

Background Data: Naval Warfare, Battle of the Atlantic, Cryptography, and the Code Game

CS Division, EECS Dept. University of California, Berkeley Spring 2005

Battle of the Atlantic Allied Convoys vs. German U-Boats

- Germans on the Offensive, Allies on the Defensive
 - Choosing Targets
 - Assembling Forces
 - Finding the Enemy
 - Attacking with Precision or Causing As Much Damage as Possible
 - Avoiding/Surviving Defenders
 - Determining the Effects of Naval Combat

Battle of the Atlantic Allied Convoys vs. German U-Boats

- · Allies on the Offensive, Germans on the Defensive

 - Choosing TargetsAssembling Forces
 - Finding the Enemy
 - Attacking with Precision or Causing As Much Damage as Possible
 - Avoiding/Surviving Defenders
 - Determining the Effects of Naval Combat

Naval Intelligence

Finding the Enemy, Hiding Your Forces

- · Is an "unbreakable" code possible?
- · Is it possible to "hide" coded transmissions?
- How do you balance the need to communicate with the need to be invisible to easedropping?
- · Cryptography, Cryptanalysis
 - Heroic Codebreaking: Enigma, the Battle of the Atlantic, and the Development of the Computer
 - Codebreaking in the Pacific: Intelligence successes at Midway
- · Technology and the Battle of the Atlantic
 - Airborne Radars, High Frequency Direction Finding

Signals Intelligence

- Collecting information about a (potential) foe's capabilities (economic, military) and intentions (political, military) as old as nations themselves!
- New about the late 19th and 20th Centuries:
 - Rise of far-flung empires, increasing use of technologies for communications, need for command and control

Development of Communications Technology

- · Commercial = Militarily Relevant Technologies
 - Electric Telegraph (1837)
 - Undersea Cables (1842); transatlantic cable (1866)
 - Transcontinental Telegraph (1861); crucial role in Ámerican Civil War
 - Marconi, Radio (1895): first customer--the Royal Navyl
- Counter measures: cut foe's undersea cables, message interception, message deception;
- · Counter counter measure: radio communications
- Counter counter measure: jamming, direction finding
- Every measure has a counter measure, and in turn, a countercounter measure!

To Communicate is to Reveal

- · Communication methods lead to detection
 - Can the detector be detected? identified as to individual and location?
 - Can the interceptor be fooled? traffic analysis and deception?
 - Can the communicator be stopped from successfully communicating? jamming?
 - Can the communicator hide his/her communications? stealth?

Intelligence Collection

- · Spying, reconnaissance, spy satellites, code breaking
- · Human intelligence (HUMINT) aka spies
- Signal intelligence (SIGINT)/Communications intelligence (COMINT) often used interchangeable, especially up through WWII
 - Modern militaries use many forms of electromagnetic radiation that don't involve communications, but are used for detection (e.g., RADAR)
 - Information derived from the monitoring, interception, decryption and evaluation of enemy radio communications
 - Naval intelligence particularly important, as until the development of recon satellites, the ability to put "eyes" at sea was very limited!

Codebreaking

- Before the Age of Radio, much more difficult to intercept cable traffic
- Radio potentially places large numbers of encrypted messages in the hands of the cryptanalysts
 - Key to breaking the code!
 - British Admiralty Room 40: Codebreaking Room

Enigma Machine

- Existence of ULTRA ("Very Special Intelligence") first revealed in 1974! Changed completely the way we view the history of WW II
- Combined encoding/decoding machine
 - Five rotor system, three in use at any time
 - How it worked and why it was hard to crack
 - · Use of per message keys makes analysis difficult

 - Ose of per message keys makes analysis attricul But patterns provide the way in: doubly encrypted message keys Poles reverse engineer a stolen Enigma machine Invention of the Bombe: mechanical device to exhaust all enumerations
 - New Enigma stumps the Poles who turn to the British (1939)

Bletchley Park

- Guessing the day key: cillies—common three letter sequences
- Human operator weakness!
- Rules of usage also limit the alternatives
- Stereotypical message structure helps too
- Turing's idea: the crib--<common plain text, encrypted text>
- If found, then could determine Enigma settings
- Compute the transformation in parallel: Turing's Bombe
- 10 May 40: Germans change their message key scheme
- Naval codes hardest to break—more sophisticated Enigma used
- Battle of Atlantic was being lost! Solution: pinch the codebooks!

The Code Game % Letter Occurrence in English Text 7.49 1.29 6.74 7.37 3.54 2.43 0.26 3 62 14.00 6.14 6.95 2.18 1.74 9.85 4.22 3.00 6.65 1.16 0.27 1.69 0.28 3.57 1.64 0.04

The Code Game More Text Analysis

- · Common Digrams:
 - th he at st an in ea nd er en re nt to es on ed is ti
- · Common Trigrams:
 - the and tha hat ent ion for tio has edt tis ers res ter con ing men tho
- · Double Letters:
 - II tt ss ee pp oo rr ff cc dd nn
- Common word ending letters:
 - etsdnry
- · Most common words:
 - the of are I and you a can to he her that in was is has it him his

Next Week

Missiles and the Cuban Missile Crisis

- · See class web page for readings:
 - Ballistic Missile Defense
 - · http://www.missilethreat.com/overview/
 - Cuban Missile Crisis
 - · http://www.gwu.edu/~nsarchiv/nsa/cuba mis cri/
 - 14 Days in October Web Site
 - · http://library.thinkquest.org/11046/