Interactive Computer Theorem Proving

Lecture 3: Data structures and Induction

CS294-9 September 7, 2006 Adam Chlipala UC Berkeley

The Peano Axioms

$$0 \in \mathcal{N}$$

$$\forall n \in \mathcal{N}, S(n) \in \mathcal{N}$$

$$\forall n \in \mathcal{N}, S(n) \neq 0$$

$$\forall a, b \in \mathcal{N}, a = b \leftrightarrow S(a) = S(b)$$

For any property P:

$$P(0) \land (\forall n \in \mathcal{N}, P(n) \rightarrow P(S(n))) \rightarrow \forall n \in \mathcal{N}, P(n)$$

We can define \mathcal{N} (up to isomorphism) as the **least** set satisfying these properties.

The Set Theory Approach

"Now that we have natural numbers, let's use them to define some data structures...."

```
 \begin{aligned} & \mathsf{natlist}(0) = \{\emptyset\} \\ & \mathsf{natlist}(\mathsf{S}(n)) = \{\emptyset\} \cup \mathcal{N} \times \mathsf{natlist}(n) \\ & \mathsf{natlist} = \bigcup_{n \in \mathcal{N}} \mathsf{natlist}(n) \\ & \mathsf{nil} = \emptyset \\ & \mathsf{cons}(n, \mathit{ls}) = \langle n, \mathit{ls} \rangle \end{aligned}
```

Derived induction principle: For any property P:

$$P(\text{nil}) \land (\forall n \in \mathcal{N}, \forall ls \in \text{natlist}, P(ls) \rightarrow P(\text{cons}(n, ls)))$$

 $\rightarrow \forall ls \in \text{natlist}, P(ls)$

Why This Isn't Such a Great Idea

- These definitions are pretty awkward!
 - Set theorists usually don't write all their proofs formally, so they can get away with it.
- Proofs at this level of detail must be very large.
 - Mathematicians aren't used to optimizing for space!
- What about more complicated data structures?

Type Theory's Great Idea

Functions and data structures should be the fundamental building blocks of math, not sets!

Coq

Function types
Inductive types
Constructors
Case analysis
Recursive functions

ZF Set Theory

Negation
Conjunction
Universal quantifier
Equality
Natural deduction proof
rules
Empty set
Set equality
Set pairing
Set union
Natural numbers

Mathematical induction

5

Back to the Beginning...

Inductive nat : **Set** :=

1 0 : nat

 $IS: nat \rightarrow nat.$

What we get:

- A type nat
- Two constructors O and S for building nats
- Case analysis (pattern matching) on nats
- The ability to write recursive functions over nats

Verifying the Peano Axioms

There exists set \mathcal{N} ...

Check nat.

nat : **Set**.

 $0\in\mathcal{N}$

Check O.

O: nat.

 $\forall n \in \mathcal{N}, S(n) \in \mathcal{N}$

Check S.

 $S: nat \rightarrow nat.$

Pattern Matching

General form for nat:

match n with

$$| O = e1$$

$$| S n' = e2(n') |$$

end

And with anonymous function notation (like Scheme lambda and OCaml fun):

fun $n \Rightarrow match n$ with

$$| O => O$$

$$\mid S n' => n'$$

end

Examples

match O with

$$\mid O => O$$

$$\mid S n' => n'$$

end

Evaluates to: O

match S (S O) with

$$| O => O$$

$$\mid S n' => n'$$

end

Evaluates to: SO

Peano Axiom #3

$$\forall n \in \mathcal{N}, S(n) \neq 0$$

fun $n \Rightarrow match n$ with

Define *f* as:

$$I O \Rightarrow True$$

$$\mid S n' =$$
 False

- **Proof**. Let n be given.
- Assume for a contradiction that S n = 0.
- Assert True.
- **By computation**, we have the equivalent f 0.
- By the assumption, f(S n).

Contradiction!

• By computation, False.

Peano Axiom #4

$$\forall a, b \in \mathcal{N}, S(a) = S(b) \rightarrow a = b$$

fun $n \Rightarrow match n$ with

Define *p* as:

$$| O => O$$

$$\mid S n' => n'$$

end

- **Proof**. Let a and b be given.
- Assume $S \alpha = S b$.
- By reflexivity, p(S b) = p(S b).
- By the assumption, p(S a) = p(S b).
- By computation, a = b.

Peano Axiom #5

$$P(0) \land (\forall n \in \mathcal{N}, P(n) \rightarrow P(S(n))) \rightarrow \forall n \in \mathcal{N}, P(n)$$

We could prove this manually using recursive functions, **but**...

Check nat_ind.

```
nat_ind : forall P : nat -> Prop,
```

PO

- \rightarrow (forall $n : \text{nat}, P n \rightarrow P(S n)$)
- -> forall n : nat, P n

Recursive Functions

Analogue of the standard named function definition syntax i Two arguments of ty

Return type nat

Fixpoint add $(n m : nat) \{ struct n \} : nat :=$

match n with

$$\mid O => m$$

$$\mid S n' => S \text{ (add } n' m)$$

end.

No recursive calls

allowed in this **match** branch

recursion over

argument n

Only recursive calls with first argument equal to n' allowed in this branch

Aside: Why So Fussy About Termination?

Imagine that Coq allowed this definition:

```
Fixpoint f(n : nat) \{ struct n \} : nat := S(f n).
```

- We would then have f n = S(f n), for all n.
- But we can also prove $m \neq S m$, for all m.
- So f O = S (f O) and $f O \neq S (f O)$.
- Contradiction! Our logic is unsound!

More Datatypes: Booleans

Inductive bool : **Set** :=

- I false: bool
- I true: bool.

Check bool_ind.

bool_ind : forall P : bool -> Prop,

- P false
- -> *P* true
- -> forall b : bool, P b

More Datatypes: Lists

Inductive natlist : **Set** :=

I nil: natlist

l cons : nat -> natlist -> natlist.

Check natlist_ind.

 $natlist_ind : forall P : natlist -> Prop,$

P nil

-> (forall (n : nat) (ls : natlist),

 $P ls \rightarrow P (\cos n ls)$

-> **forall** ls : natlist, P ls

More Datatypes: Trees

```
Inductive nattree : Set :=
   Leaf: nattree
   | Node : nattree -> nat -> nattree -> nattree.
Check nattree ind.
  nattree_ind : forall P : nattree -> Prop,
    P Leaf
    \rightarrow (forall (t1: nattree) (n: nat)
       (t2: nattree),
          P t1 \rightarrow P t2 \rightarrow P (\text{Node } t1 \ n \ t2))
```

-> forall t · nattree P t

16

Simple Inductive Types in General

Sort specification (We'll see more possibilities later, but for now we only consider **Set**.)

Zero or more named constructors

Inductive tname : **Set** :=

$$\mathbf{c}_{1}: \mathbf{t}_{1,1} \to \dots \to \mathbf{t}_{1,k1} \to \mathbf{tname}$$

• • •

$$c:t_{n,1} \rightarrow .-> t_{n,kn} \rightarrow tname.$$

Arguments types are restricted so that they either don't refer to tname or are exactly tname.

Each constructor is given a function type from zero or more arguments to the type being defined.

Using an Inductive Type

Pattern matching

match e with

$$c_1 x_1 ... x_{k1} => e_1(x_1, ..., x_{k1})$$
 $c_1 x_1 ... x_{k1} => e_1(x_1, ..., x_{k1})$
 $c_1 x_1 ... x_{k1} => e_1(x_1, ..., x_{k1})$

Recursive functions

Inductive tname : Set :=
$$| c_1 : t_{1,1} -> ... -> t_{1,k1} -> tname$$

 $| c_n : t_{n,1} \rightarrow ... \rightarrow t_{n,kn} \rightarrow tname.$

Must use a **match** somewhere to obtain a strict subterm of x to use in a recursive call.

Using an Inductive Type II

Induction principles are derived by Coq as a convenience. They are implemented behind the scenes using **recursive functions**. (We'll see how later in the course.)

Inductive tname : Set := $| \mathbf{c}_1 : \mathbf{t}_{1,1} -> \dots -> \mathbf{t}_{1,k1} -> \text{tname} |$

Induction principle

"For every predicate P over the left for every constructor \mathbf{c}_{i}

...and the **induction** tactic automatically figures out the right induction principle and how to apply it, so you usually don't have to think about the details of these things....

For every set $e_{i,j}$ of arguments to c_{i} ,

Assuming P $e_{i,j}$ for every $e_{i,j}$ of type tname,

We can prove $P\left(\mathbf{c}_{i}\,\mathbf{e}_{i,1}^{}\ldots\mathbf{e}_{i,ki}^{}\right)$

Then

For every value e of type tname, We can prove P e."

So what's the deal with this "by computation" stuff, anyway?

Coq considers to be interchangeable any two expressions that **evaluate** to a common result

Atomic evaluation step: Applying a function

(**fun**
$$x \Rightarrow S x$$
) (S O) \Rightarrow S (S O)

(**fix** f (
$$x$$
: nat): nat => S x) (S O) \Rightarrow S (S O)

Atomic evaluation step: Simplifying a case analysis

(match
$$Sx$$
 with $O \Rightarrow O \mid Sn \Rightarrow n$ end) $\Rightarrow x$

Atomic evaluation step: Expanding a definition

$$f O \Rightarrow (\mathbf{fun} \ x => S \ (S \ x)) O$$

Definition $f := \mathbf{fun} \ x => S \ (S \ x)$.

Reduction Order

Reductions can happen anywhere in an expression, so:

(fun
$$x \Rightarrow$$
 (fun $y \Rightarrow$ S y) x) \Rightarrow (fun $x \Rightarrow$ S x)

(match
$$x$$
 with $O \Rightarrow O \mid S n \Rightarrow$ (fun $y \Rightarrow S y$) n end)
 \Rightarrow (match x with $O \Rightarrow O \mid S n \Rightarrow S n$ end)

Important meta-theorem about Coq: For any expression, any order of reductions leads to the same result.

Why Should I Care?

All of these theorems can be proved by reflexivity:

- 1 + 1 = 2
- 0 + x = x
- length (cons 0 (cons 1 nil)) = 2
- append (cons 0 nil) (cons 1 nil) = cons 0 (cons 1 nil)
- append nil ls = ls
- compiler myProgram = outputAssemblyCode

Proving theorems about programs and math in general is much more pleasant when these things come for free

Conclusion

- Sample HW1 solution is on the web site.
- HW2 is posted
 - Fun with data structures and induction
- Next lecture: Using inductive types to define new logical predicates and the rules that can be used to prove them