Interactive Computer
Theorem Proving

Lecture 3: Data structures
and Induction

CS294-9
September 7, 2006
Adam Chlipala
UC Berkeley

The Peano AXxioms

0eN
vneN,Sn)eN
VvneN, Sh)=0
Vva,beN, a=b«— S(a)=S(b)
For any property P:
P(0) A (V n € N, P(n) — P(S5(n))) -V neN, P(n)
We can define N (up to isomorphism) as the least

set satisfying these properties.

The Set Theory Approach

“Now that we have natural numbers, let's use them to define
some data structures....”

natlist(0) = {0}
natlist(S(n)) = {0} U N x natlist(n)

natlist = U natlist(n)
nenN

nil = ()
cons(n, Is) = (n, Is)

Derived induction principle: For any property P:

P(nil) A (W n € N, ¥V Is € natlist, P(Is)— P(cons(n, Is)))
— V Is € natlist, P(/s)

Why This Isn't Such a Great
ldea

 These definitions are pretty awkward!

- Set theorists usually don't write all their
proofs formally, so they can get away with it.

* Proofs at this level of detail must be very
large.

- Mathematicians aren't used to optimizing for
space!

 What about more complicated data
structures?

Type Theory's Great Idea

Functions and data structures should be
the fundamental building blocks of math,

Cog
Function types

Inductive types
Constructors
Case analysis

Recursive functions

not sets!

ZF Set Theory
Negation

Conjunction

Universal quantifier
Equality

Natural deduction proof
rules

Empty set

Set equality

Set pairing

Set union

Natural numbers
Mathematical induction

Back to the Beginning...

Inductive nat : Set ;=

O : nat
S : nat — nat.

What we get:
A type nat
Two constructors O and S for building nats
Case analysis (pattern matching) on nats

The ability to write recursive functions over nats
6

Verifying the Peano Axioms

There exists set N...

O0eN

YnehN,Sh) eN

Check nat.
nat : Set.

Check O.
O : nat.

Check S.
S : nat — nat.

Pattern Matching

General form for nat:

match n with

| O=>el
| Sn’ =>e2(n’)
end

And with anonymous function
notation (like Scheme lambda

and OCaml fun):

fun n => match n with
| O=>0
| Sn' =>n’

end

Examples
match O with
| O=>0
| Sn' =>n’

end
Evaluates to: O

match S (S O) with
| O=>0
| Sn'=>n’

end
Evaluates to: SO

Peano Axiom #3
vneN,Sh)=0

fun n => match n with

Define f as: | O =>True
| Sn’=> False

Proof. Letn beeaﬂ/en.

Assume for a contradiction that Sn = 0.
Assert True.

By computation, we have the equivalent £ 0.
By the assumption, f (S n).

Contradiction!
By computation, False.

Peano Axiom #4
Va,beN,S(@a)=S(b)—a=>b

fun n => match n with

Define p as: 10=>0
| Sn'=>n’
end

Proof. Let a and b be given.
Assume Sa =S b.

By reflexivity, p (Sb) =p (S b).

By the assumption, p (Sa) =p (S b).

By computation, a =b.

10

Peano AXiom #5
P(O) A(VneN, P(n) — P(S(n))) -V neWN, P(n)

We could prove this manually using recursive
functions, but...

Check nat ind.
nat_ind : forall P : nat -> Prop,

PO
-> (foralln :nat, Pn ->P (Sn))

-> forall n : nat, Pn

11

Recursive Functions

Analogue of the standard named function
definition syntax | Two arguments of tf Return type nat

Fixpoint add (n m : nat) {str\kct n} : nat :=
match Witll/ No recursive calls

_ allowed in this match
1 O=>m branch
/A
|l Sn ' =>9S (a recursion over
end. Only recursive calls =

with first argument

equal to n' allowed in
this branch

12

Aside: Why So Fussy About
Termination?

Imagine that Coq allowed this definition:

Fixpoint f (n : nat) {struct n} : nat :=
S (fn).

We would then have fn =S (fn), for all n.
But we can also prove m # S m, for all m.

SofO=S{0)andfO S (f0O).

Contradiction! Our logic is unsound!

13

More Datatypes: Booleans

Inductive bool : Set ;=

false : bool

true : bool.

Check bool_ind.
bool_ind : forall P : bool -> Prop,

P false
-> P true
-> forall b : bool, P b

14

More Datatypes: Lists

Inductive natlist : Set :=

nil : natlist

cons : nat -> natlist -> natlist.
Check natlist_ind.

natlist_ind : forall P : natlist -> Prop,
P nil
-> (forall (n : nat) (/s : natlist),
P ls -> P (cons n [s))
-> forall /s : natlist. P s

15

More Datatypes: Trees

Inductive nattree : Set :=

| Leafl : nattree
| Node : nattree -> nat -> nattree -> nattree.

Check nattree ind.
nattree_ind : forall P : nattree -> Prop,

P Leaf
-> (forall (¢1 : nattree) (n : nat)
(2 : nattree),
Ptl->Pt2->P (Nodetln t2))

~N Fovall £+ - nattvon P+

16

Simple Inductive Types In
General
Sort specification

(We'll see more possibilities later,
but for now we only consider Set.)

/Inductive tname : Set :=

Zero or more
named

constructors | Cl . tl,l > 0 => tl,kl -> tname

Jzt ->t . -> tname.
n,kn
Arguments types are

restricted so that they Each constructor is given a
either don't refer to function type from zero or

t or are exactl more argl_Jments_ to the
name 4 type being defined. 17

tname.

Using an Inductive Type

Pattern matching Inductive tname : Set :=

1 lc 1t ->...-]
match e with ¢ it ->..->t ->tname
| ...
Cl xl xkl => el(xl’ *te xkl) I C : tr11 > > tnkn -> tname.
Must use a match
c x ..x. =>elx s ey X) §omewhere to obtain a
n 1 kn n- 1 kn strict subterm of x to use in

a recursive call.

8Bursive functions

Fixpoint { (x : tname) : T := e(x).
Fixpoint f(x :T) ... (x :tname)...(x :T)

{struct xk} T :=e(x e xn).
(fixf(x : tname) : T := e(x)) 18

Usina an Inductive Type I
Induction principles are derived by Coq

as a convenience. They are Inductive tname : Set :=
implemented behind the scenes using
recursive functions. (We'll see how e it ->..->t ->tname

later in the course.) |

Induction principle ©..and the induction tactic
automatically figures out the

“For every predicate P over right induction principle and how
to apply it, so you usually don't

If for every constructor ¢ (have to think about the details of
! these things....

For every set e of arguments to c,

Assuming P e for every e, of type tname,

We can prove P(ce ..e)
Then
For every value e of type tname, 19

We can prove Pe.”

So what's the deal with this “by

computation” stuff, anyway?
Coqg considers to be interchangeable any two
expressions that evaluate to a common result

Atomic evaluation step: Applying a function

funx=>Sx)(S0O)= SS0O)
fixf(x:nat):nat=>Sx)(SO)= S (S O)

Atomic evaluation step: Simplifying a case analysis

(match SxwithO=>0 1| Sn=>nend) = x

Atomic evaluation step: Expanding a definition

fO= (funx=>S(Sx)) O = = <> Definition f:=
fun x => S (S x). 20

Reduction Order

Reductions can happen anywhere in an expression, So:

(funx=>{funy=>Sy)x) = funx => Sx)

(match x with O=>0 1| Sn=>funy =>Sy)n end)
= (match x with O=>0 1 Sn =>Sn end)

Important meta-theorem about Coq: For any
expression, any order of reductions leads
to the same result.

Why Should | Care?

All of these theorems can be proved by reflexivity:
* 1+1=2

* O+x=x

* length (cons 0 (cons 1 nil)) =2

* append (cons 0 nil) (cons 1 nil) =cons 0 (cons 1 nil)

* appendnills =Is

* compiler myProgram = outputAssemblyCode

Proving theorems about programs and math in

general is much more pleasant when these things
come for free

Conclusion

« Sample HW1 solution is on the web site.

« HW2 is posted
- Fun with data structures and induction

 Next lecture: Using inductive types to
define new logical predicates and the
rules that can be used to prove them

23

