is called the reference distance, and is typically
around 100 meters for outdoor low-gain antennas 1.5m above the
ground plane operating in the 1–2GHz band [20]. Following this
practice, our signal propagation model combines both a free space
propagation model and a two-ray ground reflection model. When a
transmitter is within the reference distance of the receiver, we use

the free space model where the signal attenuates as 1 2. Outside of
this distance, we use the ground reflection model where the signal
falls off as 1 4.
Each mobile node has a position and a velocity and moves around

on a topography that is specified using either a digital elevation map
or a flat grid. The position of a mobile node can be calculated as
a function of time, and is used by the radio propagation model to
calculate the propagation delay from one node to another and to
determine the power level of a received signal at each mobile node.
Each mobile node has one or more wireless network interfaces,

with all interfaces of the same type (on all mobile nodes) linked
together by a single physical channel. When a network interface
transmits a packet, it passes the packet to the appropriate physical
channel object. This object then computes the propagation delay
from the sender to every other interface on the channel and schedules
a “packet reception” event for each. This event notifies the receiving
interface that the first bit of a new packet has arrived. At this time,
the power level at which the packet was received is compared to two
different values: the carrier sense threshold and the receive threshold.
If the power level falls below the carrier sense threshold, the packet
is discarded as noise. If the received power level is above the carrier
sense threshold but below the receive threshold, the packet is marked
as a packet in error before being passed to theMAC layer. Otherwise,
the packet is simply handed up to the MAC layer.
Once the MAC layer receives a packet, it checks to insure that its

receive state is presently “idle.” If the receiver is not idle, one of two
things can happen. If the power level of the packet already being
received is at least 10 dB greater than the received power level of the
new packet, we assume capture, discard the new packet, and allow
the receiving interface to continue with its current receive operation.
Otherwise, a collision occurs and both packets are dropped.
If the MAC layer is idle when an incoming packet is passed up

from the network interface, it simply computes the transmission time
of the packet and schedules a “packet reception complete” event for
itself. When this event occurs, the MAC layer verifies that the packet
is error-free, performs destination address filtering, and passes the
packet up the protocol stack.
2.2 Medium Access Control
The link layer of our simulator implements the complete IEEE802.11
standard [8] Medium Access Control (MAC) protocol Distributed
Coordination Function (DCF) in order to accurately model the
contention of nodes for the wireless medium. DCF is similar to
MACA [11] and MACAW [1] and is designed to use both physi-
cal carrier sense and virtual carrier sense mechanisms to reduce the
probability of collisions due to hidden terminals. The transmission of
each unicast packet is preceded by a Request-to-Send/Clear-to-Send
(RTS/CTS) exchange that reserves the wireless channel for trans-
mission of a data packet. Each correctly received unicast packet is
followed by an Acknowledgment (ACK) to the sender, which retrans-
mits the packet a limited number of times until this ACK is received.
Broadcast packets are sent only when virtual and physical carrier
sense indicate that the medium is clear, but they are not preceded by
an RTS/CTS and are not acknowledged by their recipients.
2.3 Address Resolution
Since the routing protocols all operate at the network layer using IP
addresses, an implementation of ARP [19], modeled after the BSD
Unix implementation [23], was included in the simulation and used
to resolve IP addresses to link layer addresses. The broadcast nature
of an ARP REQUEST packet (Section 6.3) and the interaction of ARP
with on-demand protocols (Section 6.4) make ARP an important
detail of the simulation.
2.4 Packet Buffering
Each node has a queue for packets awaiting transmission by the
network interface that holds up to 50 packets and is managed in a

drop-tail fashion. Each on-demand routing protocol (i.e., TORA,
DSR, or AODV), can buffer separately an additional 50 packets that
that are awaiting discovery of a route through the network.

3 Ad Hoc Network Routing Protocols Studied
In this section, we briefly describe the key features of the DSDV,
TORA, DSR, and AODV protocols studied in our simulations. We
also describe the particular parameters that we chose when imple-
menting each protocol.
The protocols were carefully implemented according to their spec-

ifications published as of April 1998 and based on clarifications of
some issues from the designers of each protocol and on our own
experimentation with them. In particular, during the process of im-
plementing each protocol and analyzing the results from early simu-
lation runs, we discovered some modifications for each protocol that
improved its performance. The key improvements to each protocol
are highlighted in the respective protocol descriptions below. We
also made the following improvements to all of the protocols:

To prevent synchronization, periodic broadcasts and packets
sent in response to the reception of a broadcast packet were
jittered using a random delay uniformly distributed between 0
and 10 milliseconds.
To insure that routing information propagated through the net-
work in a timely fashion, routing packets being sent were queued
for transmission at the head of the network interface transmit
queue, whereas all other packets (ARP and data) were inserted
at the end of the interface transmit queue.
Each of the protocols used link breakage detection feedback
from the 802.11 MAC layer that indicated when a packet could
not be forwarded to its next hop, with the exception of DSDV
as explained in Section 3.1.2.

3.1 Destination-Sequenced Distance Vector (DSDV)
DSDV [18] is a hop-by-hop distance vector routing protocol requir-
ing each node to periodically broadcast routing updates. The key
advantage of DSDV over traditional distance vector protocols is that
it guarantees loop-freedom.

3.1.1 Basic Mechanisms
Each DSDV node maintains a routing table listing the “next hop” for
each reachable destination. DSDV tags each route with a sequence
number and considers a route more favorable than if has a
greater sequence number, or if the two routes have equal sequence
numbers but has a lower metric. Each node in the network ad-
vertises a monotonically increasing even sequence number for itself.
When a node B decides that its route to a destination D has broken,
it advertises the route to D with an infinite metric and a sequence
number one greater than its sequence number for the route that has
broken (making an odd sequence number). This causes any node
A routing packets through B to incorporate the infinite-metric route
into its routing table until node A hears a route to D with a higher
sequence number.

3.1.2 Implementation Decisions
We did not use link layer breakage detection from the 802.11 MAC
protocol in obtaining the DSDV data presented in this paper, because
after implementing the protocol both with and without it, we found
the performance significantly worse with the link layer breakage
detection. The reason is that if a neighbor N of a node A detects
that its link to A is broken, it will broadcast a triggered route update
containing an infinite metric for A. The sequence number in this
triggered update will be one greater than the last sequence number
broadcast byA, and therefore is the highest sequence number existing
anywhere in the network forA. Each node that hears this update will
record an infinite metric for destination A and will propagate the

2

Table I Constants used in the DSDV-SQ simulation.

Periodic route update interval 15 s
Periodic updates missed before link declared broken 3
Initial triggered update weighted settling time 6 s
Weighted settling time weighting factor 7/8
Route advertisement aggregation time 1 s
Maximum packets buffered per node per destination 5

information further. This renders node A unreachable from all nodes
in the network until A broadcasts a newer sequence number in a
periodic update. A will send this update as soon as it learns of the
infinite metric being propagated for it, but large numbers of packets
can be dropped in the meantime.
Our implementation uses both full and incremental updates as

required by the protocol’s description. However, the published de-
scription of DSDV [18] is ambiguous about specifying when trig-
gered updates should be sent. One interpretation is that the receipt
of a new sequence number for a destination should cause a triggered
update. We call this approach DSDV-SQ (sequence number). The
advantage of this approach is that broken links will be detected and
routed around as new sequence numbers propagate around the broken
link and create alternate routes. The second interpretation, which we
call simply DSDV, is that only the receipt of a new metric should
cause a triggered update, and that the receipt of a new sequence num-
ber is not sufficiently important to incur the overhead of propagating
a triggered update.
We implemented both DSDV-SQ and DSDV and found that while

DSDV-SQ is much more expensive in terms of overhead, it provides
amuch better packet delivery ratio in most cases. The second scheme
(DSDV) is much more conservative in terms of routing overhead, but
because link breakages are not detected as quickly, more data packets
are dropped. All of the results in this paper use DSDV-SQ, with the
exception of Section 6.2, which compares this with DSDV.
Table I lists the constants used in our DSDV-SQ simulation.

3.2 Temporally-Ordered Routing Algorithm (TORA)
TORA [14, 15] is a distributed routing protocol based on a “link
reversal” algorithm. It is designed to discover routes on demand,
provide multiple routes to a destination, establish routes quickly,
and minimize communication overhead by localizing algorithmic
reaction to topological changes when possible. Route optimality
(shortest-path routing) is considered of secondary importance, and
longer routes are often used to avoid the overhead of discovering
newer routes.
The actions taken by TORA can be described in terms of water

flowing downhill towards a destination node through a network of
tubes that models the routing state of the real network. The tubes
represent links between nodes in the network, the junctions of tubes
represent the nodes, and the water in the tubes represents the packets
flowing towards the destination. Each node has a height with respect
to the destination that is computed by the routing protocol. If a tube
between nodes A and B becomes blocked such that water can no
longer flow through it, the height of A is set to a height greater than
that of any of its remaining neighbors, such that water will now flow
back out of A (and towards the other nodes that had been routing
packets to the destination via A).

3.2.1 Basic Mechanisms
At each node in the network, a logically separate copy of TORA is
run for each destination. When a node needs a route to a particular
destination, it broadcasts a QUERY packet containing the address of
the destination for which it requires a route. This packet propagates
through the network until it reaches either the destination, or an
intermediate node having a route to the destination. The recipient
of the QUERY then broadcasts an UPDATE packet listing its height

with respect to the destination. As this packet propagates through
the network, each node that receives the UPDATE sets its height to a
value greater than the height of the neighbor from which the UPDATE
was received. This has the effect of creating a series of directed
links from the original sender of the QUERY to the node that initially
generated the UPDATE.
When a node discovers that a route to a destination is no longer

valid, it adjusts its height so that it is a local maximum with respect
to its neighbors and transmits an UPDATE packet. If the node has no
neighbors of finite height with respect to this destination, then the
node instead attempts to discover a new route as described above.
When a node detects a network partition, it generates a CLEAR packet
that resets routing state and removes invalid routes from the network.
TORA is layered on top of IMEP, the Internet MANET

Encapsulation Protocol [5], which is required to provide reliable,
in-order delivery of all routing control messages from a node to each
of its neighbors, plus notification to the routing protocol whenever a
link to one of its neighbors is created or broken. To reduce overhead,
IMEP attempts to aggregate many TORA and IMEP control mes-
sages (which IMEP refers to as objects) together into a single packet
(as an object block) before transmission. Each block carries a se-
quence number and a response list of other nodes from which an ACK
has not yet been received, and only those nodes ACK the block when
receiving it; IMEP retransmits each block with some period, and con-
tinues to retransmit it if needed for some maximum total period, after
which time, the link to each unacknowledged node is declared down
and TORA is notified. IMEP can also provide network layer address
resolution, but we did not use this service, as we used ARP [19] with
all four routing protocols. For link status sensing and maintaining
a list of a node’s neighbors, each IMEP node periodically transmits
a BEACON (or “BEACON-equivalent”) packet, which is answered by
each node hearing it with a HELLO (or “HELLO-equivalent”) packet.

3.2.2 Implementation Decisions
IMEP must queue objects for some period of time to allow possi-
ble aggregation with other objects, but the IMEP specification [5]
does not define this time period, and we discovered that the overall
performance of the protocol was very sensitive to the choice of this
value. After significant experimentation, we chose as the best bal-
ance between packet overhead and routing protocol convergence, to
aggregate HELLO and ACK packets for a time uniformly chosen be-
tween 150 ms and 250 ms, and to not delay TORA routing messages
for aggregation. The reason for not delaying these messages is that
the TORA link reversal process creates short-lived routing loops that
exist from the time that the link-reversal starts until the time that all
nodes that need to be aware of the reversal receive the corresponding
UPDATE (Section 5.2). Delaying the transmission of TORA routing
messages for aggregation, coupled with any queuing delay at the
network interface, allows these routing loops to last long enough that
significant numbers of data packets are dropped.
The TORA and IMEP specifications [15, 5] do not define the pre-

cise semantics of reliable object delivery required by TORA, but
experimentation showed that very strong semantics must be pro-
vided in order to prevent the creation of long-lived routing loops.
In particular, all TORA objects must be delivered reliably and in
order, without any duplication. Additionally, all neighboring nodes
in the ad hoc network must have a consistent picture of the network
with regard to each destination. This implies that anytime a node A
decides its link to a neighbor B has gone down, B must also decide
that the link to A has gone down.
We have implemented IMEP to provide this functionality, although

the retransmission timeout and total number of attempts are not
specified by IMEP [5]. We chose a retransmission period of 500 ms
and a total timeout of 1500ms, although based upon our observations,
an adaptive retransmission timer should be added to the protocol. In-
order delivery is enforced by, at each receiver node B, only passing

3

Table II Constants used in the TORA simulation.

BEACON period 1 s
Time after which a link is declared down if no BEACON or
HELLO packets were exchanged

3 s

Time after which an object block is retransmitted if no
acknowledgment is received

500 ms

Time after which an object block is not retransmitted and the
link to the destination is declared down

1500 ms

Min HELLO and ACK aggregation delay 150 ms
Max HELLO and ACK aggregation delay 250 ms

an object block from some node A to TORA if the block has the
sequence number that IMEP at B next expects from A. Blocks with
lower sequence numbers may generate another ACK but are otherwise
dropped. Blocks with higher sequence numbers are queued until the
missing blocks arrive or until the maximum 1500 ms total timeout
expires, at which point B can be certain the object will never be
retransmitted. By this point, Awill have declared its link to B down,
since it will not have received an ACK for the missing packet. To
give the routing protocol at B a picture consistent with that seen by
the protocol at A, the IMEP layer at B notifies its routing protocol
that the link to A is down, then notifies it the link is back up, and
then processes the queued packets.
Finally, we improved IMEP’s method of link status sensing by

reducing it to a point that functions with minimum overhead yet
still maintains all of the required link status information. During
our experimentation with IMEP, we found that nodes need only
send BEACON messages when they are disconnected from all other
nodes. Suppose two nodes A and B, both of which have neighbors,
transmit a single HELLO listing each of their neighbors once per
BEACON period. If a bi-directional link exists between A and B, both
nodes will overhear each other’s HELLOs and all other transmissions,
causing each node to create a link to the other with “incoming”
status. In subsequent HELLO messages, A and B will list each other,
confirming that a bi-directional link exists between them.
Table II lists the constants used in our TORA simulation.

3.3 Dynamic Source Routing (DSR)
DSR [9, 10, 2] uses source routing rather than hop-by-hop routing,
with each packet to be routed carrying in its header the complete,
ordered list of nodes through which the packet must pass. The key
advantage of source routing is that intermediate nodes do not need to
maintain up-to-date routing information in order to route the packets
they forward, since the packets themselves already contain all the
routing decisions. This fact, coupled with the on-demand nature of
the protocol, eliminates the need for the periodic route advertisement
and neighbor detection packets present in other protocols.

3.3.1 Basic Mechanisms
The DSR protocol consists of two mechanisms: Route Discovery
and Route Maintenance. Route Discovery is the mechanism by
which a node S wishing to send a packet to a destination D obtains
a source route to D. To perform a Route Discovery, the source node
S broadcasts a ROUTE REQUEST packet that is flooded through the
network in a controlled manner and is answered by a ROUTE REPLY
packet from either the destination node or another node that knows a
route to the destination. To reduce the cost of Route Discovery, each
node maintains a cache of source routes it has learned or overheard,
which it aggressively uses to limit the frequency and propagation of
ROUTE REQUESTs.
Route Maintenance is the mechanism by which a packet’s sender

S detects if the network topology has changed such that it can no
longer use its route to the destination D because two nodes listed
in the route have moved out of range of each other. When Route
Maintenance indicates a source route is broken, S is notified with

Table III Constants used in the DSR simulation.

Time between retransmitted ROUTE REQUESTs
(exponentially backed off)

500 ms

Size of source route header carrying n addresses 4n + 4 bytes
Timeout for nonpropagating search 30 ms
Time to hold packets awaiting routes 30 s
Max rate for sending gratuitous REPLYs for a route 1/s

a ROUTE ERROR packet. The sender S can then attempt to use any
other route to D already in its cache or can invoke Route Discovery
again to find a new route.

3.3.2 Implementation Decisions
Using the suggestions from the published description of DSR [10],
we have optimized our implementation in a number of ways.
Although the DSR protocol supports unidirectional routes, IEEE

802.11 requires an RTS/CTS/Data/ACK exchange for all unicast
packets, limiting the routing protocol to using only bidirectional
links in delivering data packets. We implemented DSR to discover
only routes composed of bidirectional links by requiring that a node
return all ROUTE REPLY messages to the requestor by reversing the
path over which the ROUTE REQUEST packet came. If the path taken
by a ROUTE REQUEST contained unidirectional links, then the cor-
responding ROUTE REPLY will not reach the requestor, preventing it
from learning the unidirectional link route.
In Route Discovery, a node first sends a ROUTE REQUEST with the

maximum propagation limit (hop limit) set to zero, prohibiting its
neighbors from rebroadcasting it. At the cost of a single broadcast
packet, this mechanism allows a node to query the route caches of
all its neighbors for a route and also optimizes the case in which the
destination node is adjacent to the source. If this nonpropagating
search times out, a propagating ROUTE REQUEST is sent.
Nodes operate their network interfaces in promiscuous mode, dis-

abling the interface’s address filtering and causing the network proto-
col to receive all packets that the interface overhears. These packets
are scanned for useful source routes or ROUTE ERROR messages and
then discarded. This optimization allows nodes to learn potentially
useful information, while causing no additional overhead on the lim-
ited network bandwidth.
Furthermore, when a node overhears a packet not addressed to

itself, it checks the unprocessed portion of the source route in the
packet’s header. If the node’s own address is present, it knows that
this source route could bypass the unprocessed hops preceding it in
the route. The node then sends a gratuitous ROUTE REPLY message
to the packet’s source, giving it the shorter route without these hops.
Finally, when an intermediate node forwarding a packet discovers

that the next hop in the source route is unreachable, it examines its
route cache for another route to the destination. If a route exists, the
node replaces the broken source route on the packet with the route
from its cache and retransmits the packet. If a route does not exist in
its cache, the node drops the packet and does not begin a new Route
Discovery of its own.
Table III lists the constants used in our DSR simulation.

3.4 Ad Hoc On-Demand Distance Vector (AODV)
AODV [17] is essentially a combination of both DSR and DSDV.
It borrows the basic on-demand mechanism of Route Discovery and
Route Maintenance from DSR, plus the use of hop-by-hop routing,
sequence numbers, and periodic beacons from DSDV.

3.4.1 Basic Mechanisms
When a node S needs a route to some destination D, it broad-
casts a ROUTE REQUEST message to its neighbors, including the last
known sequence number for that destination. The ROUTE REQUEST
is flooded in a controlled manner through the network until it reaches

4

a node that has a route to the destination. Each node that forwards
the ROUTE REQUEST creates a reverse route for itself back to node S.
When the ROUTE REQUEST reaches a node with a route to D, that

node generates a ROUTE REPLY that contains the number of hops
necessary to reach D and the sequence number for D most recently
seen by the node generating the REPLY. Each node that participates
in forwarding this REPLY back toward the originator of the ROUTE
REQUEST (node S), creates a forward route to D. The state created
in each node along the path from S to D is hop-by-hop state; that is,
each node remembers only the next hop and not the entire route, as
would be done in source routing.
In order to maintain routes, AODV normally requires that each

node periodically transmit a HELLO message, with a default rate of
once per second. Failure to receive three consecutive HELLO mes-
sages from a neighbor is taken as an indication that the link to the
neighbor in question is down. Alternatively, the AODV specification
briefly suggests that a node may use physical layer or link layer meth-
ods to detect link breakages to nodes that it considers neighbors [17].
When a link goes down, any upstream node that has recently

forwarded packets to a destination using that link is notified via an
UNSOLICITED ROUTE REPLY containing an infinite metric for that
destination. Upon receipt of such a ROUTE REPLY, a node must
acquire a new route to the destination using Route Discovery as
described above.

3.4.2 Implementation Decisions
We initially implemented AODV using periodic HELLOmessages for
link breakage detection as described in the AODV specification [17].
For comparison, we also implemented a version ofAODV thatwe call
AODV-LL (link layer), instead using only link layer feedback from
802.11 as inDSR, completely eliminating the standardAODVHELLO
mechanism. Such an approach saves the overhead of the periodic
HELLOmessages, but does somewhat change the fundamental nature
of the protocol; for example, all link breakage detection in AODV-LL
is only on-demand, and thus a broken link cannot be detected until
a packet needs to be sent over the link, whereas the periodic HELLO
messages in standard AODV may allow broken links to be detected
before a packet must be forwarded. Nevertheless, we found our alter-
nate version AODV-LL to perform significantly better than standard
AODV, and so we report measurements from that version here.
In addition, we also changed our AODV implementation to use a

shorter timeout of 6 seconds before retrying a ROUTE REQUEST for
which no ROUTE REPLY has been received (RREP WAIT TIME).
The value given in the AODV specification was 120 seconds, based
on the other constants specified there for AODV. However, a ROUTE
REPLY can only be returned if each node along the discovered route
still has a reverse route along which to return it, saved from when the
ROUTEREQUESTwas propagated. Since the specified timeout for this
reverse route information in each node is only 3 seconds, the original
ROUTE REPLY timeout value of 120 seconds unnecessarily limited
the protocol’s ability to recover from a dropped ROUTE REQUEST or
ROUTE REPLY packet.
Table IV lists the constants used in our AODV-LL simulation.

4 Methodology
The overall goal of our experiments was to measure the ability of
the routing protocols to react to network topology change while
continuing to successfully deliver data packets to their destinations.
To measure this ability, our basic methodology was to apply to a
simulated network a variety of workloads, in effect testing with each
data packet originated by some sender whether the routing protocol
can at that time route to the destination of that packet. We were
not attempting to measure the protocols’ performance on a particular
workload taken from real life, but rather to measure the protocols’
performance under a range of conditions.

Table IV Constants used in the AODV-LL simulation.

Time for which a route is considered active 300 s
Lifetime on a ROUTE REPLY sent by destination node 600 s
Number of times a ROUTE REQUEST is retried 3
Time before a ROUTE REQUEST is retried 6 s
Time for which the broadcast id for a forwarded ROUTE
REQUEST is kept

3 s

Time for which reverse route information for a ROUTE
REPLY is kept

3 s

Time before broken link is deleted from routing table 3 s
MAC layer link breakage detection yes

Our protocol evaluations are based on the simulation of 50wireless
nodes forming an ad hoc network, moving about over a rectangular
(1500m 300m) flat space for 900 seconds of simulated time. We
chose a rectangular space in order to force the use of longer routes
between nodes than would occur in a square space with equal node
density. The physical radio characteristics of each mobile node’s net-
work interface, such as the antenna gain, transmit power, and receiver
sensitivity, were chosen to approximate the Lucent WaveLAN [22]
direct sequence spread spectrum radio.
In order to enable direct, fair comparisons between the protocols,

it was critical to challenge the protocols with identical loads and
environmental conditions. Each run of the simulator accepts as input
a scenario file that describes the exact motion of each node and the
exact sequence of packets originated by each node, together with the
exact time at which each change in motion or packet origination is
to occur. We pre-generated 210 different scenario files with varying
movement patterns and traffic loads, and then ran all four routing
protocols against each of these scenario files. Since each protocol
was challenged in an identical fashion, we can directly compare the
performance results of the four protocols.

4.1 Movement Model
Nodes in the simulation move according to a model that we call the
“random waypoint” model [10]. The movement scenario files we
used for each simulation are characterized by a pause time. Each node
begins the simulation by remaining stationary for pause time seconds.
It then selects a random destination in the 1500m 300m space and
moves to that destination at a speed distributed uniformly between 0
and some maximum speed. Upon reaching the destination, the node
pauses again for pause time seconds, selects another destination, and
proceeds there as previously described, repeating this behavior for
the duration of the simulation. Each simulation ran for 900 seconds
of simulated time.
We ran our simulations with movement patterns generated for 7

different pause times: 0, 30, 60, 120, 300, 600, and 900 seconds.
A pause time of 0 seconds corresponds to continuous motion, and a
pause time of 900 (the length of the simulation) corresponds to no
motion.
Because the performance of the protocols is very sensitive tomove-

ment pattern, we generated scenario files with 70 different movement
patterns, 10 for each value of pause time. All four routing protocols
were run on the same 70 movement patterns.
We experimented with two different maximum speeds of node

movement. We primarily report in this paper data from simulations
using amaximum node speed of 20meters per second (average speed
10 meters per second), but also compare this to simulations using a
maximum speed of 1 meter per second.

4.2 Communication Model
As the goal of our simulationwas to compare the performance of each
routing protocol, we chose our traffic sources to be constant bit rate
(CBR) sources. When defining the parameters of the communication
model, we experimented with sending rates of 1, 4, and 8 packets

5

! " # $ % & ' () !*
++++++*

+%**,***

!,***,***

!,%**,***

",***,***

",%**,***

#,***,***

#,%**,***

$,***,***

$,%**,***
-.
/
01
2+3
4+5
67
81
9:

;<3291:9+6=6>?60?1+569<+?1@A9<

!+/B:+:71@62>3:+
"*+/B:+:71@62>3:

Figure 1 Distribution of the shortest path available to each
application packet originated over all scenarios.

per second, networks containing 10, 20, and 30 CBR sources, and
packet sizes of 64 and 1024 bytes.
Varying the number of CBR sources was approximately equivalent

to varying the sending rate. Hence, for these simulations we chose to
fix the sending rate at 4 packets per second, and used three different
communication patterns corresponding to 10, 20, and 30 sources.
When using 1024-byte packets, we found that congestion, due

to lack of spatial diversity, became a problem for all protocols and
one or two nodes would drop most of the packets that they received
for forwarding. As none of the studied protocols performs load
balancing, and the goal of our analysis was to determine if the routing
protocols could consistently track changes in topology, we attempted
to factor out congestive effects by reducing the packet size to 64 bytes.
This smaller packet size still provides a good test of the routing
protocols, since we are still testing their ability to determine routes
to a destination with the same frequency (a total of 40, 80, or 120
times per second).
All communication patterns were peer-to-peer, and connections

were started at times uniformly distributed between 0 and 180 sec-
onds. The three communication patterns (10, 20, and 30 sources),
taken in conjunction with the 70 movement patterns, provide a total
of 210 different scenario files for each maximum node movement
speed (1 m/s and 20 m/s) with which we compared the four routing
protocols.
We did not use TCP sources because TCP offers a conforming

load to the network, meaning that it changes the times at which
it sends packets based on its perception of the network’s ability to
carry packets. As a result, both the time at which each data packet is
originated by its sender and the position of the node when sending
the packet would differ between the protocols, preventing a direct
comparison between them.

4.3 Scenario Characteristics
To characterize the challenge our scenarios placed on the routing
protocols, we measured the lengths of the routes over which the
protocols had to deliver packets, and the total number of topology
changes in each scenario.
When each data packet is originated, an internal mechanism of our

simulator (separate from the routing protocols) calculates the shortest
path between the packet’s sender and its destination. The packet is
labeled with this information, which is compared with the number
of hops actually taken by the packet when received by the intended
destination. The shortest path is calculated based on a nominal
transmission range of 250m for each radio and does not account for
congestion or interference that any particular packet might see.

Table V Average number of link connectivity changes during
each 900-second simulation as a function of pause time.

ofConnectivityChanges
Pause Time

1 m/s 20 m/s

0 898 11857
30 908 8984
60 792 7738
120 732 5390
300 512 2428
600 245 1270
900 0 0

Figure 1 shows the distribution of shortest path lengths for all
packets over the 210 scenario files at 1 m/s and 20 m/s that we used.
The height of each bar represents the number of packets for which
the destination was the given distance away when the packet was
originated. The average data packet in our simulations had to cross
2.6 hops to reach its destination, and the farthest reachable node to
which the routing protocols had to deliver a packet was 8 hops away.
Table V shows the average number of link connectivity changes

that occurred during each of the simulations runs for each value
of pause time. We count one link connectivity change whenever a
node goes into or out of direct communication range with another
node. For the specific scenarios we used, the 30-second pause time
scenarios at 1 m/s actually have a slightly higher average rate of link
connectivity change than the 0-second pause time scenarios, due to
an artifact of the random generation of the scenarios. This artifact
is also visible as a slight bump at a pause time of 30 seconds in the
performance graphs we present for 1 m/s in Section 5.

4.4 Validation of the Propagation Model and MAC Layer
Our propagation model uses standard equations and techniques, and
it was verified by an expert in radio propagation modeling. We
analyzed the power and simulated radio behavior as a function of
distance between small groups of nodes to ensure that the propaga-
tion, capture, and carrier sense models were working as designed.
The 802.11 MAC implementation was studied in a variety of sce-

narios and independently verified by two of the authors. We exper-
imentally tested that when all nodes are in range of each other, no
data packets experience collisions (regardless of offered traffic load),
and that each node is able to make progress sending packets. This
verified that the carrier sense, RTS/CTS, and back-off mechanisms
of 802.11 were working correctly.

4.5 Validation of the Routing Protocol Implementations
Each protocol implementation was studied and verified by at least
two of the authors, and two independent implementations were made
of both AODV and DSDV.
The results of each simulation were internally consistent. That

is, the percentage of packets originated by the “application layer”
sources that were not logged as either received or dropped at the end
of the simulation was less than 0.01% (approximately 10 packets per
simulation). These packets were almost certainly in transit at the end
of the simulation, as the simulation originates between 40 and 120
packets per simulated second and terminates at exactly 900 seconds
without a cool-down period.
The results of our simulations are, in fact, different from the few

previously reported studies of some of these protocols. We explain
the reasons for these differences in Sections 5, 6, and 7.

4.6 Metrics
In comparing the protocols, we chose to evaluate them according to
the following three metrics:

6

Packet delivery ratio: The ratio between the number of packets
originated by the “application layer” CBR sources and the num-
ber of packets received by the CBR sink at the final destination.
Routing overhead: The total number of routing packets trans-
mitted during the simulation. For packets sent over multiple
hops, each transmission of the packet (each hop) counts as one
transmission.
Path optimality: The difference between the number of hops a
packet took to reach its destination and the length of the shortest
path that physically existed through the network when the packet
was originated.

Packet delivery ratio is important as it describes the loss rate that
will be seen by the transport protocols, which in turn effects the
maximum throughput that the network can support. This metric
characterizes both the completeness and correctness of the routing
protocol.
Routing overhead is an important metric for comparing these pro-

tocols, as it measures the scalability of a protocol, the degree to which
it will function in congested or low-bandwidth environments, and its
efficiency in terms of consuming node battery power. Protocols that
send large numbers of routing packets can also increase the prob-
ability of packet collisions and may delay data packets in network
interface transmission queues. We also evaluated the number of
bytes of routing overhead caused by the source routing header re-
quired by DSR, and present those results in Section 6.1. We did
not include IEEE 802.11 MAC packets or ARP packets in routing
overhead, since the routing protocols could be run over a variety
of different medium access or address resolution protocols, each of
which would have different overhead. Our goal was to compare the
routing protocols to each other, not to find the optimal performance
possible in our scenarios.
In the absence of congestion or other “noise,” path optimality

measures the ability of the routing protocol to efficiently use network
resources by selecting the shortest path from a source to a destination.
We calculate it as the difference between the shortest path found
internally by the simulator when the packet was originated, and the
number of hops the packet actually took to reach its destination.

5 Simulation Results
As noted in Section 4.1, we conducted simulations using two different
node movement speeds: a maximum speed of 20 m/s (average speed
10 m/s) and a maximum speed of 1 m/s. We first compare the four
protocols based on the 20 m/s simulations, and then in Section 5.5
present data for 1 m/s for comparison. For all simulations, the
communication patterns were peer-to-peer, with each run having
either 10, 20, or 30 sources sending 4 packets per second.

5.1 Comparison Summary
Figures 2 and 3 highlight the relative performance of the four routing
protocols on our traffic loads of 20 sources.
All of the protocols deliver a greater percentage of the originated

data packets when there is little node mobility (i.e., at large pause
time), converging to 100% delivery when there is no node motion.
DSR and AODV-LL perform particularly well, delivering over 95%
of the data packets regardless of mobility rate. In these scenarios,
DSDV-SQ fails to converge at pause times less than 300 seconds.
The four routing protocols impose vastly different amounts of

overhead, as shown in Figure 3. Nearly an order of magnitude
separates DSR, which has the least overhead, from TORA, which
has the most. The basic character of each protocol is demonstrated
in the shape of its overhead curve. TORA, DSR, and AODV-LL are
all on-demand protocols, and their overhead drops as the mobility
rate drops. As DSDV-SQ is a largely periodic routing protocol, its
overhead is nearly constant with respect to mobility rate.

* !** "** #** $** %** &** '** (**)**
*C&%

*C'

*C'%

*C(

*C(%

*C)

*C)%

!

D6.:1+9>/1+E:17:F

G+
H6
96
+5
67
81
9:
+21
71
>=1
H+
B+G
+H
69
6+
56
78
19
:+
:1
@9

I;IJ!;K
LMNO+++
I;N++++
OMIJ!PP

Figure 2 Comparison between the four protocols of the fraction of
application data packets successfully delivered (packet delivery ratio)
as a function of pause time. Pause time 0 represents constant mobility.

* !** "** #** $** %** &** '** (**)**
+++++*

+"*,***

+$*,***

+&*,***

+(*,***

!**,***

!"*,***

!$*,***

!&*,***

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E5
67
81
9:
F

I;IJ!;K
LMNO+++
I;N++++
OMIJ!PP

Figure 3 Comparison between the four protocols of the number of
routing packets sent (routing overhead) as a function of pause time.

Pause time 0 represents constant mobility.

The TORA results shown in Figures 2 and 3 at pause time 600 are
the average of only 9 scenarios, as the overhead for the tenth scenario
was much higher than the others due to significant congestion caused
by the routing protocol. The complete results are included below and
explained in Section 5.3.

5.2 Packet Delivery Ratio Details
Figure 4 shows the fraction of the originated application data packets
each protocol was able to deliver, as a function of both node mobility
rate (pause time) and network load (number of sources). For DSR
and AODV-LL, packet delivery ratio is independent of offered traffic
load, with both protocols delivering between 95% and 100% of the
packets in all cases.
DSDV-SQ fails to converge below pause time 300, where it de-

livers about 92% of its packets. At higher rates of mobility (lower
pause times), DSDV-SQ does poorly, dropping to a 70% packet de-
livery ratio. Nearly all of the dropped packets are lost because a stale
routing table entry directed them to be forwarded over a broken link.
As described in Section 3.1.2, DSDV-SQ maintains only one route
per destination and consequently, each packet that the MAC layer is
unable to deliver is dropped since there are no alternate routes.

7

* !** "** #** $** %** &** '** (**)**
*C&%

*C'

*C'%

*C(

*C(%

*C)

*C)%

!

D6.:1+9>/1+E:17:F

G+
H6
96
+5
67
81
9:
+21
71
>=1
H+
B+G
+H
69
6+
56
78
19
:+
:1
@9

!*+:3.271:
"*+:3.271:
#*+:3.271:

(a) DSDV-SQ

* !** "** #** $** %** &** '** (**)**
*C&%

*C'

*C'%

*C(

*C(%

*C)

*C)%

!

D6.:1+9>/1+E:17:F

G+
H6
96
+5
67
81
9:
+21
71
>=1
H+
B+G
+H
69
6+
56
78
19
:+
:1
@9

!*+:3.271:
"*+:3.271:
#*+:3.271:

(b) DSR

* !** "** #** $** %** &** '** (**)**
*C#

*C$

*C%

*C&

*C'

*C(

*C)

!

D6.:1+9>/1+E:17:F

G+
H6
96
+5
67
81
9:
+21
71
>=1
H+
B+G
+H
69
6+
56
78
19
:+
:1
@9

!*+:3.271:
"*+:3.271:
#*+:3.271:

(c) TORA

* !** "** #** $** %** &** '** (**)**
*C&%

*C'

*C'%

*C(

*C(%

*C)

*C)%

!

D6.:1+9>/1+E:17:F

G+
H6
96
+5
67
81
9:
+21
71
>=1
H+
B+G
+H
69
6+
56
78
19
:+
:1
@9

!*+:3.271:
"*+:3.271:
#*+:3.271:

(d) AODV-LL

Figure 4 Packet delivery ratio as a function of pause time. TORA is shown on a different vertical scale for clarity (see Figure 2).

TORA does well with 10 or 20 sources, delivering between 90%
and 95% of originated data packets even at the highest rate of node
mobility (pause time 0). The majority of the packet drops are due
to the creation of short-lived routing loops that are a natural part
of its link-reversal process. Consider a node A routing packets to
C via B. If B’s link to C breaks, B will reverse its link to A,
transmit an UPDATE to notify its neighbors it has done this, and
begin routing packets to C via A. Until A receives the UPDATE,
data packets to C will loop between A and B. Our implementation
of TORA detects when the next-hop of a packet is the same as the
previous-hop and drops the data packet, since experiments showed
that allowing these packets to loop until their TTL expires or the
loop resolves causes more packets to be dropped overall, as the
looping data packets interferewith the ability of other nearby nodes to
successfully exchange the broadcast UPDATE packet that will resolve
their routing loop.
With 30 sources, TORA’s average packet delivery ratio drops to

40% at pause time 0, although upon examination of the data we
found that variability was extremely large, with packet delivery ra-
tios ranging from 8% to 91%. In most of these scenarios, TORA
fails to converge because of increased congestion, as explained in
Section 5.3. A very recently released revision to the IMEP speci-
fication [4] claims to improve the reliable control message delivery
semantics provided by IMEP, which might eliminate some of the be-
haviors seen here. However, these newmechanisms add more packet

overhead to TORA/IMEP which, as shown in Section 5.3, is already
higher than the other protocols studied here.

5.3 Routing Overhead Details
Figure 5 shows the number of routing protocol packets sent by each
protocol in obtaining the delivery ratios shown in Figure 4. DSR and
DSDV-SQ are plotted on a the same scale as each other, but AODV-
LL and TORA are each plotted on different scales to best show the
effect of pause time and offered load on overhead. TORA, DSR,
and AODV-LL are on-demand routing protocols, so as the number
of sources increases, we expect the number of routing packets sent
to increase because there are more destinations to which the network
must maintain working routes.
DSR and AODV-LL, which use only on-demand packets and very

similar basic mechanisms, have almost identically shaped curves.
Both protocols exhibit the desirable property that the incremental
cost of additional sources decreases as sources are added, since the
protocol can use information learned from one route discovery to
complete a subsequent route discovery.
However, the absolute overhead required by DSR and AODV-LL

are very different, with AODV-LL requiring about 5 times the over-
head of DSRwhen there is constant node motion (pause time 0). This
dramatic increase in AODV-LL’s overhead occurs because each of
its route discoveries typically propagates to every node in the ad hoc
network. For example, at pause time 0 with 30 sources, AODV-LL

8

* !** "** #** $** %** &** '** (**)**
*

%,***

!*,***

!%,***

"*,***

"%,***

#*,***

#%,***

$*,***

$%,***

%*,***

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E5
67
81
9:
F

!*+:3.271:
"*+:3.271:
#*+:3.271:

(a) DSDV-SQ

* !** "** #** $** %** &** '** (**)**
*

%,***

!*,***

!%,***

"*,***

"%,***

#*,***

#%,***

$*,***

$%,***

%*,***

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E5
67
81
9:
F

!*+:3.271:
"*+:3.271:
#*+:3.271:

(b) DSR

++* !** "** #** $** %** &** '** (**)**
*

$%,***

)*,***

!#%,***

!(*,***

%**,***

!,%**,***

",%**,***

#,%**,***

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E5
67
81
9:
F

!*+:3.271:
"*+:3.271:
#*+:3.271:

(c) TORA

* !** "** #** $** %** &** '** (**)**
*

"*,***

$*,***

&*,***

(*,***

!**,***

!"*,***

!$*,***

!&*,***

!(*,***

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E5
67
81
9:
F

!*+:3.271:
"*+:3.271:
#*+:3.271:

(d) AODV-LL

Figure 5 Routing overhead as a function of pause time. TORA and AODV-LL are shown on different vertical scales for clarity (see Figure 3).

initiates about 2200 route discoveries per 900-second simulation
run, resulting in around 110,000 ROUTE REQUEST transmissions. In
contrast, DSR limits the scope and overhead of ROUTE REQUEST
packets by using caching from forwarded and promiscuously over-
heard packets and using non-propagating ROUTE REQUESTs as de-
scribed in Section 3.3.2, which results in DSR sending only 950
non-propagating requests and 300 propagating requests per simula-
tion run.
TORA’s overhead is the sum of a constant mobility-independent

overhead and a variable mobility-dependent overhead. The constant
overhead is the result of IMEP’s neighbor discovery mechanism,
which requires each node to transmit at least 1 HELLO packet per
BEACON period (1 second). For 900-second simulations with 50
nodes, this results in a minimum overhead of 45,000 packets. The
variable part of the overhead consists of the routing packets TORA
uses to create and maintain routes, multiplied by the number of
retransmission and acknowledgment packets IMEP uses to ensure
their reliable, in-order delivery.
In many of our scenarios with 30 sources, TORA essentially un-

derwent congestive collapse. A positive feedback loop developed in
TORA/IMEPwherein the number of routing packets sent caused nu-
merous MAC-layer collisions, which in turn caused data, ACK, and
HELLO packets to be lost. The loss of these packets caused IMEP to
erroneously believe that links to its neighbors were breaking, even in

the pause time 900 scenarios when all nodes were stationary. TORA
reacted to the perceived link breakages by sending more UPDATEs,
which closed the feedback loop by directly causing more conges-
tion. More importantly, each UPDATE sent required reliable delivery,
which increased the system’s exposure to additional erroneous link
failure detections, since the failure to receive an ACK from retrans-
mitted UPDATEs was treated as a link failure indication. In the worst
runs, TORA generated over 10 million objects, which IMEP aggre-
gated into 1.6 million packets requiring reliable delivery. In the few
30-source runs where congestion did not develop, the overhead var-
ied from 639,000 packets at pause time 0 to 47,000 packets at pause
time 900.
DSDV-SQ has approximately constant overhead, regardless of

movement rate or offered traffic load. This constant behavior arises
because each destination D broadcasts a periodic update with a new
sequence number every 15 seconds. With 50 unsynchronized nodes
in the simulation, at least one node broadcasts a periodic update dur-
ing each second. DSDV-SQ considers the receipt of a new sequence
number for a node to be important enough to distribute immediately
(Section 3.1), so each node that receives D’s periodic update gener-
ates a triggered update. These triggered updates flood the network,
as each node receiving one learns a new sequence number and so
also generates a triggered update. Each node limits the rate at which
it sends triggered updates to one per second, but since there is at least

9

* ! " # $ % & ' () !* Q!*
*

%*,***

!**,***

!%*,***

"**,***

"%*,***

#**,***

#%*,***

$**,***

-.
/
01
2+3
4+5
67
81
9:

D69<+?1@A9<+H>44121@71+423/+:<3291:9+E<35:F

I;IJ!;K
LMNO+++
I;N++++
OMIJ!PP

Figure 6 Difference between the number of hops each packet
took to reach its destination and the optimal number of hops

required. Data is for 20 sources.

one new sequence number per second, every node transmits triggered
updates at themaximum permitted rate. Therefore, although the base
periodic action of DSDV-SQ is once per 15 seconds, the effective
rate of a group of nodes is one update per node per second, yielding
an overhead of 45,000 packets for a 900-second, 50-node simulation.

5.4 Path Optimality Details
As described in Section 4, an internal mechanism of our simulator
knows the length of the shortest possible path between all nodes in
the network at any time and labels all packets with this path length
when they are originated. Figure 6 shows the difference between
this shortest path length and the length of the paths actually taken
by data packets. A difference of 0 means the packet took a shortest
path, and a difference greater than 0 indicates the number of extra
hops the packet took.
Both DSDV-SQ and DSR use routes very close to optimal. TORA

and AODV-LL each have a significant tail, taking up to 4 or more
hops longer than optimal for some packets, although TORA was
not designed to find shortest paths. For space reasons, Figure 6
aggregates the data from all pause times into one graph. When the
data are broken out by pause time, DSDV-SQ and DSR do very well
regardless of pause time, with no statistically significant change in
optimality of routing with respect to node mobility rate. TORA and
AODV-LL, on the other hand, each show a significant difference with
respect to pause time in the length of the routes they use relative to
the shortest possible routes. When node mobility is very low, they
use routes that are significantly closer to the shortest possible routes
than when nodes are moving.

5.5 Lower Speed of Node Movement
In order to explore how the protocols scale as the rate of topology
change varies, we changed the maximum node speed from 20 m/s
to 1 m/s and re-evaluated all four protocols over scenario files using
this lower movement speed. Figures 7 and 8 show the results of this
experiment when using 20 sources. All of the protocols deliver more
than 98.5% of their packets at this movement speed. Unlike in the
20 m/s scenarios, where DSDV-SQ could not converge, it delivers
excellent performance in the 1 m/s scenarios.
Even at this slower rate ofmovement, each of the routing protocols

generated very different amounts of overhead. Neither DSR nor
AODV-LL were seriously challenged by this set of scenarios, as
the overhead increases only mildly as pause time decreases. The

* !** "** #** $** %** &** '** (**)**
*C)%

*C)%%

*C)&

*C)&%

*C)'

*C)'%

*C)(

*C)(%

*C))

*C))%

!

D6.:1+9>/1+E:17:F

G+
H6
96
+5
67
81
9:
+21
71
>=1
H+
B+G
+H
69
6+
56
78
19
:+
:1
@9

I;IJ!;K
LMNO+++
I;N++++
OMIJ!PP

Figure 7 Comparison of the fraction of application data packets
successfully delivered as a function of pause time. Speed is 1 m/s.

* !** "** #** $** %** &** '** (**)**
*

!*,***

"*,***

#*,***

$*,***

%*,***

&*,***

'*,***

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E5
67
81
9:
F

I;IJ!;K
LMNO+++
I;N++++
OMIJ!PP

Figure 8 Comparison of the number of routing packets sent
as a function of pause time. Speed is 1 m/s.

separation between DSR and AODV-LL, however, has grown from
a factor of 5 to nearly a factor of 10 because DSR’s caching is even
more effective at lower speeds where the cached information goes
stale more slowly.
Due to its largely periodic nature, DSDV-SQ continues to have a

constant overhead of approximately 41,000 packets, while TORA’s
overhead is dominated by the link/status sensingmechanismof IMEP,
which amounts to one packet per node per second, or a total of 45,000
packets per simulation (Section 5.3).

6 Additional Observations
6.1 Overhead in Source Routing Protocols
When comparing the number of routing overhead packets sent by
each of the protocols, DSR clearly has the lowest overhead (Figure 5).
The data for 20 sources is reproduced in Figure 9(a) on a semi-log
axis for clarity. However, if routing overhead is measured in bytes
and includes the bytes of the source route header that DSR places in
each packet, DSR becomes more expensive than AODV-LL except
at the highest rates of mobility, although it still transmits fewer bytes
of routing overhead than does DSDV-SQ or TORA. AODV-LL uses
a Route Discovery mechanism based on DSR’s, but it creates hop-
by-hop routing state in each node along a path in order to eliminate

10

* !** "** #** $** %** &** '** (**)**
!*"

!*#

!*$

!*%

!*&

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E5
67
81
9:
F

I;IJ!;K
LMNO+++
I;N++++
OMIJ!PP

(a) Routing overhead in packets.

* !** "** #** $** %** &** '** (**)**
!*$

!*%

!*&

!*'

!*(

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E0
R9
1:
F

I;IJ!;K
LMNO+++
I;N++++
OMIJ!PP

(b) Routing overhead in bytes.

Figure 9 Contrasting routing overhead in packets and in bytes. Both graphs use semi-log axes.

the overhead of source routing from data packets. This reduction in
overhead bytes is shown in Figure 9(b).
It is unclear whether this improvement in bytes of overhead is

significant for real world protocol operation, because the majority of
AODV-LL overhead bytes are carried in many small packets. The
cost to acquire the medium to transmit a packet is significantly more
expensive in terms of power and network utilization than the in-
cremental cost of adding a few bytes to an existing packet, so the
actual cost of the source route header in DSR is less than the number
of bytes might indicate. A completely fair comparison based on
overhead in bytes would also have to include the cost of physical
layer framing and MAC protocol bytes, which we have deliberately
factored out since the routing protocols could be run over many dif-
ferent MAC implementations, each of which would have a different
overhead.

6.2 The Effect of Triggered Updates in DSDV

As noted in Section 3.1.2, DSDV can employ either of two strategies
for determining when to send triggered updates. In the first strategy,
DSDV-SQ, a node sends a triggered update each time it receives a
new sequence number for some destination. As shown in Figure 10,
DSDV-SQ delivers over 99% of its packets for all pause times when
the maximum node speed is 1 m/s. In the 20 m/s case, DSDV-SQ’s
packet delivery ratio falls to 95% at a pause time of 300 seconds and
further decreases at higher mobility rates as DSDV-SQ is unable to
converge. Figure 11 shows that for both the 1 m/s and 20 m/s data,
DSDV-SQ’s routing overhead is approximately 45,000 packets for
all pause times, as discussed in Section 5.3.
The second scheme for sending triggered updates, which we call

simply DSDV, requires that they be sent only when a new metric
is received for a destination. In this case, link breakages are not
detected as quickly as in DSDV-SQ, generally resulting in more
dropped packets.
For a movement speed of 1 m/s, DSDV delivers fewer packets

than DSDV-SQ, with its packet delivery ratio decreasing to 95%
at pause time 0. While DSDV’s routing overhead is a factor of 4
smaller, the fact that its routing overhead is constant indicates that
a movement speed of 1 m/s does not exercise the routing protocol
fully. At 20 m/s, both DSDV-SQ and DSDV fail to converge, causing
a large percentage of data packets to be dropped. However, theDSDV
triggering scheme reduces the relative routing overhead by a factor
of 4 at pause time 900 and by a factor of 2 at pause time 0.

6.3 Reliability Issues with Broadcast Packets
Because broadcast packets are not receiver directed, there is no way
to reserve the wireless medium at the receivers before transmitting a
broadcast packet (e.g., with an RTS/CTS exchange). Consequently,
broadcast packets are inherently less reliable than unicast packets.
This difference does not exist in wired networks and represents a
fundamental limitation of wireless networks that must be accounted
for in the design of ad hoc network routing protocols. Upon
sampling a number of our scenarios, we found that over any single
hop, 99.8% of unicast data packets are received successfully, while
only 92.6% of broadcast packets are received, based on counting the
number of receivers within transmission range of the broadcasting
node. The difference between the two numbers is due to collisions.
In future work, we will examine how the difference varies with the
average degree of the nodes, the size of the broadcast packets, and
the relative proportion of broadcast packets.

6.4 Interaction of ARP with On-Demand Protocols
When an on-demand routing protocol receives packets to a destina-
tion for which it does not have a route, the protocol typically buffers
the packets in the routing layer until it can discover a route for the
packets. Once the routing protocol finds a route, it sends the queued
packets down to the link-layer for transmission. In the course of our
early experiments, however, we observed a serious layer-integration
problem that would effect any on-demand protocol running on top
of an ARP implementation similar to that in BSD Unix [23].
Our ARP code, like the BSD code, buffers one packet per destina-

tion awaiting a link layer address. If a series of packets are passed by
the routing layer to the ARP code with a next-hop destination whose
link-layer address is unknown, all but the last of these packets will
be dropped by ARP. In our simulation, we remedied this by pacing
the rate at which packets are passed from the routing queue, though
the implementation of ARP could be modified to buffer additional
packets, or the routing protocol could be coded to check that the
ARP layer has a link-layer address for the next-hop before passing it
packets from the routing queue.

7 Related Work
Some simulation results for DSDV, TORA, and DSR have been pre-
sented in earlier papers, although those simulations used substantially
different input parameters than ours and did not simulate the wireless
network as accurately. We are not aware of any previously published
performance results for AODV.

11

* !** "** #** $** %** &** '** (**)**
*C&%

*C'

*C'%

*C(

*C(%

*C)

*C)%

!

D6.:1+9>/1+E:17:F

G+
H6
96
+5
67
81
9:
+21
71
>=1
H+
B+G
+H
69
6+
56
78
19
:+
:1
@9

I;IJ!;K+"*/B:
I;IJ!;K+!/B:
I;IJ+"*/B:
I;IJ+!/B:

Figure 10 Fraction of originated data packets
successfully delivered by DSDV-SQ and DSDV.

* !** "** #** $** %** &** '** (**)**
*

%,***

!*,***

!%,***

"*,***

"%,***

#*,***

#%,***

$*,***

$%,***

D6.:1+9>/1+E:17:F

N3
.9
>@
A+
3=
12
<1
6H
+E5
67
81
9:
F

I;IJ!;K+"*+/B:
I;IJ!;K+!+/B:
I;IJ+"*+/B:
I;IJ+!+/B:+

Figure 11 Routing overhead as a function of
pause time for DSDV-SQ and DSDV.

7.1 Park and Corson
An earlier simulation of TORA was done by Park and Corson [16],
who compared TORA to an “idealized” link state routing protocol.
Their results are quite different from those presented in this paper,
showing TORA delivering over 90% of its packets in all cases, but
these results are incomparable to ours because of the many simplifi-
cations they made in simulating the environment. In order to avoid
congestion, their simulation used a packet transmission rate of only
4, 1.5, or 0.6 packets per minute per node. Simulations were run
for 2 hours, the mean time between failure for links was varied from
32 minutes to 1 minute, and the average network connectivity was
artificially held constant at 90%, 70%, or 50%.
Their simulatormodeled the network as a “densely-connected hon-

eycomb” with constant node density. There is no notion of node mo-
bility. Each node is connected to a fixed set of neighbors by separate
links that cycle between an active and an inactive state independent
of all other links. These links are error free, and no dynamics below
the network layer are modeled. Radio propagation, medium access,
collisions, and physical node mobility are completely ignored; it is
even possible for a node to correctly receive two simultaneous trans-
missions. In their simulation, link transitions cause interrupts that
give the protocols immediate feedback whenever a link goes up or

down. In reality, though, a node can only detect that a link has broken
if it is trying to use the link or if it fails to receive expected periodic
beacons over it, and a node can only recognize the existence of a new
neighbor when it receives a packet from that neighbor.
An earlier paper [3] presented simulation results for the protocol

on which TORA is in part based, but the simulator used in that study
had the same problems as the simulator used by Park and Corson,
and the metrics used are incomparable to ours.

7.2 Johnson and Maltz
We have previously simulated DSR [10] using the same mobility
model as in this paper. In this previous work, movement speeds
ranged from 0.3 to 0.7 m/s, with the nodes moving about in a
9m 9m space using shorter range infrared wireless transmitters
with a 3-meter range.
This simulation lacked a realistic model of radio propagation and

a MAC layer such as IEEE 802.11. These missing pieces greatly
simplify the problem faced by the routing protocol, as propagation
delay, capture effects, MAC-layer collisions, and the effects of con-
gestion due to large packet sizes are unaccounted for. Furthermore,
broadcast and unicast packets were delivered with the same proba-
bility, and, as noted in Section 6.3, this is not a realistic assumption.
This earlier simulation study also did not consider ad hoc networks
of more than 24 nodes.
In the earlier simulation, we characterized the path optimality

of the routing protocol by reporting the ratio of the average route
length used to the optimal route length that could have been used
if the routing protocol had perfect information. However, we did
not report the actual route lengths used, and since both numbers are
averages, this ratio tended to blur the dynamics of the protocol. As a
result, in this paper we present path optimality data as the difference
between the optimal and actual path lengths used.

7.3 Freisleben and Jansen
DSDVandDSRwere recently simulated and compared by Freisleben
and Jansen [7]. Their simulations used configurations of 10 or 25
mobile nodes, with movement speeds relative to transmission range
approximately 6 times faster than in our simulations, making some
of their results incomparable to ours. Furthermore, although their
results could be explained by many factors, such as congestion,
collisions, or the failure of the routing protocols to converge, the
authors do not analyze or interpret the results and it is not possible
to assess the impact of these factors from the data presented.
All of their results also suffer due to a number of deficiencies in

their simulation and implementation of the protocols. All events in
their simulator take place in regular time steps, resulting in perfectly
synchronized behavior of a number of separate mobile nodes in some
cases. For example, upon receipt of a broadcast packet, all nodes
who attempt to send a response packet will experience a collision on
their RTS, requiring a binary exponential backoff and retransmission
attempt. Furthermore, they do not buffer any packets while waiting
for a ROUTE REPLY to be returned during a DSR Route Discovery,
causing large numbers of packets to be dropped needlessly.

8 Conclusions
The area of ad hoc networking has been receiving increasing at-
tention among researchers in recent years, as the available wireless
networking and mobile computing hardware bases are now capable
of supporting the promise of this technology. Over the past few
years, a variety of new routing protocols targeted specifically at the
ad hoc networking environment have been proposed, but little per-
formance information on each protocol and no detailed performance
comparison between the protocols has previously been available.
This paper makes contributions in two areas. First, we describe

our modifications to the ns network simulator to provide an accu-
rate simulation of the MAC and physical-layer behavior of the IEEE

12

802.11 wireless LAN standard, including a realistic wireless trans-
mission channel model. This new simulation environment provides
a powerful tool for evaluating ad hoc networking protocols and other
wireless protocols and applications. Second, using this simulation
environment, we present the results of a detailed packet-level simula-
tion comparing four recentmulti-hopwireless ad hoc network routing
protocols. These protocols, DSDV, TORA, DSR, and AODV, cover
a range of design choices, including periodic advertisements vs. on-
demand route discovery, use of feedback from the MAC layer to
indicate a failure to forward a packet to the next hop, and hop-by-
hop routing vs. source routing. We simulated each protocol in ad hoc
networks of 50 mobile nodes moving about and communicating with
each other, and presented the results for a range of node mobility
rates and movement speeds.
Each of the protocols studied performs well in some cases yet

has certain drawbacks in others. DSDV performs quite predictably,
delivering virtually all data packets when node mobility rate and
movement speed are low, and failing to converge as node mobility
increases. TORA, although theworst performer in our experiments in
termsof routing packet overhead, still delivered over 90%of the pack-
ets in scenarios with 10 or 20 sources. At 30 sources, the network was
unable to handle all of the traffic generated by the routing protocol and
a significant fraction of data packets were dropped. The performance
of DSR was very good at all mobility rates and movement speeds,
although its use of source routing increases the number of routing
overhead bytes required by the protocol. Finally, AODV performs
almost as well as DSR at all mobility rates and movement speeds and
accomplishes its goal of eliminating source routing overhead, but it
still requires the transmission of many routing overhead packets and
at high rates of node mobility is actually more expensive than DSR.

Acknowledgments
Many thanks are due to Dan Stancil, who reviewed our propaga-
tion model for correctness and provided insights on the details of
radio propagation. We would also like to thank Pravin Bhagwat,
Tracy Camp, Scott Corson, Vincent Park, and Charles Perkins for
answering our questions about the details of the operation of DSDV,
TORA/IMEP, and AODV.

References
[1] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang.

MACAW: Amedia access protocol for wireless LAN’s. In Proceedings
of the SIGCOMM ’94 Conference on Communications Architectures,
Protocols and Applications, pages 212–225, August 1994.

[2] Josh Broch, David B. Johnson, and David A. Maltz. The Dynamic
Source Routing Protocol for Mobile Ad Hoc Networks. Internet-Draft,
draft-ietf-manet-dsr-00.txt, March 1998. Work in progress.

[3] M. Scott Corson and Anthony Ephremides. A distributed routing al-
gorithm for mobile wireless networks. Wireless Networks, 1(1):61–81,
February 1995.

[4] M. Scott Corson, S. Papademetriou, Philip Papadopoulos, Vincent D.
Park, and Amir Qayyum. An Internet MANET Encapsulation Proto-
col (IMEP) Specification. Internet-Draft, draft-ietf-manet-imep-spec-
01.txt, August 1998. Work in progress.

[5] M. Scott Corson and Vincent D. Park. An Internet MANET Encapsu-
lation Protocol (IMEP) Specification. Internet-Draft, draft-ietf-manet-
imep-spec-00.txt, November 1997. Work in progress.

[6] Kevin Fall and Kannan Varadhan, editors. ns notes and documentation.
The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC,
November 1997. Available from http://www-mash.cs.berkeley.edu/ns/.

[7] Bernd Freisleben and Ralph Jansen. Analysis of routing protocols
for ad hoc networks of mobile comuters. In Proceedings of the 15th
IASTED International Conference on Applied Informatics, pages 133–
136, Innsbruck, Austria, February 1997. IASTED-Acta Press.

[8] IEEE Computer Society LAN MAN Standards Committee. Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications, IEEE Std 802.11-1997. The Institute of Electrical and Elec-
tronics Engineers, New York, New York, 1997.

[9] David B. Johnson. Routing in ad hoc networks of mobile hosts. In
Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications, pages 158–163, December 1994.

[10] David B. Johnson and David A. Maltz. Dynamic source routing in
ad hoc wireless networks. In Mobile Computing, edited by Tomasz
Imielinski and Hank Korth, chapter 5, pages 153–181. Kluwer Aca-
demic Publishers, 1996.

[11] Phil Karn. MACA—A new channel access method for packet radio.
In Proceedings of the 9th Computer Networking Conference, pages
134–140, September 1990.

[12] Barry M. Leiner, Robert J. Ruth, and Ambatipudi R. Sastry. Goals and
challenges of the DARPA GloMo program. IEEE Personal Communi-
cations, 3(6):34–43, December 1996.

[13] National Science Foundation. Research priorities in wireless and
mobile communications and networking: Report of a workshop
held March 24–26, 1997, Airlie House, Virginia. Available at
http://www.cise.nsf.gov/anir/ww.html.

[14] Vincent D. Park and M. Scott Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. In Proceedings of
INFOCOM’97, pages 1405–1413, April 1997.

[15] Vincent D. Park and M. Scott Corson. Temporally-Ordered Routing
Algorithm (TORA) version 1: Functional specification. Internet-Draft,
draft-ietf-manet-tora-spec-00.txt, November 1997. Work in progress.

[16] Vincent D. Park and M. Scott Corson. A performance comparision of
TORAand Ideal Link State routing. InProceedings of IEEESymposium
on Computers and Communication ’98, June 1998.

[17] Charles Perkins. AdHoc OnDemand Distance Vector (AODV) routing.
Internet-Draft, draft-ietf-manet-aodv-00.txt, November 1997. Work in
progress.

[18] Charles E. Perkins and Pravin Bhagwat. Highly dynamic Destination-
Sequenced Distance-Vector routing (DSDV) for mobile computers.
In Proceedings of the SIGCOMM ’94 Conference on Communi-
cations Architectures, Protocols and Applications, pages 234–244,
August 1994. A revised version of the paper is available from
http://www.cs.umd.edu/projects/mcml/papers/Sigcomm94.ps.

[19] David C. Plummer. An Ethernet address resolution protocol: Or con-
verting network protocol addresses to 48.bit Ethernet addresses for
transmission on Ethernet hardware. RFC 826, November 1982.

[20] Theodore S. Rappaport. Wireless Communications: Principles and
Practice. Prentice Hall, New Jersey, 1996.

[21] Neil Siegel, Dave Hall, Clint Walker, and Rene Rubio. The Tactical In-
ternet Graybeard Panel briefings. U.S. Army Digitization Office. Avail-
able at http://www.ado.army.mil/Briefings/Tact%20Internet/index.htm,
October 1997.

[22] Bruce Tuch. Development of WaveLAN, an ISM band wireless LAN.
AT&T Technical Journal, 72(4):27–33, July/August 1993.

[23] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated, Volume 2:
The Implementation. Addison-Wesley, Reading, Massachusetts, 1995.

13

