
A Reliable Multicast Framework for Light-weight Sessions and
Application Level Framing

Sally Floyd, Van Jacobson, Steven McCanne
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

floyd, van, mccanne@ee.lbl.gov

Ching-Gung Liu
University of Southern California, Los Angeles, CA 90089

charley@carlsbad.usc.edu

Lixia Zhang
Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304

lixia@parc.xerox.com

August 7, 1995

ABSTRACT

This paper1 describes SRM (Scalable Reliable Multicast), a
reliable multicast framework for application level framing
and light-weight sessions. The algorithms of this framework
are efficient, robust, and scale well to both very large net-
works and very large sessions. The framework has been
prototyped in wb, a distributed whiteboard application, and
has been extensively tested on a global scale with sessions
ranging from a few to more than 1000 participants. The
paper describes the principles that have guided our design,
including the IP multicast group delivery model, an end-to-
end, receiver-based model of reliability, and the application
level framing protocol model. As with unicast communica-
tions, the performance of a reliable multicast delivery algo-
rithm depends on the underlying topology and operational
environment. We investigate that dependence via analysis
and simulation, and demonstrate an adaptive algorithm that
uses the results of previous loss recovery events to adapt the
control parameters used for future loss recovery. With the
adaptive algorithm, our reliable multicast delivery algorithm
provides good performance over a wide range of underlying
topologies.

1 Introduction

Several researchers have proposed generic reliable multicast
protocols, much as TCP is a generic transport protocol for
reliable unicast transmission. In this paper we take a dif-

Supported by the Director, Office of Energy Research, Scientific Com-
puting Staff, of the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.

Supported in part by the Advanced Research Projects Agency, moni-
tored by Fort Huachuca under contract DABT63-94-C-0073.

1An earlier version of this paper appeared in ACM SIGCOMM 95. This
version corrects errors in the graphs of that earlier version.

ferent view: unlike the unicast case where requirements for
reliable, sequenced data delivery are fairly general, differ-
entmulticast applications have widely different requirements
for reliability. For example, some applications require that
delivery obey a total ordering while many others do not.
Some applications have many or all the members sending
data while others have only one data source. Some applica-
tions have replicated data, for example in an -redundant file
store, so several members are capable of transmitting a data
item while for others all data originates at a single source.
These differences all affect the design of a reliable multi-
cast protocol. Although one could design a protocol for the
worst-case requirements, e.g., guarantee totally ordered de-
livery of replicated data from a large number of sources, such
an approach results in substantial overhead for applications
with more modest requirements. One cannot make a single
reliable multicast delivery scheme that simultaneously meets
the functionality, scalability and efficiency requirements of
all applications.
The weakness of “one size fits all” protocols has long

been recognized. In 1990Clark and Tennenhouse proposed a
new protocolmodel calledApplication Level Framing (ALF)
which explicitly includes an application’s semantics in the
design of that application’s protocol [CT90]. ALF was later
elaborated with a light-weight rendezvous mechanism based
on the IP multicast distribution model, and with a notion
of receiver-based adaptation for unreliable, real-time appli-
cations such as audio and video conferencing. The result,
known as Light-Weight Sessions (LWS), has been very suc-
cessful in the design of wide-area, large-scale, conferencing
applications. This paper further evolves the principles of
ALF and LWS to add a framework for scalable reliable mul-
ticast (SRM).
ALF says that the best way to meet diverse application

requirements is to leave as much functionality and flexibility

1

as possible to the application. Therefore our algorithms are
designed to meet only the minimal definition of reliable mul-
ticast, i.e., eventual delivery of all the data to all the group
members, without enforcing any particular delivery order.
We believe that if the need arises, machinery to enforce a
particular delivery order can be easily added on top of this
reliable delivery service.

The design is also heavily based on the group delivery
model that is the centerpiece of the IP multicast protocol
[D91]. In IP multicast, data sources simply send to the
group’s multicast address (a normal IP address chosen from
a reserved range of addresses) without needing any advance
knowledge of the group membership. To receive any data
sent to the group, receivers simply announce that they are in-
terested (via a “join” message broadcast on the local subnet)
— no knowledge of the group membership or active senders
is required. Each receiver joins and leaves the group indi-
vidually, without affecting the data transmission to any other
member. Ourmulticast delivery framework further enhances
the multicast group concept by maximizing information and
data sharing among all the members, and strengthens the in-
dividuality of membership by making each member respon-
sible for its own correct reception of all the data.

Finally, our design attempts to follow the core design prin-
ciples of TCP/IP. First, we require only the basic IP delivery
model — best-effort with possible duplication and reorder-
ing of packets — and build the reliability on an end-to-end
basis. No change or special support is required from the un-
derlying IP network. Second, in a fashion similar to TCP
adaptively setting timers or congestion control windows, our
algorithms dynamically adjust their control parameters based
on the observed performance within a session. This allows
applications using this model to adapt to a wide range of
group sizes, topologies and link bandwidths while maintain-
ing robust and high performance.

The paper proceeds as follows: Section 2 discusses gen-
eral issues for reliablemulticast delivery. Section 3 describes
in detail the reliable multicast algorithm embedded in the
wb implementation. Section 4 discusses the performance
of the algorithm in simple topologies such as chains, stars,
and bounded-degree trees, and Section 5 presents simulation
results from more complex topologies. Section 6 discusses
extensions to the basic scheme embedded in wb, such as
adaptive algorithms for adjusting the timer parameters and
algorithms for local recovery. Section 7 discusses both the
application-specific aspects of wb’s reliable multicast algo-
rithms as well as the aspects of the underlying approach that
have general applicability. Section 8 discusses related work
on reliable multicast. Section 9 discusses future work on the
congestion control algorithms. Finally, Section 10 presents
conclusions.

2 The design of reliable multicast

2.1 Reliabledata delivery: adding theword “multicast”

The problem of reliable (unicast) data delivery is well un-
derstood and a variety of well-tested solutions are available.
However, adding the word ‘multicast’ to the problem state-
ment significantly changes the solution set. For example, in
any reliable protocol some party must take responsibility for
loss detection and recovery. Because of the “fate-sharing”
implicit in unicast communication, i.e., the data transmis-
sion fails if either of the two ends fails, either the sender or
receiver can take on this role. In TCP, the sender times trans-
missions and keeps retransmitting until an acknowledgment
is received. NETBLT [CLZ87] uses the opposite model and
makes the receiver responsible for all loss detection and re-
covery. Both approaches have been shown to work well for
unicast.
However, if a TCP-style, sender-based approach is applied

to multicast distribution, a number of problems occur. First,
because data packets trigger acknowledgments (positive or
negative) from all the receivers, the sender is subject to the
well-known ACK implosion effect. Also, if the sender is
responsible for reliable delivery, it must continuously track
the changing set of active receivers and the reception state
of each. Since the IP multicast model deliberately imposes a
level of indirection between senders and receivers (i.e., data is
sent to the multicast group, not to the set of receivers), the re-
ceiver set may be expensive or impossible to obtain. Finally,
the algorithms that are used to adapt to changing network
conditions tend to lose their meaning in the case of multicast.
E.g., how should the round-trip time estimate for a retransmit
timer be computed when there may be several orders of mag-
nitude difference in propagation time to different receivers?
What is a congestion window if the delay-bandwidth product
to different receivers varies by orders of magnitude? What
self-clocking information exists in theACK stream(s) if some
receivers share one bottleneck link and some another?
These problems illustrate that single-point, sender-based

control does not adapt or scale well for multicast delivery.
Since members of a multicast group have different commu-
nication paths and may come and go at any time, the “fate-
shared” coupling of sender and receiver doesn’t generalize to
multicast. None of the problems described above exist with
NETBLT-style, receiver-based reliability (e.g., since each re-
ceiver keeps its own reception state, the per-host state burden
is constant, independent of group size, and the fact that group
membership can’t be known is irrelevant). Thus it is clear
that receiver-based reliability is a far better building block
for reliable multicast [PTK94].
Another unicast convention that migrates poorly to mul-

ticast has to do with the vocabulary used by the sender and
receiver(s) to describe the progress of their communication.
A receiver can request a retransmission either in application
data units (“sector 5 of file sigcomm-slides.ps”) or in terms

2

of the shared communication state (“sequence numbers 2560
to 3071 of this conversation”). Both models have been used
successfully (e.g., NFS uses the former and TCP the latter)
but, because the use of communication state for naming data
allows the protocol to be entirely independent of any appli-
cation’s namespace, it is by far the most popular approach
for unicast applications. However, since the multicast case
tends to have much weaker and more diverse state synchro-
nization, using that state to name data works badly. E.g.,
if a receiver joins a conversation late and receives sequence
numbers 2560 to 3071, it has no idea of what’s been missed
(since the sender’s starting number is arbitrary) and so can
neither do anything useful with the data nor make an intel-
ligent request for retransmission. If receivers hear from a
sender again after a lengthy network partition, they have no
way of knowing whether “2560” is a retransmission of data
they received before the partition or is completely new (due
to sequence number wrapping during the partition). Thus the
“naming in application data units (ADUs)” model works far
better for multicast. Use of this model also has two benefi-
cial side effects. As [CT90] points out, a separate protocol
namespace can impose delays and inefficiencies on an ap-
plication, e.g., TCP will only deliver data in sequence even
though a file transfer application might be perfectly happy to
receive sectors in any order. The ADUmodel eliminates this
delay and puts the application back in control. Also, since
ADU names can be made independent of the sending host, it
is possible to use the anonymity of IP multicast to exploit the
redundancy of multiple receivers. E.g., if some receiver asks
for a retransmit of “sigcomm-slides.ps sector 5”, any mem-
ber who has a copy of the data, not just the original sender,
can carry out the retransmission.

2.2 Reliable multicast requirements

While the ALF model says that applications should be ac-
tively involved in their communications and that communi-
cation should be done in terms of ADUs rather than some
generic protocol namespace, we do not claim that every ap-
plication’s protocol must be completely different from every
other’s or that there can be no shared design or code. A great
deal of design commonality is imposed simply because dif-
ferent applications are attempting to solve the same problem:
scalable, reliable, multipoint communication over the Inter-
net. As Section 2.1 pointed out, just going from unicast to
multicast greatly limits the viable protocol design choices. In
addition, experiencewith the Internet has shown that success-
ful protocols must accommodate many orders of magnitude
variation in every possible dimension. While several algo-
rithms meet the constraints of Section 2.1, very few of them
continue to work if the delay, bandwidth and user population
are all varied by factors of 1000 or more.
In the end we believe the ALF model results in a skeleton

or templatewhich is thenfleshed out with application specific

details. Portions of that skeleton are completely determined
by network dynamics and scaling considerations and apply
to any application. So, for example, the scalable request and
repair algorithms described in Sections 3 through 6 are com-
pletely generic and apply to a wide variety of reliable mul-
ticast applications. Each different application supplies this
reliability framework with a namespace to talk about what
data has been sent and received; a policy and machinery to
determine how bandwidth should be apportioned between a
participant in the group, the group as awhole, and other users
of the net; and a local send policy that a participant uses to
arbitrate the different demands on its bandwidth (e.g., locally
originated data, repair requests and responses, etc.). It is the
intent of this paper to describe the skeleton common to scal-
able, reliable multicast applications. However, to make the
ideas concrete, we first describe a complete, widely used ap-
plication — wb, the LBL network whiteboard — that has
been implemented according to this model. After mention-
ing some details of its operation that are direct implications
of the design considerations in Section 2.1, we then factor
out the wb specifics to expose the generic, scalable, reliable
multicast skeleton underneath. The remaining sections of
this paper are an exploration of that skeleton.

2.3 The wb framework

Wb is a network conferencing tool designed and imple-
mented by McCanne and Jacobson [J92, J94a, M92] that
provides a distributed whiteboard. The whiteboard separates
the drawing into pages, where a new page can correspond
to a new viewgraph in a talk or the clearing of the screen
by a member of a meeting. Any member can create a page
and any member can draw on any page.2 Each member is
identified by a globally unique identifier, the Source-ID, and
each page is identified by the Source-ID of the initiator of
the page and a page number locally unique to that initiator.
Each member drawing on the whiteboard produces a stream
of drawing operations that are timestamped and assigned se-
quence numbers, relative to the sender. Most drawing op-
erations are idempotent and are rendered immediately upon
receipt. Each member’s graphics stream is independent from
that of other sites.
The following assumptions are made in wb’s reliable mul-

ticast design:

All data has a unique name.

2There are floor control mechanisms, largely external to wb, that can be
used if necessary to control who can create or draw on pages. These can be
combined with normal Internet privacy mechanisms (e.g., symmetric-key
encryption of all the wb data) to limit participation to a particular group
and/or with normal authentication mechanisms (e.g., participants signing
their drawing operations via public-key encryption of a cryptographic hash
of the drawop). The privacy, authentication and control mechanisms are
completely orthogonal to the reliability machinery that is the subject of this
paper and will not be described here. For further details see [MJ95, J94].

3

This global name consists of the end host’s Source-ID
and a locally unique sequence number.

The name always refers to the same data.
It is impossible to achieve consistency among different
receivers in the face of late arrivals and network parti-
tions if, say, drawop “floyd:5” initially means a blue line
and later turns into a red circle. This does not mean that
the drawing can’t change, only that drawops must effect
the change. E.g., to change a blue line to a red circle, a
“delete” drawop for “floyd:5” is sent, then a drawop for
the circle is sent.

Source-ID’s are persistent.
A user will often quit a session and later re-join, obtain-
ing the session’s history from the network. By ensuring
that Source-ID’s are persistent across invocations of the
application, the user maintains ownership of any data
created before quitting.

IP multicast datagram delivery is available.

All participants join the same multicast group; there is
no distinction between senders and receivers.

Wb has no requirement for ordered delivery because most
operations are idempotent. Operations that are not strictly
idempotent, such as a “delete” that references an earlier dra-
wop, can be patched after the fact, when the missing data
arrives. A receiver uses the timestamps on the drawing op-
erations to determine the rendering order. This coarse syn-
chronization mechanism captures the temporal causality of
drawing operations at a level appropriate for the application,
without the added complexity and delay of protocols that
provide guaranteed causal ordering.

3 Wb’s instantiation of the reliable multicast algorithm

Whenever new data is generated by wb, it is multicast to the
group. Each member of the group is individually responsi-
ble for detecting loss and requesting retransmission. Loss
is normally detected by finding a gap in the sequence space.
However, since it is possible that the last drawop of a set is
dropped, eachmember sends low-rate, periodic, sessionmes-
sages that announce the highest sequence number received
from every member that has written on the page currently
being displayed. In addition to the reception state, the ses-
sion messages contain timestamps that are used to estimate
the distance (in time) from each member to every other (de-
scribed in Section 3.1).
When receiver(s) detect missing data, they wait for a ran-

dom time determined by their distance from the original
source of the data, then send a repair request (the timer cal-
culations are described in detail in Section 3.2). As with the
original data, repair requests and retransmissions are always

multicast to the whole group. Thus, although a number of
hosts may all miss the same packet, a host close to the point
of failure is likely to timeout first and multicast the request.
Other hosts that are also missing the data hear that request
and suppress their own request. (This prevents a request im-
plosion.) Any host that has a copy of the requested data can
answer a request. It will set a repair timer to a random value
depending on its distance from the sender of the request mes-
sage and multicast the repair when the timer goes off. Other
hosts that had the data and scheduled repairs will cancel their
repair timers when they hear the multicast from the first host.
(This prevents a response implosion). In a topology with
diverse transmission delays, a lost packet is likely to trigger
only a single request from a host just downstream of the point
of failure and a single repair from a host just upstream of the
point of failure.

3.1 Session messages

As mentioned above, each member sends periodic session
messages that report the sequence number state for active
sources. Receivers use these session messages to determine
the current participants of the session and to detect losses.
The average bandwidth consumed by session messages is
limited to a small fraction (e.g., 5%) of the session data band-
width using the algorithm developed for vat and described in
[SCFJ94].
In a large, long-lived session, the state would become un-

manageable if each receiver had to report the sequence num-
bers of everyonewho had everwritten to thewhiteboard. The
“pages” mentioned above are used to partition the state and
prevent this explosion. Each member only reports the state
of the page it is currently viewing. If a receiver joins late, it
may issue page requests to learn the existence of pages and
the sequence number state in each page. We omit the details
of the page state recovery protocol as it is almost identical to
the repair request / response protocol for data.
In addition to state exchange, receivers use the session

messages to estimate the one-way distance between nodes.
All whiteboard packets, including session packets, include a
Source-ID and a timestamp. The session packet timestamps
are used to estimate the host-to-host distances needed by the
repair algorithm.
The timestamps are used in a highly simplified version

of the NTP time synchronization algorithm [M84]. Assume
that host sends a session packet 1 at time 1 and host
receives 1 at time 2. At some later time, 3, host

generates a session packet 2, marked with 1 where
3 2 (time 1 is included in 2 to make the algorithm

robust to lost session packets). Upon receiving 2 at time
4, host can estimate the latency from host to host as
4 1 2. Note that while this estimate does assume

that the paths are symmetric, it does not assume synchronized
clocks.

4

3.2 Loss recovery

The loss recovery algorithm provides the foundation for re-
liable delivery. In this section we describe the loss recovery
algorithm originally designed for wb; Section 6.1 describes
a modified version of this algorithm with an adaptive adjust-
ment of the timer parameters.
When host A detects a loss, it schedules a repair request for

a random time in the future. The request timer is chosen from
the uniform distribution on 1 1 2 seconds,
where is host A’s estimate of the one-way delay to the
original source S of the missing data. When the request
timer expires, host A sends a request for the missing data,
and doubles the request timer to wait for the repair.
If host A receives a request for the missing data before

its own request timer for that data expires, then host A does
a (random) exponential backoff, and resets its request timer.
That is, if the current timer had been chosen from the uniform
distribution on

2 1 1 2

then the backed-off timer is randomly chosen from the uni-
form distribution on

2 1
1 1 2

When host B receives a request from A that host B is
capable of answering, host B sets a repair timer to a value
from the uniform distribution on

1 1 2

seconds, where is host B’s estimate of the one-way
delay to host A. If host B receives a repair for the missing
data before its repair timer expires, then host B cancels its
repair timer. If host B’s repair timer expires before it receives
a repair, then host B multicasts the repair. Because host B
is not responsible for host A’s reliable data reception, it does
not verify whether host A actually receives the repair.
Due to the probabilistic nature of these algorithms, it is not

unusual for a dropped packet to be followed bymore than one
request. Thus, a host could receive a duplicate request imme-
diately after sending a repair, or immediately after receiving
a repair in response to its own earlier request. In order to
prevent duplicate requests from triggering a responding set
of duplicate repairs, host B ignores requests for data D for
3 seconds after sending or receiving a repair for that
data, where host S is either the original source of data D or
the source of the first request.
Because data represents idempotent operations, loss re-

covery can proceed independently from the transmission of
new data. Similarly, recovery for losses from two differ-
ent sources can also proceed independently. Since transmis-
sion bandwidth is often limited, a single transmission rate
is allocated to control the throughput across all these differ-
ent modes of operation, while the application determines the

order of packet transmission according to their relative im-
portance. In wb, the highest priority packets are repairs for
the current page, middle priority are new data, and lowest
priority are repairs for previous pages.

3.3 Bandwidth limitations

The congestion control mechanism for whiteboard sessions
is based on a (fixed, in current implementations) maximum
bandwidth allocation for each session. Each wb session has a
sender bandwidth limit advertised as part of the sd announce-
ment. A typical value is 64 Kbps; in this case a wb session
costs no more (and typically considerably less) than the ac-
companying audio session. Individual members use a token
bucket rate limiter to enforce this peak rate on transmissions.
This peak rate is mostly relevant when a source distributes a
postscript file for a new page of thewhiteboard, or when a late
arrival requests the past history of the whiteboard session.

3.4 Recovery from partitioning

The whiteboard does not require special mechanisms for the
detection or recovery from network partitioning. Because
wb relies on the underlying concept of an IP multicast group,
wheremembers can arrive and depart independently, wb does
not distinguish a partitioning from a normal departure of
members from the wb session.
During a partition of a session, users can simply continue

using the whiteboard in the connected components of the
partitions. Because pages are identified by the Source-ID
of the initiator of the page, along with the page number for
that initiator, members can continue creating new pages dur-
ing the partition (e.g., “Floyd:3” in one half of the partition,
and “Zhang:5” in the other). After recovery each page will
still have a unique page ID and the repair mechanism will
distribute any new state throughout the entire group.
Almost all of the design described in this section is present

in version 1.59 of wb; some omissions are pending imple-
mentation. These omissions include the measurements of
one-way delays and the rate-limiting mechanisms.

4 Request/repair algorithms for simple topologies

Building on our initial design experiences in wb, we turn to a
more general investigation of the request/repair algorithms.
The algorithms described in the remainder of the paper have
been implemented only within our simulation framework.
Given that multiple hosts may detect the same losses, and

multiple hosts may attempt to handle the same repair re-
quest, the goal of the request/repair timer algorithms is to
de-synchronize host actions to keep the number of duplicates
low. Among hosts that have diverse delays to other hosts in
the same group, this difference in delay can be used to dif-
ferentiate hosts; for hosts that have similar delays to reach

5

others, we can only rely on randomization to de-synchronize
their actions.
This section discusses a few simple, yet representative,

topologies, namely chain, star, and tree topologies, to provide
a foundation for understanding the request/repair algorithms
in more complex environments. For a chain the essential
feature of a request/repair algorithm is that the timer value
be a function of distance. For a star topology the essential
feature of the request/repair algorithm is the randomization
used to reduce implosion. Request/repair algorithms in a
tree combine both the randomization and the setting of the
timer as a function of distance. This section shows that the
performance of the request/repair algorithms depends on the
underlying network topology.

4.1 Chains

Figure 1 shows a chain topology where all nodes in the chain
aremembers of themulticast session. Eachnode in the under-
lying multicast tree has degree at most two. The chain is an
extreme topologywhere a simple deterministic request/repair
algorithmsuffices; in this sectionwe assume that 1 1 1,
and that 2 2 0.
For the chain, as inmost of the other scenarios in this paper,

link distance and delay are both normalized. We assume that
packets take one unit of time to travel each link, i.e. all links
have distance of 1.

: source of dropped packet

: failed edge

.
Lj L2 L1 R1 R2 RkL(j+1)

Figure 1: A chain topology.

In Figure 1 the nodes in the chain are labeled as either to
the right or to the left of the congested link. Assume that
source multicasts a packet that is subsequently dropped
on link (1, 1), and that the second packet sent from source
is not dropped. We call the edge that dropped the packet,

whether due to congestion or to other problems, the congested
link. Assume that the right-hand nodes each detect the failure
when they receive the second packet from .
Assume that node 1 first detects the loss at time , and

that each link has distance 1. Then node 1 multicasts a
request at time . Node 1 receives the request at time

1 and multicasts a repair at time 2. Node
receives the repair at time 2.
Note that all nodes to the right of node 1 receive the

request from 1 before their own request timers expire. We
call this deterministic suppression. We leave it as an exercise
for the reader to verify that, due to deterministic suppression,
there will be only one request and one repair.

Had the loss repair been done by unicast, i.e. node
sent a unicast request to the source as soon as it detected
the failure and sent a unicast repair to as soon as it
received the request, node would not receive the repair
until time 2 3 . Thus, with a chain and with a simple
deterministic request/repair algorithm, the furthest node re-
ceives the repair sooner than it would if it had to rely on its
own unicast communication with the original source. While
the original source and the intended recipient of the dropped
packet could be arbitrarily far from the congested link, in
the multicast repair algorithm both the request and the repair
come from the node immediately adjacent to the congested
link.

4.2 Stars

For the star topology in Figure 2 we assume that all links
are identical and that the center node is not a member of the
multicast group. For a star topology, setting the request timer
as a function of the distance from the source is not an essential
feature, as all nodes detect a loss at exactly the same time.
Instead, the essential feature of the request/repair algorithm
in a star is the randomization used to reduce implosion; we
call this probabilistic suppression.

: source of dropped packet

: failed edge

N1
N2

N3

N4
N5

N6

. . .
Ng

Figure 2: A star topology.

For the star topology inFigure 2 assume that thefirst packet
from node 1 is dropped on the adjacent link. There are
members of the multicast session, and the other members

detect the loss at exactly the same time. For the discussion of
this topology we assume that 1 1 0; because all nodes
detect losses and receive requests at the same time, 1 and
1 are not needed to amplify differences in delay. The only

benefit in setting 1 greater than 0 is to avoid unnecessary
requests from out-of-order packets.
If 2 is at most 1, then there will always be 1 requests.

Increasing 2 reduces the expected number of requests but
increases the expected time until the first request is sent.
For 2 1, the expected number of requests is roughly
1 2 2, and the expected delay until the first timer
expires is 2 2 seconds (where one unit of time is one
second).3 For example, if 2 is set to , then the expected

3The 1 nodes all detect the failure at the same time, and all set
their timers to a uniform value in an interval of width 2 2. If the first timer

6

number of requests is roughly , and the expected delay
until the first timer expires is 2 seconds. The same re-
marks apply to 2 with respect to repairs.

4.3 Bounded-degree trees

The request/repair performance in a tree topology uses both
the deterministic suppression described for chain topologies
and the probabilistic suppression described for star topolo-
gies. Consider a network topology of a bounded-degree tree
with nodes where interior nodes have degree . A tree
topology combines aspects of both chains and stars. The
timer value should be a function of distance, to enable re-
quests and repairs to suppress request and repair timers at
nodes further down in the tree. In addition, randomization is
needed to reduce request/repair implosion fromnodes that are
at an equal distance from the source (of the dropped packet,
or of the first request).
We assume that node S in the tree is the source of the

dropped packet, and that link (B,A) drops a packet from
source S. We call nodes on the source’s side of the congested
link (including node B) good nodes, and we call nodes on
the other side of the congested link (including node A) bad
nodes. Node A detects the dropped packet at time , when it
receives the next packet from node S. We designate node A
as a level-0 node, and we call a bad node a level-i node if it
is at distance from node A.
Assume that the source of the dropped packet is at distance
from node A. Node A’s request timer expires at time

1 1 2

where 2 denotes a uniform random variable between 0
and 2. Assuming that node A’s request is not suppressed, a
level- node receives node A’s request at time

1 1 2

Node B receives node A’s repair request at time

1 1 1 2

A bad level- node detects the loss at time , and such
a node’s request timer expires at some time

1 2 2

Note that regardless of the values of 1 2 and 2 2 , a
level- node receives node A’s request by time 1

2 and a level- node’s request timer expires no sooner than
1 If

1 2 1

expires at time , then the other 2 receivers receive that first request
at time 2. So the expected number of duplicate requests is equal to the
expected number of timers that expire in the interval [, 2].

that is, if
2

1

then the level- node’s request timer will always be sup-
pressed by the request from the level-0 node. Thus, the
smaller the ratio 2 1, the fewer the number of levels that
could be involved in duplicate requests. This relation also
demonstrates why the number of duplicate requests or repairs
is smaller when the source (of the dropped packet, or of the
request) is close to the congested link.
Note that the parameter 1 serves two different functions.

A smaller value for 1 gives a smaller delay for node B
to receive the first request. At the same time, for nodes
further away from the congested link, a larger value for 1
contributes to suppressing additional levels of request timers.
A similar tradeoff occurs with the parameter 2. A smaller
value for 2 gives a smaller delay for node B to receive the
first repair request. At the same time, as illustrated with star
topologies, a larger value for 2 helps to prevent duplicate
requests from session members at the same distance from the
congested link. Similar remarks apply to the functions of 1
and 2 in the repair timer algorithm.

5 Simulations of the request and repair algorithms

For a given underlying network, set of session members,
session sources, and congested link, it should be feasible to
analyze the behavior of the repair and request algorithms,
given fixed timer parameters 1, 2, 1, and 2. However,
we are interested in the repair and request algorithms across a
wide range of topologies and scenarios. We use simulations
to examine the performance of the request/repair algorithms
for individual packet drops in random and bounded-degree
trees. We do not claim to be presenting realistic topologies
or typical patterns of packet loss.
The simulations in this section show that the request/repair

algorithms with fixed timer parameters perform well in a
random or bounded-degree tree when every node in the un-
derlying tree is a member of the multicast session. The re-
quest/repair algorithms perform somewhat less well for a
sparse session, where the session size is small relative to the
size of the underlying network. This motivates the develop-
ment on the adaptive request/repair algorithm in Section 6.1,
where the timer parameters 1, 2, 1, and 2 are adjusted
in response to past performance.
In these simulations the fixed timer parameters are set as

follows: 1 2 2, and 1 2 log10 , where is
the number of members in the same multicast session. The
choice of log10 for 1 and 2 is not critical, but gives
slightly better performance than 1 2 1 for large G.
Each simulation constructs either a random tree or a

bounded degree tree with nodes as the network topology.
Next, of the nodes are randomly chosen to be session

7

members, and a source S is randomly chosen from the
session members.
We assume that messages are multicast to members of the

multicast group along a shortest-path tree from the source of
the message. In each simulation we randomly choose a link
L on the shortest-path tree from source S to the members
of the multicast group. We assume that the first packet from
source S is dropped by link L, and that receivers detect this
loss when they receive the subsequent packet from source S.

5.1 Simulations on random trees

We first consider simulations on random labeled trees of
nodes, constructed according to the labeling algorithm in
[Pa85, p.99]. These trees have unbounded degree, but for
large , the probability that a particular vertex in a random
labeled tree has degree at most four approaches 0.98 [Pa85,
p.114]. Figure 3 shows simulations of the request/repair al-
gorithm for this case, where all nodes in the tree are mem-
bers of the multicast session (that is,). For each graph
the -axis shows the session size ; twenty simulations were
run for each value of . Each simulation is represented by
an jittered dot, and the median from the twenty simulations
is shown by a solid line. The two dotted lines mark the up-
per and lower quartiles; thus, the results from half of the
simulations lie between the two dotted lines.
The top two graphs in Figure 3 show the number of re-

quests and repairs to recover from a single loss. The bottom
graph shows the delay of the last node in the multicast session
to receive the repair. For each member affected by the loss,
we define the delay as the time from when the member first
detected the loss until the member first received a repair. The
graph shows this delay as a multiple of RTT, the roundtrip
time from the receiver to the original source of the dropped
packet.
Note that with unicast communications the ratio of delay to

RTTis at least one. For a unicast receiver that detects a packet
loss by waiting for a retransmit timer to time out, the typical
ratio of delay to RTT is closer to 2. As the earlier discus-
sion of chain topologies shows, with multicast request/repair
algorithms the ratio of delay to RTT can sometimes be less
than one, because the request and/or repair could each come
from a node close to the point of failure.
Figure 3 shows that the repair/request algorithm works

well for a tree topology where all nodes of the tree are mem-
bers of the multicast session. There is usually only one re-
quest and one repair. (Some lack of symmetry results from
the fact that the original source of the dropped packet might
be far from the point of failure, while the first request comes
from a node close to the point of failure.) The average recov-
ery delay for the farthest node is roughly 2 RTT, competitive
with the average delay available from a unicast algorithm
such as TCP. The results are similar in simulations where the
congested link is chosen adjacent to the source of the dropped

...................

.
.

..

....................
..

.

....................
.

....................
.

.
.
..........
......
..

.
...
.....
......
..
...

.......

.........

...

.

....

.......

.....

...
.

...

....

........

...
.
.

..

.....

...

......

...

.

.....

....

.......
....

.

..

......

....

.....

.

.

...
...
........
.....
.

..

...

....

.........
..

Figure 3: Random trees with a random congested link, where
all nodes are members of the multicast session.

packet, and for simulations on a bounded-degree tree of size
where interior nodes have degree 4.

5.2 Simulations on large bounded-degree trees

The performance of the request/repair algorithms with fixed
timer parameters is less optimal when the underlying network
is a large bounded-degree tree. The underlying topology for
the simulations in this section is a balanced bounded-degree
tree of 1000 nodes, with interior nodes of degree four.
In these simulations the session size is significantly less
than . For a session that is sparse relative to the underlying
network, the nodes close to the congested link might not be
members of the session.
As Figure 4 shows, the average number of repairs for each

loss is somewhat high. In simulations where the congested
link is always adjacent to the source, the number of repairs
is low but the average number of requests is high.
[FJLMZ95] shows the performance of the request/repair

algorithm on a range of topologies. These include topolo-
gies where each of the nodes in the underlying network is
a router with an adjacent ethernet with 5 workstations, point-
to-point topologies where the edges have a range of propa-
gation delays, and topologies where the underlying network
is more dense that a tree. None of these variations that we

8

...................

.
................
.

.

.

.

...................

.
....................

.
...................
.

.................

.

..

.................

..

.

....................

.......

.

....
.......
.

.........

..

.

.....

..

.

........

....

...

..
...

..........

.....
.
..
.

.

.......

.

....

.....
.
.

.

.........

....

...
.
.

.

.

...........

...

..

...

.

...............
..
...

.........
......
...
.
.

.........

...

....
..
.
.

.

......

.....

......
..

........

.......
...
..

.

.....

.........
.....

..
........
......
.
...

....

.....

.....
....
..

.

.....

........

..

...

.

..

.............

...
..

...

.......
......
...

.

...
......
....
.....
.
.

..

.........
.....
..
.
.

Figure 4: Bounded-degree tree, degree 4, 1000 nodes, with
a random congested link.

have explored have significantly affected the performance of
the request/repair algorithms with fixed timer parameters.

6 Extending the basic approach

6.1 Adaptive adjustment of random timer algorithms

The close connection of the loss recovery performance with
the underlying topology of the network suggests that the
timer parameters 1, 2, 1, and 2 be adjusted in response
to the past behavior of the request/repair algorithms. In this
section we describe an adaptive algorithm that adjusts the
timer parameters as a function of both the delay and of the
number of duplicate requests and repairs in recent loss re-
covery exchanges.
Figure 5 gives the outline of the dynamic adjustment al-

gorithm for adjusting the timer parameter 2, which controls
the width of the request timer interval. If the average number
of duplicate requests is too high, then the adaptive algorithm
increases the request timer interval. Alternately, if the av-
erage number of duplicates is okay but the average delay in
sending a request is too high, then the adaptive algorithm de-
creases the request timer interval. In this fashion the adaptive
algorithm can adapt the timer parameters not only to fit the
fixed underlying topology, but also to fit a changing session

Before each new request timer is set:
if ave. dup. requests high

increase request timer interval
else if ave. dup. requests low
and ave. req. delay too high

decrease request timer interval

Figure 5: Dynamic adjustment algorithm for request timer
interval.

membership and pattern of congestion.
First we describe how a session member measures the av-

erage delay and number of duplicate requests in previous loss
recovery rounds inwhich thatmember has been a participant.
A request period begins when a member first detects a loss
and sets a request timer, and ends only when that member
begins a new request period. The variable dup req keeps
count of the number of duplicate requests received during
one request period; these could be duplicates of the most re-
cent request or of some previous request, but do not include
requests for data for which that member never set a request
timer. At the end of each request period, the member updates
ave dup req, the average number of duplicate requests per re-
quest period, before resetting dup req to zero. The average
is computed as an exponential-weighted moving average,

1

with 1 4 in our simulations. Thus, ave dup req gives
the average number of duplicate requests for those request
events for which thatmember has actually set a request timer.
When a request timer either expires or is reset for the first

time, indicating that either this member or some other mem-
ber has sent a request for that data, the member computes

, the delay from the time the request timer was
first set (following the detection of a loss) until a request was
sent (as indicated by the time that the request timer either
expired or was reset). The variable expresses this
delay as a multiple of the roundtrip time to the source of
the missing data. The member computes the average request
delay, .
In a similar fashion, a repair period beginswhen amember

receives a request and sets a repair timer, and ends when a
new repair period begins. In computing dup rep, the number
of duplicate repairs, the member considers only those repairs
for which that member at some point set a repair timer. At
the end of a repair period the member updates ave dup rep,
the average number of duplicate repairs.
When a repair timer either expires or is cleared, indicating

that this member or some other member sent a repair for
that data, the member computes , the delay from
the time the repair timer was set (following the receipt of a
request) until a repair was sent (as indicated by the time that
the repair timer either expired or was cleared). As above, the

9

variable expresses this delay as a multiple of the
roundtrip time to the source of themissing data. Themember
computes the average repair delay, .

After a request timer expires or is first
reset:

update ave req delay
Before each new request timer is set:

update ave dup req
if (ave dup req AveDups))

1 0 1
2 0 5

else if (ave dup req AveDups)
if (ave req delay AveDelay)

2 0 1
if (ave dup req 1/4)

1 0 05
else 1 0 05

Figure 6: Dynamic adjustment algorithm for request timer
parameters. In our simulations 0 1

Figure 6 gives the adaptive adjustment algorithm used in
our simulator to adjust the request timer parameters 1 and
2. The adaptive algorithm is based on comparing the mea-
surements ave dup req and ave req delaywith AveDups and
AveDelay, the target bounds for the average number of du-
plicates and the average delay. An identical adjustment algo-
rithm is used to adapt the repair timer parameters 1 and 2,
based on the measurements ave dup rep and ave rep delay.
Figure 7 gives the initial values used in our simulations for the
timer parameters. All four timer parameters are constrained
to stay within the minimum and maximum values in Figure
7.

Initial values:
1 2
1 10

2 2
2 10

Fixed parameters:
1 0 5; 1 2
2 1; 2

1 0 5; 1 10

2 1; 2
1
1

Figure 7: Parameters for adaptive algorithms

We are not trying to devise an optimal adaptive algorithm
for reducing some function of both delay and of the num-
ber of duplicates; such an optimal algorithm could involve

rather complex decisions about whether to adjust mainly 1
or 2, possibly depending on such factors as that member’s
relative distance to the source of the lost packet. Recall that
increasing 2 is guaranteed to reduce the number of dupli-
cate requests; in contrast, increasing 1 reduces the number
of duplicate requests only when the members of the multicast
group have diverse delays to reach each other. Our adaptive
algorithm relies largely on adjustments of 2 to reduce du-
plicates. Our adaptive algorithm only decreases 1 when the
average number of duplicates is already quite small (e.g., in
scenarios where there are only one or two nodes capable of
sending a request).
Because of the probabilistic nature of the repair and re-

quest algorithms, the behavior might vary over a fairly wide
range even with a fixed set of timer parameters. Thus, the
adaptive algorithm does not assume that the average num-
ber of duplicates is controlled until ave dup req is less than
AveDups .
The numerical parameters in Figure 6 of 0.05, 0.1, and 0.5

were chosen somewhat arbitrarily. The adjustments of 0 05
and 0 1 for 1 are intended to be small, as the adjustment
of 1 is not the primary mechanism for controlling the num-
ber of duplicates. The adjustments of 0 1 and 0 5 for 2
are intended to be sufficiently small to minimize oscillations
in the setting of the timer parameters. Sample trajectories
of the request/repair algorithms confirm that the variations
from the random component of the timer algorithms domi-
nate the behavior of the algorithms, minimizing the effect of
oscillations.
In our simulationswe use amultiplicative factor of 3 rather

than 2 for the request timer backoff described in Section 3.2.
With a multiplicative factor of 2, and with an adaptive al-
gorithm with small minimum values for 1 and 2, a single
node that experiences a packet loss could have its request
timer expire before receiving the repair packet, resulting in
an unnecessary duplicate request.
Figures 8 and 9 show simulations comparing adaptive and

non-adaptive algorithms. The simulation set in Figure 8 uses
fixed values for the timer parameters, and the one in Figure
9 uses the adaptive algorithm. From the simulation set in
Figure 4, we chose a network topology, session membership,
and drop scenario that resulted in a large number of dupli-
cate requests with the non-adaptive algorithm. The network
topology is a bounded-degree tree of 1000 nodes with degree
4 for interior nodes, and the multicast session consists of 50
members.
Each of the two figures shows ten runs of the simulation,

with 100 loss recovery rounds in each run. For each round of
a simulation, the same topology and loss scenario is used, but
a new seed is used for the pseudo-random number generator
to control the timer choices for the requests and repairs. In
each round a packet from the source is dropped on the con-
gested link, a second packet from the source is not dropped,
and the request/repair algorithms are run until all members

10

..

..

...

..

.

.

....

.

..

.

.

..

.....

.

.

.

.

..

..

.

.

.

.

.

....

...

.

..

..

..

..

.

...

.

....

.

...

.

..

.

..

...

..

...

..

..

..

.

...

..

.

..

..

...

....

.

.

.

..

..

..

.

..

.

....

..

..

.

.

.

.

..

.

...

..

...

..

.

.

...

.

..

...

..

..

.....

...

.

.

..

...

..

.

..

.

...

.

..

...

..

.

..

..

..

.

.

...

.

.

...

.

.

....

.

...

.

.....

...

.

.

..

.

.

...

.

..

.

...

...

.

..

..

...

..

.

..

..

.....

..

.

....

.

..

.

..

..

..

...

..

.

.

..

..

...

..

.

...

..

..

..

...

.

..

..

..

.

..

....

.

.

.

.

....

...

.

.

..

...

..

...

...

.

..

..

.

.

.

..

..

...

..

..

..

.

..

.

..

.

.

..

...

..

.

.

...

..

..

..

...

..

..

.

..

....

....

..

.

..

....

.

.

.

..

..

..

..

.

.

....

...

..

.

....

..

.

..

.

..

..

..

....

.

.

..

..

..

..

....

..

..

..

.

..

...

...

.

....

.

..

.

.

.

.

.....

.

..

.

..

....

.

..

.

...

..

...

..

....

....

.

.

...

..

..

.

..

..

....

..

..

..

..

..

..

.

.

..

.....

.

.

.

.

..

..

..

.

.

.

.

...

..

.

.

.

.

.

..

..

..

.

.

.

....

.

...

.

.

..

...

..

.

.

.

..

..

..

..

.

.

.

....

.

..

..

...

..

.

.

...

.

...

..

..

.

.

.

.

.

...

...

.

.

..

..

..

..

.

....

.

..

.

.

.

..

....

.

.

.

.

.

........

.

..

...

...

.

.

.

.....

....

.

...

...

.

..

...

..

.

..

.

.

...

.

.

..

.

.

.

..

..

.

....

.

....

..

.

.

.

.

.

...

...

..

.

.

..

.....

.

.

...

.

..

..

..

...

.

....

.

.

.....

.

..

.

.

..

.

.

.....

.

.

..

.....

.

.

..

.

.

...

.

.

.

.

..

...

.

.

.

.

..

.

..

..

...

..

.....

..

.

..

..

..

.

..

.

....

.

..

.

..

.

..

..

..

.

..

...

..

..

..

.

.

...

..

..

.

.

..

...

...

.

.

...

..

.

.

.

.

.

..

....

..

..

...

.....

..

...

....

...

.......

...

......

....
.....
....
.
...
....
...

.....

....

.

...

.....

..

....

....

..

.....

...

..
.....
.....

.....

.....
..
.......
.
..
........

....

.....

.

...

....

...

.....

....

.

..

............
.....
.

.....

...

..

..

...

.....

.....

....

.

.....

...

..

.....

..

...
...
....
...
.....
.....

.....

...

..

.....

...

..

......

.......
.....
..

.

.......

..

.....

....

.

.

......

...
....
...
...

....

.....

.

...

......

.
.......
...
....
...
...

.......

...
......
..
..

...

.....

..

...

.....

..

......

....
....
...
...

......

..........
....
....
.....
.

......

..

..

.....

.....
....
.....
.

.....

...

..

.....

...

..

....

....

..

...

....

...
...
......
.

...

...

...

.

....

....

..

.....

...

..
..
........
......
....
....
.....
.
....
....
..

....

...

...

......

...

.
.....
....
.

.....

....

.
.......
..
.

....

.....

.

....

....

..

....

...

...

..

.....

...
.....
....
.

.......

..

.

....

.....

.

......

..

..
...
...........
.....
.

....

....

..

...

.....

..
....
.....
.

.

......

...

...

.....

..

.....

........
......
.

.......

..

.

...

.....

..
....
......
..
......
..

..

......

..

..

.....

...
......
...
.

......

...

.

...

....

...

....

..

..

..

....

.....

.
......
...
.
....
....
..

...

......

.
......
...
.

.......

...
.....
.....

Figure 8: The non-adaptive algorithm.

..

...

...

..

....

.

...

.

.

.

...

...

..

.

.

....

....

.

.

..

...

..

..

..

..

...

..

.

...

....

..

.

..

...

..

...

....

...

..

.

...

.

.....

.

.

......

...

..

..

..

.

...

.

.....

...

.

.

....

....

.

....

....

..

....

....

..

..

......

..

..

...

...

..

..

..

.....

.

...

.....

..

......

...

.

.....

....

.

....

...

...

...

.....

..

....

.....

.

....

....

..

..

....

..

..

..

.......

.

...

.....

..

..

.....

.

.

.

...

...........
.....
.

......

..

..

......

.

...

....

...

...

....

......
...
.....
..

....

....

..

.

......

...

..

......

..
.......
...

........

..
...
......
.

.......

..

.

......

..........
....

.......

...
....
.....
.

........

..
....
......
.....
.....
.......
..........
..
.

.....

....

.

.......

..

.

.......

..

.

.....

....

.

......

....
.....
.....
...
......
.

....

.....

.

.....

...

..

.....

....

.

......

....
.....
.....
....
......
.....
....
.

..

.......

.

........

..
......
...
.

........

.

.

......

....
.....
.....
.......
...
.....
....
.

......

....
.........
........
...
........
..
......
....
........
.
.

........

..
........
.
.

........

..
........
..
........
..
........
..
......
....
........
..
.....
...
..

........

..
.......
...
........
..
.........

.

........

..
........
..
.........
.
........
..
........
..
........
..

...

.....

..

...

....

...
......
...
.

...

..............
..
.

..

.....

...
........
..

..

.....

...
.....
...
..

..

.......

.

.....

...

..

....

.....

.
....
......

..

...

....

.

....

...

...

......

........
......
...
.....
..
....
......
.....
..........
....
.

...

.......

..

......

..

.....

...

..

......

...

.

..

....

..

..
.....
.....

....

....

.

.

.

........

.
....
.....
.

..

.....

...
...
.....
..

...

.....

..
......
....

...

.....

.

.

....

....

..

.

.....

..

.

.

....

.....

.

...

....

...

.

...

....

..
.......
...

..

.....

...

...

....

..

.

.....

...

..
.....
....
.

..

.....

...

.

......

...

.

...

......

..

.....

..

.

..

.....

...

..

......

.

.

...

......

.
..
....
....

..

....

...

.

..

....

...

.

.....

..

...

...

....

.

..

...

.......
..
........

.

....

....

.

.

......

...

...

......

.
..
.....
...

.

..

.....

.

.

........

..

....

....

..

.

.....

....

..

.....

...
......
..
..

.....

...

..

..

......

..

.

.......

..

.

..

....

...

..

....

..

..

.

...

....

..

..

....

....
...
.....
.
.

.

.....

..

..

...

...

..

..

..

....

...

.

...

.....

.

.

...

....

.

..

...

....

...

..

....

..

..

...

..

....

.

.

.....

...

.

..

....

..

.

.

..

.....

.

.

.

....

.

....

.

...

.....

..

...

..

....

.

......

...

.

...

..

.

....

...

......

.

.

....

...

..

....

...

...

..

..

......

...

....

..

.

..

...

....

.

..

....

...

.

Figure 9: The adaptive algorithm.

have received the dropped packet. Each round of each simu-
lation is marked with a dot, and a solid line shows the median
from the ten simulations. The dotted lines show the upper
and lower quartiles.
For the simulations inFigure 8withfixed timer parameters,

one round differs from another only in that each round uses
a different set of random numbers for choosing the timers.
For the simulations with the adaptive algorithm in Figure

9, after each round of the simulation each session member
uses the adaptive algorithms to adjust the timer parameters,
based on the results from previous rounds. Figure 9 shows
that for this scenario, the adaptive algorithms quickly reduce
the average number of repairs with little penalty in additional
delay. The average delay is roughly the same for the adap-
tive and the non-adaptive algorithms, but with the adaptive
algorithm the delay has a somewhat higher variance.
Figure 10 shows the results of the adaptive algorithmon the

same set of scenarios as that in Figure 4. For each scenario
(i.e., network topology, session membership, source mem-
ber, and congested link) in Figure 10, the adaptive algorithm
is run repeatedly for 40 loss recovery rounds, and Figure 10
shows the results from the 40th loss recovery round. Com-
paring Figures 4 and 10 shows that the adaptive algorithm is
effective in controlling the number of duplicates over a range
of scenarios.
Simulations in [FJLMZ95] show that the adaptive algo-

rithm works well in a wide range of conditions. These in-
clude scenarios where only one session member experiences
the packet loss; where the congested link is chosen adjacent
to the source of the packet to be dropped; and for a range of
underlying topologies, including 5000-node trees, trees with

....................
...........

.
..........
..........

.....
..

..................

..
....................

...........
........
.

................
....

..............

......
..............
......

.............

......
.

..........

........

..

...........

.....
..
..

...............
....

.

...............
....
.

............

....
.
...

...
.....
.....
......
.

.

.

......
......
....
..

..

.....
......
...
....

.

....

...

....

...

....

.

....

..

.....

....
...
..

..

...

....

.....

....

.

.

..

.

....

..
......
....
.

........
...
...
....
..

...
..
......
....
..
..
.

..

......

...

...
...
...

Figure 10: Adaptive algorithm on round 40, for a
bounded-degree tree of 1000 nodes with degree 4 and a ran-
domly picked congested link.

interior nodes of degree 10; and connected graphs that are

11

more dense that trees, with 1000 nodes and 1500 edges.
In actual multicast sessions, successive packet losses are

not necessarily from the same source or on the same network
link. Simulations in [FJLMZ95] show that in this case, the
adaptive timer algorithms tune themselves to give good aver-
age performance for the range of packet drops encountered.
[FJLMZ95] explores the benefits of adding additional condi-
tions to the adaptive algorithm to monitor the worst-case as
well as the average delay and number of duplicates. Simula-
tions in [FJLMZ95] show that, by choosing different values
for AveDelay and AveDups, tradeoffs can be made between
the relative importance of low delay and a low number of
duplicates.
In the simulations in this section, none of the requests or

repairs are themselves dropped. In more realistic scenarios
where not only data messages but requests and repairs can
be dropped at congested links as well, members have to rely
on retransmit timer algorithms to retransmit requests and re-
pairs as needed. Obviously, this will increase not only the
delay, but also the number of duplicate requests and repairs
in different parts of the network.

6.2 Local recovery

With the request/repair algorithm described above, even if a
packet is dropped on an edge to a single member, both the
request and the repair are multicast to the entire group. In
cases where the neighborhood affected by the loss is small,
the bandwidth costs of the request/repair algorithm can be
reduced if requests and repairs are multicast with limited
scope. This use of limited scope can be implemented by
setting an appropriate “hop count” in the time-to-live (TTL)
field of the IP header.
Local recovery requires that the member sending the re-

quest have some information about the neighborhood of
members sharing the same losses. However, end nodes
should not know about network topology. We define a loss
neighborhood is a set of members who are all experienc-
ing the same set of losses. End nodes can learn about “loss
neighborhoods” from information in session messages, with-
out learning about the network topology. For each member,
we call a loss a local loss if the number of members ex-
periencing the loss is much smaller than the total number of
members in the session. Tohelp identify loss neighborhoods,
session messages could report the names of the last few lo-
cal losses. In addition, session messages could report the
fraction of received repairs that are redundant, that is, those
repairs received for known data, for which thatmember never
set a request timer.
Assume for the moment that after a number of local losses

with a stable loss neighborhood a memberM can use session
messages to estimate the size of the local neighborhood, that
is, the minimumTTL 1 needed to reach all members sharing
the same losses. Further assume that from previous loss

recoveries M can estimate 2, the minimum TTL needed to
reach some member not in the loss neighborhood. To use
local recovery for the next request, M sends the request with
TTL 3 Max 1 2 . If this loss follows the same history
as the previous local losses, then 3 is sufficient to suppress
requests from other members in the loss neighborhood and
to reach some member capable of answering the request. A
member receiving a request from M that was sent with TTL
3 answers with a repair of TTL 3 , where is
the number of hops to reachM. For a networkwith symmetric
paths and thresholds, this repair reaches M with a remaining
TTL of 3, and therefore reaches all members reached by the
original request.
Scenarios that could particularly benefit from local recov-

ery include sessions with persistent losses to a small neigh-
borhood of members, and isolated late arrivals to a multicast
session asking for back history. [FJLMZ95] explores lo-
cal recovery for a range of environments, including environ-
ments like the current Mbone where regions of the network
are separated from each other by paths with high thresholds.
Weare also investigating the use of separate multicast groups
for local recovery.

7 Application-specific and general aspects of reliable
multicast

Section 2 discussed some of the underlying assumptions in
the design of reliable multicast for wb. In this section we ex-
plore some of the ways that the reliable multicast framework
described in this paper could be used and modified to meet
the needs of other applications for reliable multicast.
A fundamental concept in our reliable multicast algorithm

is amulticast group, i.e. a set of hosts that (1) can be reached
by a group address without being identified individually first,
and (2) share the same application data and thus can help
each other with loss recovery. This group concept is also
appropriate for applications such as routing protocol updates
and DNS updates, as well as for the group distribution of
stock quotes, Usenet news, or WWW-based mass media.
Let’s take the Border Gateway Protocol (BGP) as an exam-

ple. The Internet is viewed as a set of arbitrarily connected
autonomous systems (AS) that are connected through bor-
der gateways that speak BGP to exchange routing informa-
tion. One AS may have multiple BGP speakers, and all BGP
speakers representing the same AS must give a consistent
image of the AS to the outside, i.e. they must maintain con-
sistent routing information. In the current implementation,
this consistency is achieved by each BGP router opening a
TCP connection to each other BGP router to deliver routing
updates reliably. There are several problems with this ap-
proach. First, achieving multicast delivery by multiple one-
to-one connections bears a high cost. Second, for an AS with
BGP routers, one has to manually configure the (1)

TCP connections for each of the routers, and repeat again

12

whenever a change occurs. Both of these problems could be
solved by applying our reliable multicast algorithm, perhaps
with some minor adjustments to the data persistence model.
Our reliable multicast framework could easily be adapted

for the distribution of such delay-insensitive material as
Usenet news. Different applications have different trade-
offs between minimizing delay and minimizing the number
of duplicate requests or repairs. For an interactive applica-
tion such as wb, close attention must be paid to minimizing
delay. For reliably distributing Usenet news, on the other
hand, minimizing bandwidth would be more important than
minimizing delay. Again some minor tuning to our request
and repair timer algorithms may make our work readily ap-
plicable to the news distribution.
As a third example, we could consider applying the basic

approach in this work to data caching and replication forWeb
pages. Like wb, all objects in theWeb have a globally unique
identifier. With HTTP, all requests for a specific object are
handled by the original source, even though in many cases,
especially for “hot” objects, a copy may be found within the
neighborhood of a requester. When distributed Web caches
are implemented, our reliable multicast framework could be
used to reliably distribute updates to the caches. In addition,
when a user makes a request to a remote object, the request
could be multicast to the cache group. By using our timer
algorithms, the cache closest to the requester would be most
likely to send a reply.
We believe that the approach to reliable multicast de-

scribed in this paper could be useful to a wide range of ap-
plications based on multicast groups. Even for applications
that may require partial or total data ordering, the reliable
multicast framework described in this paper could be used
to reliably deliver the data to all group members, and a par-
tial or total ordering protocol could be built on top that is
specifically tailored to the ordering needs of that application.

8 Related work on reliable multicast

The literature is rich with architectures for reliable multicast.
Due to space limitations, we will not describe the details of
each solution. Instead, we focus on the different goals and
definitions of reliability in the various architectures, and the
implications of these differences for the scalability, robust-
ness, handling of dynamic group membership, and overhead
of the algorithms.
The Chang andMaxemchuk protocol [CM84] is one of the

pioneer works in reliable multicast protocols. It is basically
a centralized scheme that provides totally ordered delivery
of data to all group members. All the members are ordered
in a logical ring, with one of them being the master, called
the token site. The token site is moved around the ring af-
ter each data transmission. Sources multicast new data to
the group, and the token site is responsible for acknowledg-
ing (by multicast) the new data with a timestamp, as well as

retransmitting (through unicast) all missing packets upon re-
quests from individual receivers. The order of data reception
at all the sites is determined by the timestamp in the ACK.
Each ACK also serves to pass the token to the next member
in the ring. By shifting the token site among all the members,
with a requirement that a site can become the token site only
if it has received all the acknowledged data, it is assured that
after shifting the token site through all the members in the
group, everyone will have received all the data that is at least
smaller than the current timestamp value.
Because the token site is responsible for all the acknowl-

edgments and retransmissions, it becomes the bottleneck
point whenever losses occur. The scheme also requires ref-
ormation of the ring whenever a membership change occurs.
Therefore it does not scale well with the size of the group.
RMP (Reliable Multicast Protocol) [WKM95] is an en-

hanced implementation of the Chang and Maxemchuk algo-
rithm with added QoS parameters in each data transfer and
better handling of membership changes.
The reliable multicast protocol for ordered delivery de-

scribed in [KTHB89] is similar to, but simpler than, the
Chang and Maxemchuk protocol. Basically, all data is first
unicast to a master site, called a sequencer, which then multi-
casts the data to the group. Therefore the sequencer provides
a global ordering of all the data in time; it is also responsi-
ble for retransmitting, by unicast, all the missing data upon
requests. The sequencer site does not move unless it fails, in
which case a new sequencer is elected. To avoid keeping all
the data forever, the sequencer keeps track of the receiving
state of all the members to determine the highest sequence
number that has been correctly received by all the members.
MTP (Multicasting Transport Protocol) [AFM92] is again

a centralized scheme for totally ordered multicast delivery.
A master site is responsible for granting membership and to-
kens for data transmission; each host must obtain a token
from the master first before multicasting data to the group,
thus the total order of data packets is maintained. A window
size defines the number of packets that can be multicast into
the group in a single heartbeat and a retention size defines the
period (in heartbeats) to maintain all client data for retrans-
mission. NACKs are unicast to the data source which then
multicasts the retransmission to whole group.
Compared to the above cited works, the Trans and Total

protocols described in [MMA90] are the closest in spirit to
our work. These protocols assume that all the members in a
multicast group are attached to one broadcastLAN. Each host
keeps an acknowledgment list which contains identifiers of
both positive and negative ACKs. Whenever a host sends a
data packet, it attaches its acknowledgment list to the packet,
as a way to synchronize the state with all other members in
the group. Because the single LAN limits data transmissions
from all hosts to one packet at a time, partial and total or-
dering of data delivery can be readily derived from data and
acknowledgment sequences.

13

Perhaps the most well-known work on reliable multicast is
the ISIS distributed programming system developed at Cor-
nell University [BSS91]. It provides causal ordering and, if
desired, total ordering of messages on top of a reliable mul-
ticast delivery protocol. Therefore the ISIS work is to some
extent orthogonal to the work described in this paper, and fur-
ther confirms our notion that a partial or total ordering, when
desired, can always be added on top of a reliablemulticast de-
livery system. The reliablemulticast delivery in existing ISIS
implementations is achieved by multiple unicast connections
using a windowed acknowledgment protocol similar to TCP
[B93]. A new implementation has been announced recently
that can optionally run on top of IP multicast.

9 Future work on congestion control

SRM assumes that the multicast session has a maximum
bandwidth allocation for the session. We are continuing re-
search on a number of congestion control issues related to
this bandwidth allocation.
Given this bandwidth allocation, in an application tuned

to the worst-case receiver members could give priority to the
transmission of repairs, refraining from sending new data
in the absence of available bandwidth. In an application
like wb not tuned to the worst-case receiver, the application
gives the transmission of newdata priority over the repairs for
previous pages. In such a reliable multicast session limited
by a fixed or adaptive target bandwidth, a session member
that is falling behind could either wait for the congestion to
clear or unsubscribe from the multicast session.
The congestion control mechanisms required from an ap-

plication using reliable multicast depend in part on the re-
sourcemanagement services available from the network. For
realtime traffic (i.e., traffic such as audio and video that is
constrained by a fixed or adaptive playback time), some
researchers have proposed that the network provide real-
time services with an explicit reservation setup protocol, ad-
mission control procedures, and appropriate scheduling al-
gorithms, to provide for guaranteed and predictive service
[BCS94]. If members of a reliable multicast applicationwere
to take advantage of such services, and make reservations for
a fixed target bandwidth, then each member simply requires
a procedure for determining whether the session is over or
under its bandwidth allocation.
On the other hand, if the application uses an adaptive rather

than a fixed target bandwidth, adapting the target bandwidth
for the session in response to congestion in the network, then
the additional question remains of how this adaptive target
bandwidth would be determined. One possibility that re-
quires additional research would be to use multiple multicast
groups, with a low-bandwidth multicast group targeted to
the needs of the worst-case receivers, and limited to low-
bandwidth data and repairs for the current page.

10 Conclusions and future work

This paper described in detail SRM, a scalable reliable mul-
ticast algorithm that was first developed to support wb. We
have discussed the basic design principles as well as exten-
sions of the basic algorithm that make it more robust for a
wide range of network topologies.
Many applications need or desire support for reliable mul-

ticast. Experience with the wb design shows, however, that
individual applications may have widely different require-
ments of multicast reliability. Instead of designing a generic
reliable multicast protocol tomeet the most stringent require-
ments, this work has resulted in a simple, robust, and scalable
reliable multicast algorithm that meets a minimal reliability
definition of delivering all data to all group members, leav-
ing more advanced functionalities, whenever needed, to be
handled by individual applications.
Thework described in this paper is based on the fundamen-

tal principles of application level framing (ALF), multicast
grouping, and the adaptivity and robustness in the TCP/IP ar-
chitecture design. Although the work started with the goal of
supporting wb, the end results should be generally applicable
to a wide variety of other applications.

11 Acknowledgments

This work benefited from discussions with Dave Clark and
with the End-to-End Task Force about general issues of
sender-based vs. receiver-based protocols. We would also
like to thank Peter Danzig for discussions about reliable mul-
ticasting and web-caching.

REFERENCES

[AFM92] Armstrong, S., Freier, A., andMarzullo, K., “Mul-
ticast Transport Protocol”, Request for Comments
(RFC) 1301, Feb. 1992.

[B93] Birman, K., “The Process Group Approach to Reli-
able Distributed Computing”, Communications of the
ACM, Dec. 1993.

[BSS91] Birman, K., Schiper, A., and Stephenson, P.,
“Lightweight Casual and Atomic Group Multicast”,
ACM Transactions on Computer Systems, Vol.9, No.
3, pp. 272-314, Aug. 1991.

[BCS94] B. Braden, D. Clark, and S. Shenker, “Integrated
Services in the Internet Architecture: an Overview”,
Request for Comments (RFC) 1633, IETF, June 1994.

[CM84] Chang, J., and Maxemchuk, N., “Reliable Broad-
cast Protocols”, ACM Transactions on Computer Sys-
tems, Vol.2, No. 3, pp. 251-275, Aug. 1984.

[CT90] Clark, D., and Tennenhouse, D., “Architectural
Considerations for a New Generation of Protocols”,
Proceedings of ACM SIGCOMM ’90, Sept. 1990, pp.
201-208.

14

[CLZ87] Clark, D., Lambert, M., and Zhang, L., “NETBLT:
A High Throughput Transport Protocol”, Proceedings
of ACM SIGCOMM ’87, pp. 353-359, Aug. 1987.

[D91] Deering, S., “Multicast Routing in a Datagram Inter-
network”, PhD thesis, Stanford University, Palo Alto,
California, Dec. 1991.

[FJLMZ95] Floyd, S., Jacobson, V., Liu, C., McCanne, S.,
and Zhang, L., “A Reliable Multicast Framework for
Light-weight Sessions and Application Level Fram-
ing, Extended Report”, LBL Technical Report, URL
ftp://ftp.ee.lbl.gov/papers/wb.tech.ps.Z, Sept. 1995.

[J92] Jacobson, V., “A Portable, Public Domain Network
‘Whiteboard’ ”, Xerox PARC, viewgraphs, April 28,
1992.

[J94] Jacobson, V., “A Privacy and Security Architecture
for Lightweight Sessions”, Sante Fe, NM, Sept. 94.

[J94a] Jacobson, V., “Multimedia Conferencing on the In-
ternet”, Tutorial 4, SIGCOMM 1994, Aug. 1994.

[KTHB89] Kaashoek, M., Tannenbaum, A., Hummel, and
Bal, “An Efficient Reliable Broadcast Protocol”, Op-
erating Systems Review, Oct., 1989.

[M92] McCanne, S., “A Distributed Whiteboard for Net-
work Conferencing”, May 1992, UC Berkeley CS 268
Computer Networks term project.

[MJ95] McCanne, S., and Jacobson, V., “vic: A Flexi-
ble Framework for Packet Video”, submitted to ACM
Multimedia 1995.

[MMA90] Melliar-Smith, P., Moser, L., and Agrawala, V.,
“Broadcast Protocols for Distributed Systems”, IEEE
Transactions on Parallel and Distributed Systems,
Vol. 1 No. 1, Jan. 1990, pp. 17-25.

[M84] Mills, D.L., “Network Time Protocol (Version 3)”,
RFC (Request For Comments) 1305, March 1992.

[Pa85] Palmer, E., Graphical Evolution: An Introduction to
the Theory of Random Graphs, John Wiley & Sons,
1985.

[SCFJ94] Schulzrinne, H., Casner, S., Frederick, R., and
Jacobson, V., “RTP: A Transport Protocol for Real-
Time Applications”, Internet Draft draft-ietf-avt-rtp-
06.txt, work in progress, Nov. 1994.

[PTK94] Pingali, S., Towsley, D., and Kurose, J., “A Com-
parison of Sender-Initiated and Receiver-Initiated Re-
liable Multicast Protocols”, SIGMETRICS ’94.

[TS94] Thyagarajan, A., and Deering, S., IP Mul-
ticast release 3.3, Aug. 1994, available from
ftp://parcftp.xerox.com/pub/ net-research /ipmulti3.3-
sunos413x.tar.Z.

[WKM95] Whetten, B., Kaplan, S., Montgomery, T., “A
High Performance Totally Ordered Multicast Proto-
col”, submitted to INFOCOM ’95.

[YKT95] Yajnik, M., Kurose, J., and Towsley, D., “Packet
Loss Correlation in the MBone Multicast Network:
ExperimentalMeasurements andMarkovChainMod-
els”, submitted to INFOCOM ’95.

15

