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Abstract. Fixed point digital filters are simple yet ubiqui-
tous components of a wide variety of digital processing and
control systems. Common errors in fixed point filters include
arithmetic round-off (truncation) errors, overflows and the
presence of limit cycles. These errors can potentially compro-
mise the correctness of the system as a whole. Traditionally
digital filters have been verified using a combination of design
techniques from control theory and extensive testing. In this
paper, we examine the use of formal verification techniques as
part of the design flow for fixed point digital filters. We study
two classes of verification techniques involving bit-precise
analysis and real-valued error approximations, respectively.
We empirically evaluate several variants of these two funda-
mental approaches for verifying fixed-point implementations
of digital filters. We design our comparison to reveal the best
possible approach towards verifying real-world designs of
infinite impulse response (IIR) digital filters. Our study com-
pares the strengths and weaknesses of different verification
techniques for digital filters and suggests efficient approaches
using modern satisfiability-modulo-theories solvers (SMT)
and hardware model checkers. This manuscript extends our
previous work evaluating bounded verification, where a lim-
ited number of iterations of the system are explored, with
unbounded verification, where an unlimited number of iter-
ations of the system are considered. Doing so allows us to
evaluate techniques that can prove the correctness of fixed
point digital filter implementations.

1 Introduction

Digital filters are ubiquitous in a wide variety of systems, such
as control systems, analog mixed-signal (AMS) systems, and

? This material is based upon work supported by the National Science
Foundation (NSF) under Grant No. 0953941. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of NSF.

digital signal processing systems. Their applications include
automotive electronic components, avionics, implantable med-
ical devices, digital audio players and musical instruments.
The design of digital filters is guided by a rich theory that
includes a deep understanding of their behavior in terms of
the frequency and time domain properties. Filter designers
rely on a floating-point–based design and validation tools such
as Matlab1. However, there is a serious disconnect between
filter designs and filter implementations. Implementations of-
ten use fixed-point arithmetics, so that the filters can be real-
ized using special purpose digital signal processors (DSPs) or
field programmable gate arrays (FPGAs) that may not support
floating-point arithmetics. Meanwhile, the design tools use
floating-point arithmetics for validation. Does this disconnect
between floating-point designs and fixed-point implementa-
tions matter?

The transition from floating-point to fixed-point arithmetic
can lead to undesirable effects such as overflows and insta-
bilities (e.g., limit cycles, in which a filter given zero inputs
outputs a non-zero value infinitely often—see Section 2). They
arise due to (a) the quantization of the filter coefficients, (b)
input quantization, and (c) round-off errors for multiplications
and additions. Thus, the fixed-point representations need to be
sufficiently accurate—have adequate bits to represent the inte-
ger and fraction so that undesirable effects are not observed
in implementation. Naturally, an implementer faces the ques-
tion whether a given design that fixes the bit-width of various
filter coefficients and state registers is sufficient to guarantee
correctness.

Extensive testing using a large number of input signals
is a minimum requirement. However, it is well-known from
other types of hardware designs that testing can fall short of a
full verification or an exhaustive depth-bounded search over
the input space, even for relatively small depths. Therefore,
the question arises whether extensive testing is good enough
for filter validation or more exhaustive techniques are nec-

1 Matlab is a product of Mathworks Inc. http://www.mathworks.
com.

http://www.mathworks.com
http://www.mathworks.com
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essary. If we choose to perform verification of fixed-point
filter implementations, there are roughly three different sets
of approaches to choose from:

(a) The bit-precise bounded approaches encode the operation
of the fixed-point filters to precisely capture the effect of
quantization, round-offs, and overflows as they happen on
real hardware implementations. They perform bounded-
depth model checking (BMC) [10] using either bit-vector
or linear integer arithmetic solvers to detect the presence
of overflows and limit cycles (Section 3).

(b) The bit-precise unbounded approaches similarly encode
the operation of the fixed-point filter, but instead of per-
forming bounded-depth model checking, they use unbo-
unded model checking techniques like interpolation [23]
or IC3 [7]. These approaches are capable of both finding
overflows and completely proving the absence of over-
flows by exploiting the fact that fixed-point digital filters
are finite state systems (Section 4).

(c) The approximate bounded approaches encode the filter
state using reals by over-approximating the errors con-
servatively. We perform an error analysis to show that
such a over-approximations can be addressed using affine
arithmetic simulations [13] or BMC using linear real arith-
metic constraints (Section 5).

Our primary contribution is a set of experimental evalua-
tions designed to elucidate the trade-offs between the testing
and verification techniques outlined above. Specifically, we
implemented seven verification approaches, as well as random
testing simulators using uniform random simulation over the
input signals or simulation by selecting the maximal or min-
imal input at each time step. We empirically compare these
approaches on a set of filter implementations designed us-
ing Matlab’s filter design toolbox. Overall, our experimental
comparison seeks to answer five basic questions (Section 6):

1. Is simulation sufficient to find bugs in filters? We observe
that simulation is efficient overall but seldom successful
in finding subtle bugs in digital filters. As discussed in
Section 6, over 106 simulation runs were carried out for
each filter, but no violations were found. Yet, formal verifi-
cation techniques successfully discover overflows in many
filter designs.

2. Is bit-precise reasoning more precise in practice than con-
servative real-arithmetic reasoning? In highly optimized
filters, conservatively tracking errors produces many spu-
rious alarms. Bit-precise reasoning seems to yield more
useful results.

3. Are bit-precise analyses usefully scalable? We find that
while less scalable than some abstract analyses, bit-precise
analyses find witnesses faster than other approaches and
are capable of exploring complex filters.

4. Do bit-precise analyses allow us to address types of bugs
that we could not otherwise find? Bit-precise methods
seem to be effective for discovering limit cycles (Cf. Sec-
tion 2), which are hard to discover otherwise.

5. Is unbounded search necessary and feasible? Bounded
search is theoretically incapable of finding all errors in a

system. Are unbounded approaches capable of analyzing
real filters? In practice, do they find more errors than the
bounded approaches? How often can we obtain correctness
proofs for fixed point implementations of filters using
these techniques?

This manuscript is an extension of a previous conference
paper by the same authors [11]. In this paper, we extend the
evaluation of verification techniques for fixed-point implemen-
tations of digital filters to include unbounded model checking
approaches in addition to bounded ones. Question 5 in the
above list is new, which is supported by a new section (Sec-
tion 4), additional experimental results in Figure 5, new plots
in Figures 9 and 10, discussion of our additional findings in
Section 6, and a new threats to validity discussion (Section 7).

Motivating Digital Filter Verification
In essence, a digital filter is a function from an input signal

to an output signal. A signal is a sequence of real values
viewed as arriving over time. For our purposes, a digital filter is
causal, that is, a value in the output signal at time t is a function
of the input values at time t or before (and the previously
computed output values). The construction of digital filters
is typically based on a number of design templates (using
specifications in the frequency domain) [26]. To design a filter,
engineers select a template (e.g., “direct form” filters) and
then use tools such as Matlab to compute coefficients that
are used to instantiate these templates. Many templates yield
linear filters (i.e., an output value is a linear combination of
the preceding input values and previously computed output
values). Because linear filters are so pervasive, they are an
ideal target for verification tools, which have good support
for linear arithmetic reasoning. Section 2 gives some basics
on digital filters, but its contents are not needed to follow this
example.

We used Matlab’s filter design toolbox to construct a direct
form I implementation of a Butterworth IIR filter with a corner
frequency of 9600 Hz for a sampling frequency of 48000 Hz.2

In Figure 1, we compare a floating-point-based design and
a fixed-point-based implementation of this filter by examin-
ing its magnitude response as a function of input frequency
(top) and its impulse response (bottom). The fixed-point im-
plementation is the result of quantizing the filter coefficients
(as discussed below).3

Magnitude response and impulse response are standard
characterizations of filters [26]. Using these responses com-
puted during design time the designer deduces some nice
properties such as stability. Furthermore, the responses of
the fixed-point implementation are often compared with the
floating-point implementation. In the plots, the fixed-point
implementation’s response is seen to be quite “close” to the
original floating-point design in the pass band (where there is
little attenuation—> −3 dB). Furthermore, we see from the

2 Specifically, Matlab yields coefficients b0 = 0.2066, b1 = 0.4131,
b2 = 0.2066 and a1 = −0.3695, a2 = 0.1958 based on floating-point
calculations.

3 Specifically, the coefficients are quantized to b0 = 0.21875, b1 =
0.40625, b2 = 0.21875 and a1 = −0.375, a2 = 0.1875.
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Fig. 1. An example filter that is converted from the original floating point
filter is similar in the pass band to the corresponding fixed point filter. The
magnitude response and impulse response demonstrate this similarity.

impulse response that the filter is stable—the output asymptot-
ically approaches zero. Moreover, if the inputs are bounded in
the range [−1.6, 1.6], the outputs will remain in the estimated
range [−2, 2] (Cf. Section 2). It is based on this information
that the designer may choose a fixed-point representation for
the implementation that uses 2 integer bits and 5 fractional
bits allowing all numbers in the range [−2, 1.96875] be repre-
sented with an approximation error in the range (−0.03125,
0.03125); this representation leads to the quantization of the
filter coefficients mentioned above.

But there are a number of problems that this popular filter
design toolbox is not telling the designer. We will apply the
previous questions to this filter to understand these problems.

Is simulation sufficient to find bugs in this filter? We esti-
mated a range of [−2, 2] for the output and our design allows
for a range of [−2, 1.96875]. Yet, the theory used to calcu-
late this range does not account for the presence of errors
due to rounding. Therefore, we carried out extensive testing
using a combination of uniformly random inputs vectors or
randomly choosing either the maximum or minimum input
value. Roughly 107 inputs were tested in 15 minutes. Yet, no

[t]
0 50 100 150 200

−2

0

2

Time (useconds)

V
a
lu

e

 

 
Input Output Expected Output

Fig. 2. The input, output (fixed point) and expected output (floating point) for
the error producing input signal.

overflows were detected. For a single digital filter, 10 million
“passing” tests seem quite sufficient. However, a formal verifi-
cation tool is able to find a short input sequence of length 5 that
causes an overflow. Clearly, simulation can miss unearthing
interesting behaviors.

Is bit-precise reasoning more useful in practice than con-
servative real-arithmetic reasoning? The conservative real-
arithmetic model that tracks the range of overflow errors (Cf.
Section 5) finds a spurious overflow at depth 1, yet no such
overflow exists. On the other hand, bit-precise reasoning dis-
covers an input sequence of length 5 causing an actual over-
flow. The solver required less than a second for each unrolling.
The difficulty of discovering this sequence through simula-
tion or a conservative model is highlighted by the fact that
small variations on this input sequence do not yield an over-
flow. Figure 2 shows a failing input, the resulting output (fixed
point) and the expected output (floating point) from the fil-
ter. We notice that there seems to be very little relation be-
tween the floating-point and the fixed-point simulations be-
yond t = 100µs.

Do bit-precise analyses allow us to address types of bugs
that we could not otherwise find? In this particular filter, there
are no significant limit cycles; there are only constant outputs
of value −.03125. Very small, non-oscillating outputs are
not problematic for most filters. However, according to the
filter’s impulse response, there should be no limit cycles. Of
course, the impulse response did not take into account the
effect of round-offs and overflows. Without some automated
search process, even this small non-oscillating output would
be difficult to find due to the quantization effects of the filter.

Is unbounded search necessary and feasible? This filter
does not need unbounded search to find an error as there is a
possible error after very few iterations. If the engineer were to
fix this error by adding an additional bit to the quantization and
by restricting the input to the range [−1.5, 1.5], the bounded
search fails to find an overflow error. However, this does not
necessarily mean that the filter is correct. In this case, an
unbounded verification technique is required to verify that no
overflow can occur.
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Fig. 3. Direct Form I (DFI) infinite impulse response (IIR) digital filter. Blocks
labeled z−1 represent unit delays.

2 Preliminaries: Digital Filter Basics

In this section, we present some of the relevant background
on filter theory. Further details on the mathematical theory of
filters are discussed in standard texts [26, 29].

A discrete-time signal x(t) is a function Z 7→ R. By
convention, the signal values x(t) for times t < 0 are set to a
constant default value given by x<0.

Definition 1 (Single-Stage Digital Filter). A single-stage di-
gital filter is a recursive function that maps a discrete-time
input signal x(t) to an output discrete-time signal y(t) for
t ∈ Z. The filter is specified in one of two direct forms. A
direct form I filter is described by the tuple 〈a,b, I, y<0〉, such
that

y(t) =


N∑
i=0

bi x(t− i)−
M∑
j=1

aj y(t− j) if t ≥ 0

y<0 if t < 0

The vectors a : (a1, . . . , aM ) ∈ RM and b : (b0, . . . , bN ) ∈
RN+1 are the coefficients of the filter and describe the input-
output relationship of the filter.

The implementation of a direct form I filter is shown in
Figure 3. It consists of multipliers, adders and delays (regis-
ters). The recursion in the equation above is represented here
by a feedback loop.

The range I : [l, u] ⊆ R is a closed and bounded interval
and is the range of the input sequence x. The constant y<0 ∈ R
represents the initial state of the filter. Likewise, a direct form
II filter is described by the tuple 〈a,b, I, s<0〉, such that

y(t) =

N∑
i=0

bi s(t− i)

s(t) =


x(t)−

M∑
j=1

aj s(t− j) if t ≥ 0

s<0 if t < 0

The role of the coefficients a,b, the input range I , and the ini-
tial state s<0 are analogous to the corresponding components
in a direct form I filter.

A filter is said to have finite impulse response (FIR) when-
ever a = 0 and infinite impulse response (IIR), otherwise.
Filters can be implemented in a single stage or multiple stages
by composing individual filter stages as shown in Figure 4.
Note that in a multi-stage filter implementation, the range
constraint I is elided for the intermediate and final stages, but
is retained just for the first input stage of the filter.

The unit impulse is defined by the function δ(t) = 1 if
t = 0, or δ(t) = 0 if t 6= 0. The impulse response hF (t) of
a digital filter F is the output produced by the unit impulse
δ [26]. FIR filters have an impulse response hF (t) = 0 for all
t > N , whereas IIR filters may have an impulse response that
may be non-zero infinitely often.

Definition 2 (Stability). A digital filter is bounded-input bo-
unded-output (BIBO) stable if whenever the input is bounded
by some interval, the output is also bounded.

It can be easily shown that a filter F is BIBO stable if
and only if the L1 norm of the impulse response

∑∞
0 |hF (t)|

converges.

Let H =
∑∞

0 |hF (t)| be the L1 norm of the impulse
response of a stable filter F . The impulse response can be
used to bound the output of a filter given its input range I .

Lemma 1. If the inputs lie in the range I : [−`, `] then the
outputs lie in the interval [−H`,H`].

Proof. Given an input signal u(t), such that u(t) ∈ I for all
t ≥ 0, we may write the output as

y(t) =

t∑
j=0

h(j)u(t− j) ≤ `
t∑

j=0

|h(j)| ≤ `H .

Therefore, y(t) ∈ [−H`,H`].

Lemma 1 can be used to predict the output range of a filter
as a function of the input range. However, this does not take
into account non-linearities such as quantization and rounding.

Instability often manifests itself as a zero-input limit cycle.
Given an input, the sequence of outputs forms a limit cycle if
and only if there exists a number N > 0 and a period D > 0
wherein

∀ t ≥ N.
∧ y(t) = y(t+D)

y(t) 6= 0 infinitely often
x(t) = 0

In general, zero-input limit cycles are considered undesirable
and manifest themselves as noise in the output. Further filter-
ing may be needed to eliminate this noise.

Fixed-Point Filter Implementations In theory, filters have
real-valued coefficients and have behaviors defined over real-
valued discrete-time input and output signals. In practice, im-
plementations of these filters have to approximate the input
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Fig. 4. A multi-stage filter takes the output from one stage and uses it as input for the next stage.

and output signals by means of fixed- or floating-point num-
bers. Whereas floating-point numbers are commonly available
in general-purpose processors, most special-purpose DSP pro-
cessors and/or realizations of the filters using FPGAs use
fixed-point arithmetic implementations of filters.

A 〈k, l〉 fixed-point representation of a rational number
consists of an integer part represented by k binary bits and a
fractional part represented by l binary bits. Given an m-bit
word b : bm−1 · · · b0, we can define for b its value V (b) and
its two’s complement value V (2)(b) as follows:

V (b) =

m−1∑
i=1

2i bi

V (2)(b) =

{
V (bm−2 · · · b0) if bm−1 = 0

V (bm−2 · · · b0)− 2m−1 if bm−1 = 1

Let (b, f) be the integer and fractional words for a 〈k, l〉 fixed-
point representation. The rational represented is given by

R(b, f) = V (2)(b) +
V (f)

2l

The maximum value representable is given by 2k − 1
2l

and
the minimum value representable is −2k. The arithmetic op-
erations of addition, subtraction, multiplication and division
can be carried out over fixed-point representations, and the
result approximated as long as it is guaranteed to be within the
representable range. When this constraint is violated, an over-
flow happens. Overflows are handled by saturating wherein
out-of-range values are represented by the maximum or min-
imum value, or by wrapping around, going from either the
maximum value to the minimum, or from the minimum to the
maximum upon an overflow.

Regardless of the wrapping mode, overflow is usually con-
sidered an error. In special-purpose DSP processors where
there is special hardware for implementing saturating arith-
metics, implementations often use saturation as an overflow is
less catastrophic than wrapping around. This is especially the
case in audio and video applications. However, in audio and
video applications, saturating is often considered a flaw in the
algorithm. In FPGA and integrated circuit designs, where there
is a cost associated with saturating arithmetics, often wrapping
around arithmetics will be used causing any overflows to be
significant.

A fixed-point digital filter is a digital filter where all values
are represented by fixed bit-width integer and fractional parts.
In general, the implementation of a fixed-point digital filter
uses standard registers to store input and output values along
with adders, multipliers and delays. It is possible that a fixed-
point implementation is unstable even if the original filter it
seeks to implement is stable.

3 Bounded Bit-Precise Encoding

In theory, bit-precise reasoning can be implemented by trans-
lating all operations at the bit level into a propositional logic
formula and solving that formula using a SAT solver. Prac-
tically, however, there are many simplifications that can be
made at the word level. Therefore, we consider encodings of
the fixed-point operations involved in a digital filter in the
theory of bit-vectors as well as linear integer arithmetic. We
assume a 〈k, l〉 bit representation with k integral bits and l
fractional bits. In particular, the bit-vector representation uses
the upper k-bits of a bit-vector for the integer part and the
lower l-bits for the fractional part. For the integer representa-
tion, since there is no a priori limit to its size, an integer n is
interpreted as n

2l
; then, we separately check for overflow.

Encoding Multiplication Fixed-point multiplication poten-
tially doubles the number of bits in the intermediate repre-
sentation. The multiplication of two numbers with 〈k, l〉 bits
produces a result of 〈2k, 2l〉 bits. To use this result as 〈k, l〉-
bit value, we must truncate or round the number. We must
remove most significant k bits of the integer part and the l
least significant bits of the fractional part.

In the theory of bit-vectors, this truncation is a bit extrac-
tion. We extract the bits in the bit range [k + 2l − 1 : l] from
the intermediate result (i.e., extract the lth to the k + 2l − 1st

bits). In the theory of integers, we remove the lower l bits
by performing an integer division by 2l. Because there is no
size limit, we do not need to drop the upper k bits, but we
perform an overflow check that simply asserts that the result
fits within the permissible range at the end of each operation.
That is, we check if the intermediate 〈2k, 2l〉-bit value lies in
the permissible range of the 〈k, l〉-bit representation.

Encoding Addition The treatment of addition is similar.
Adding two fixed-point numbers with 〈k, l〉 bits produces a
result of 〈k + 1, l〉 bits. To use this result in as a 〈k, l〉-bit
value operation, the top bit needs to be dropped.

For bit-vectors, we extract the bits in the range [k+ l− 1 :
0]. For linear integer arithmetic, we allow the overflow to
happen and check using an assertion. Detecting overflow for
additions involves checking whether the intermediate value
using 〈k + 1, l〉 bits lies inside the range of values permissible
in a 〈k, l〉-bit representation.

Overflow and Wrap Around A subtlety lies in using wrap-
around versus saturation semantics for overflow. For satura-
tion, it is an error if any operation results in an overflow (and
thus our encoding must check for it after each operation). But
for wrap around, intermediate results of additions may over-
flow and still arrive at the correct final result, which may be
in bounds. Thus, checking for overflow after each addition
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is incorrect in implementations that use wrap-around seman-
tics for overflows. In terms of our encoding, if the final result
of successive additions fits in the 〈k, l〉 bit range, overflows
while computing intermediate results do not matter. We han-
dle this behavior in the bit-vector encoding by allowing extra
bits to represent the integer part of intermediate results (as
many as k+ n where n is the number of additions) and check-
ing whether the result after the last addition fits inside the
range representable by a 〈k, l〉-bit representation. For the inte-
ger arithmetic representation, we simply avoid asserting the
overflow condition for intermediate addition results.

Unrolling Filter Execution The unrolling of the filter exe-
cution takes in an argument n for the number of time steps and
encodes the step-by-step execution of the filter (i.e., compute
y(0) up to y(n− 1)). At each step, we assert the disjunction
of the overflow conditions from the additions, multiplications,
and the final output value.

Finding Limit Cycles To find a limit cycle of n steps, we
fix the input of the filter to zero and we compare the state of
the filter (the value of the feedback registers) with the state
of the filter after some number of steps n. If the two states
are identical and the output is non-zero then a limit cycle of n
steps has been found. In the implementation we try a bounded
number of values for n.

Understanding Counterexamples In bit-precise bounded
techniques, an overflow error manifests itself as a series of
inputs to the filter that can be guaranteed to cause that er-
ror. Those inputs can be used with a simulator to reproduce
and debug the error. In our implementation, we output a Ver-
ilog implementation of the filter along with an accompanying
testbench that will cause the error. As a result, the designer
can understand the counterexample using a standard Verilog
simulator.

4 Unbounded Encoding

The process of encoding for unbounded verification is simi-
lar to that of the bounded verification. The multiplication and
addition operations and overflow checks are implemented iden-
tically. The difference is that these operations are performed
on a transition function rather than an unrolled system.

The transition function takes the inputs to the filter as well
as the output of all of the delay cells (see Figure 3) and returns
the inputs for the delay cells in the next time instance. Within
this function, all of the operations from the bounded encoding
are performed.

Modern hardware model checkers accept the AIGER [4]
format as input. The AIGER format describes an and-inverter
graph along with single bit registers. These registers imple-
ment the functionality of a delay cell, so encoding a filter into
an AIGER file is simply encoding the transition function as
an and-inverter graph.

An and-inverter graph is a directed, acyclic graph where
each node in the graph represents a logical and or a logical not

operation. Since these operations only operate on single bits
and a filter is defined using integer arithmetic, it is necessary
to convert the integer arithmetic into individual bit operations.
For the bounded encoding we relied upon an SMT solver to
perform the bit-blasting. Since we are no longer using an SMT
solver, we must perform this bit-blasting ourselves.

While there are many translations required for bit-blasting
SMT problems, in the limited domain of filters, there are
only three primary operations: addition, multiplication, and
comparison. We implemented addition and comparison using
simple ripple-carry approaches, where addition of two k-bit
numbers a and b is defined as

∀i ∈ [0, k). si = ai ⊕ bi ⊕ ci−1∧
ci = (ai ∧ bi) ∨ (ci−1 ∧ (ai ⊕ bi))

where ⊕ is the exclusive-or operation and c−1 = false. This
addition can be turned into a subtraction by negating each bit
in b and starting with c−1 = true . Comparison can be defined
by subtracting (using additional bits to ensure that no overflow
occurs) and checking the sign of the resulting number.

There are a variety of ways to implement a multiplication
operation; however, because filters are linear, multiplication
operation involves one constant operand. Therefore, we choose
an implementation that is amenable to constant propagation.
Multiplication of two k-bit numbers a and b is defined as a
series of shifted additions:

k−1∑
i=0

if bi then a� i else 0

After performing constant propagation and folding, this formu-
lation turns into a summation of shifted versions of a where
bi is true .

Hardware model checkers are capable of directly reading
AIGER files. Therefore, verifying a filter using a hardware
model checker requires reading the AIGER file and then call-
ing the appropriate model checking algorithm. In this paper
we consider three such model checking algorithms: interpola-
tion, property directed reachability/IC3 and a portfolio-based
algorithm.

Interpolation The interpolation-based model checking algo-
rithm [23] is a refinement to bounded approaches. Technically
bounded model checking is sufficient to produce proofs if the
transition relation is unrolled up to the diameter of the state
space. Interpolation-based model checking uses Craig Inter-
polants [12] to guess an intermediate assertion (or an inductive
assertion) resulting from the failure to find a witness at a given
depth. If this process does not prove the correctness of the
property at hand, interpolation-based model checking unrolls
the transition relation more and repeats the process.

IC3/Property Directed Reachability The IC3 algorithm [7]
(also known as PDR [15]) is a new model checking algorithm
that takes a different approach. It does not rely on unrolling
the transition relation. Instead, it constructs sequences of asser-
tions. A sequence of k > 0 assertions over-approximates the
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set of states reachable in the first k execution steps. Further-
more, the over-approximation at step i+1 is inductive relative
to that at step i, for 0 ≤ i < k. Each step attempts to prove the
property using these inductive invariant candidates. Failing
this, PDR uses the counterexample to induction to extend the
sequence of assertions to cover k+1 steps. PDR has proven to
be quite effective in practice. In many cases, it does not have
to consider large values of k to prove or disprove a property.

Portfolio Model Checking Rather than using a single al-
gorithm, a model checker can use many different algorithms.
We consider the DProve algorithm implemented in ABC [8].
This algorithm performs a number of heavyweight simplifica-
tions to the system, followed by some steps of pseudo-random
simulation. It then uses a variant of the bounded unrolling
described in the previous section. Finally, it tries interpolant-
based model checking and IC3 techniques described above.
The portfolio approach is intended to take advantage of the
fact that different algorithms have complementary strengths
and a varying set of problems for which they are effective.

Understanding Counterexamples Because the unbounded
techniques used here are bit precise, the counterexamples
produced are like those of the bounded techniques. The coun-
terexamples provide a sequence of inputs that inevitably lead
to error. That sequence of inputs can be used with a simula-
tor to reproduce the error and to diagnose the cause of the
overflow.

5 Real-Arithmetic Encoding

The real-valued encoding for a filter models each state variable
of a fixed-point filter by a real number, while approximating
the effects of quantization and round-off errors conservatively.
As a result, the model includes a conservative treatment of
the two sources of errors: (a) quantization errors due to the
approximation of the filter coefficients to fit in the fixed bit-
width representations and (b) round-off errors that happen for
each multiplication and addition operation carried out for each
time step.

Abstractly, a filter can be viewed as a MIMO system (mul-
tiple-input, multiple-output) with an internal state vector w,
a control input scalar x and an output (scalar) y, wherein at
each iterative step, the state is transformed as follows:

w(t+ 1) = Aw(t) + x(t)d
y(t+ 1) = c ·w(t+ 1) .

(1)

Note that the state vector w(t) for a direct form I filter im-
plementation includes the current and previous output val-
ues y(t), . . . , y(t−M), as well as the previous input values
x(t − 1), . . . , x(t − N). The matrix A includes the compu-
tation of the output and the shifting of previous output and
input values to model the delay elements. The dot-product
with vector c simply selects the appropriate component in
w(t+ 1) that represents the output at the current time.

Quantized Filter First, we note that the quantization error
in the filter coefficients is known a priori. Let

∼
A,
∼
d,
∼
c be the

quantized filter coefficients. We can write the resulting filter
as

∼
w(t+ 1) =

∼
A⊗ ∼w(t)⊕ ∼x(t)⊗

∼
d

∼
y(t+ 1) =

∼
c ⊗ ∼w(t+ 1) .

(2)

Here ⊗ and ⊕ denote the multiplication and addition with
possible round-off errors.

Note that since the matrix A represents the arithmetic op-
erations with the filter coefficients as well as the action of
shifting the history of inputs and outputs, the quantization
error affects the non-zero and non-unit entries in the matrix A,
leaving all the other entries unaltered. Likewise, the additive
and multiplicative round-off errors apply only to multiplica-
tions and additions that involve constants other than 0 and 1.
Comparing the original filter (1) to the quantized filter in (2),
we write

∼
w = w+∆w to be the error accumulated in w. This

leads to a non-deterministic iteration that jointly determines
possible values of w(t+ 1) and ∆w(t+ 1) at each time step
as follows:

w(t+ 1) = Aw(t) + x(t)d
∆w(t+ 1) ∈ ∆A(w(t) +∆w(t)) + x(t)∆d

+[−1, 1](q|(d+∆d)|+ r)
y(t+ 1) = c ·w(t+ 1)

∆y(t+ 1) ∈ ∆c ·w(t+ 1)
+(c+∆c) ·∆w(t+ 1) + [−1, 1]r′

(3)

wherein q is the maximal input quantization error, and r and r′

refer to the estimated maximal round off errors accumulated
due to the addition and multiplication operations carried out at
time step t+1 for each of the entries in w(t+1) and y(t+1),
respectively. Note that |d+∆d| refers to the vector obtained
by taking the absolute value of each element in d+∆d. The
round-off error for multiplication/addition of two 〈k, l〉 bit
fixed point numbers is estimated to be 2−l. We bound the
maximum magnitude of round off errors for K arithmetic
operations is K2−l.

Our goal is to check if for a given depth bound N and
bounds [`, u] for overflow, there exist values for the input se-
quence x(0), x(1), . . . , x(N) such the state

∼
w(t) 6∈ [`, u] for

some time t. Note that the values of ∆A,∆d, q, r, r′ are avail-
able to us once the quantized coefficients and the bit-widths
of the state registers, the multipliers and adders are known. As
a result, the search for an input that may potentially cause an
overflow is encoded by a linear programming problem.

Lemma 2. Given filter coefficients (A,d, c), quantization er-
rors (∆A,∆d, ∆c), an over-estimation of the round-off r, r′

and input quantization errors q, there exists a set of linear
constraints ϕ such that if ϕ is unsatisfiable then no input may
cause an overflow at depth N .

Proof. The proof consists of unrolling the iteration in Equa-
tion (3). The variables in the linear program consist of inputs
x(1), . . . , x(N), the state values w(1), . . . ,w(N) and finally
the outputs y(1), . . . , y(N) along with error terms∆w(t) and
∆y(t) for t ∈ [1, N ]. Note that for each step, we have a linear
constraint for the state variables w(t+ 1) = Aw(t) + x(t)d.
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Table 1. Benchmarks used in the experiments are designed using the Matlab
Filter Design and Analysis Tool. The Type column is a choice of a function
amongst Low Pass, Band Stop, and Band Pass and a design pattern amongst
Butterworth, Elliptic, Max Flat, and Chebyshev. The Order column is the
order the filter, # Stages denotes the number of stages, the Freq. column
gives the cut-off or band frequencies in kHz., and the Gates column gives the
number of two-input and gates used in the bit-blasted representation.

Name Type Order # Stages Freq. Gates

lp2 (LP, B) 2 1 9.6 1,843
lp4 (LP, B) 4 1 9.6 14,404
lp4e (LP, E) 4 1 9.6 17,697
lp6 (LP, E) 6 1 9.6 6,359
lp6c (LP,E) 2 3 9.6 11,495
lp10c (LP, B) 2 5 9.6 16,752
lp10cm (LP, MF) 2 5 0.1 33,804
lp10m (LP, MF) 10 1 0.1 20,398
bs10 (BS,C) 10 1 9.6-12 18,566
bs10c (BS,C) 2 5 9.6-12 24,956
bp8 (BP,E) 8 1 0.2-0.5 19,308
bp8c (BP,E) 2 4 0.2-0.5 32,043

Likewise, we obtain linear inequality constraints that bound
the values of ∆w(t+ 1) using Equation (3). We conjoin the
bounds on the input values and the overflow bounds on the
outputs for each time step.

Limit Cycles The real-arithmetic model cannot be used di-
rectly to conclude the presence or absence of limit cycles.
Limit cycles in the fixed-point implementation often exist due
to the presence of round-off errors and overflows that wrap
around from the largest representable value to the smallest.
In practice, these effects cannot be modeled using the real-
arithmetic filter implementations in a straightforward manner,
without introducing complex conditional expression and pos-
sibly non-linear terms.

Understanding Counterexamples Unlike bit-precise tech-
niques, the real-arithmetic encoding does not produce coun-
terexamples that necessarily lead to an error. Furthermore, it
is entirely possible to obtain spurious counterexamples using
this encoding. We have found that making sense of real-valued
counterexamples in a finite precision encoding is not always
straightforward.

6 Experimental Evaluation

Using industry-standard practices, we generated twelve filter
designs in Matlab using a number of design patterns, including
low-pass, band-pass and band-stop filters using Chebyshev,
Butterworth, and elliptic designs. We used both multi- and
single-stage designs. The designs are shown in Table 1. The
nominal bit-widths of the filters were chosen such that they
were the smallest that could contain the coefficients and inputs
in the range [−1, 1], except for lp2, whose design rationale
is presented in Section 1. Our experiments also consider the
effect of variations in the bit-widths.

Our experiments compare seven approaches to filter verifi-
cation:
1. BV: bounded bit-vector encoding described in Section 3
2. LI: the integer linear arithmetic encoding described in

Section 3
3. RA: a real-arithmetic encoding into linear arithmetic de-

scribed in Section 5
4. AA: affine arithmetic [13] to track possible ranges of state

and output variables conservatively.
5. IT: bit-blasted interpolation described in Section 4.
6. PD: bit-blasted PDR/IC3 described in Section 4.
7. DP: bit-blasted DProve, the portfolio-based algorithm de-

scribed in Section 4.
The tests were run on an Intel Core i5 750 processor with 8
GB of RAM running Ubuntu Linux. Processes were memory-
limited to 1 GB and time-limited to 60 seconds for the un-
rolling test and 300 seconds for other tests. No processes ran
out of memory.

We use the SMT solver Z3 version 3.2 [14], as it is cur-
rently the fastest known solver [3] for both the bit-vector
theory and the linear integer arithmetic theory for bounded
model checking methods. We use the ABC model checker [8]
for unbounded model checking, as it is the fastest publicly
available model checker [5]. The RA and AA methods are
implemented in OCaml.

Unbounded model checking with a word-level encoding is
another possible configuration. To this end, we experimented
with a variety of model checkers that deal with higher-level
operations like addition and multiplication on integers rather
than with individual bits. With these systems, the transition
function can be provided without bit-blasting and are thus a
natural way to consider solving these problems. Unfortunately,
our attempts at using currently available tools for this approach
were unsuccessful. Typically they did not terminate within
hours or terminated with abstract (and thus incorrect) counter-
examples. We imagine that with sufficient tuning these tools
would perform admirably, but given our lack of confidence in
the results, we have not presented them here.

Is simulation sufficient to find bugs in filters? We tested
all of the filters using traditional simulation based methods.
To do this, we explored three possible input generation meth-
ods: (a) uniform random selection of values from the filter’s
input range; (b) selecting the maximum value until the output
stabilized followed by the minimum value; and (c) selecting
the minimum value until the output stabilized followed by
the maximum value. Choices (b,c) attempt to maximize the
overshoot in the filters in order to cause a potential overflow.

The filters are simulated on a fixed-point arithmetic simula-
tor using the three input generation methods described above.
The simulation was set to abort if an overflow were to be
found. Each simulation was run for the standard timeout of
300 seconds. During this time filters were able to run between
two and five million inputs.

There were zero overflows found by the simulations.

Is bit-precise reasoning more precise in practice than con-
servative real-arithmetic reasoning? Figure 5 compares
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the outcomes of all the four techniques on our benchmarks
in finding overflows. The conservative techniques, AA and
RA, can yield false alarms, whereas any overflow warnings
raised by the bit-precise techniques, BV and LI, must be true
bugs. A time-out or depth-out means no bugs were found in
the allotted time or depth but of course says nothing about
whether there are bugs further on. An alarm raised by the
conservative techniques can be classified as being false (i.e.,
spurious) when a bit-precise technique is able to exceed that
search depth without raising an alarm. In six out of the twelve
tests (i.e., bp8, bs10, lp10c, lp10m, lp4e, lp6), both
conservative approaches raised false alarms. At least one bit-
precise technique was able to search deep enough to label the
alarms from the conservative analyses as true (i.e., bug) or
false (i.e., spurious).

Are bit-precise analyses usefully scalable? Figure 6 shows
the performance of different methods of analysis on all twelve
test filters across unrollings of 5, 8, 10 and 15. In the plot of
BV vs. LI (right), we see that BV is, in general, faster than LI
(above the line). However, the advantage is not overwhelming,
suggesting that neither approach is inherently better than the
other.

For both BV and LI, the unrolling depth did not have a
pronounced effect on the time taken to solve benchmark in-
stances for small unrollings. Instances wherein BV was faster
at unrolling depth 5 also tended to favor BV at unrolling depth
8. Therefore, we conclude that the nature of the coefficients in
the filter and its overall architecture may have a larger effect
on the performance of BV and LI than the unrolling depth.

We see in the BV vs. RA plot (left), the bit-precise method
BV is competitive with the conservative method RA. Whereas
bit-vector theories are NP-complete, linear programs are well
known to have efficient polynomial time algorithms in prac-

tice. We hypothesize that the use of an SMT solver to reason
with large fractions using arbitrary precision arithmetic has a
significant performance overhead. This may be a good area
of application for techniques that use floating-point solvers to
help obtain speedups while guaranteeing precise results [25].

The AA approximate method is very fast in comparison to
all the other methods presented here. It is elided because this
speed comes at a high cost in precision [28]. Furthermore, the
affine arithmetic technique does not, as such, yield concrete
witnesses. Therefore, it is not readily comparable to precise
methods.

Effect of Unrolling Length on the Analysis We now
look deeper into the performance of encodings. We first con-
sider how unrolling affects performance by varying the amount
of unrolling from 1 to 50 on select filters.

According to Figure 7, BV, RA and LI are heavily affected
by the unrolling depth. RA, even for short unrollings, times
out if it does not find an error. Due to some details of im-
plementations, the RA encoding incrementally searches for
the shortest possible error unlike the BV and LI encodings.
Because of this, if an error is found early, RA appears to scale
well, as seen in lp6. AA scales well with unrolling depth, as
expected. Note that the unrolling is stopped once overflow is
found.

The bit-precise methods BV and LI both exhibit more un-
predictable behavior. This is due to the nature of the encoding
(one single monolithic encoding that searches for all paths
up to a given depth limit) and the SMT solvers used. As the
unrolling becomes longer, the solver is not bound to search for
the shortest path first. The results from lp2 and lp10c show
that longer unrollings may be faster than shorter unrollings,
but there is a general trend of increasing time with unrolling
depth.
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Performance Impact of Bit-Widths We also need to
consider the effect that changing the precision of filters has
on the analysis performance. Figure 8 shows performance for
both BV and LI on two different tests across a range of bit-
widths. The first test, lp2, is “pre-quantized” so that adding
more fractional bits causes the coefficients to gain more zeros
in their least significant bits. The second test, lp6, has large
fractions in the coefficient, so meaningful bits are added when
the fraction size is increased.

The first conclusion is that the total number of bits does
not directly affect the time taken. Both BV and LI are faster
with more integer bits. As more integer bits are added, it is
possible that the abstractions used internally within the SMT
solver can be coarser allowing it to come up with answers
faster. As more fractional bits are added, the BV and LI ap-
proaches diverge. BV becomes much slower, and LI is not
heavily affected. Once again, this behavior seems to depend
critically on the coefficients in the filter.

As bit-widths are varied, the outcome typically varies from
an overflow found at a low depth to unsatisfiable answers at all
depths. In this case, the performance of LI is poor whenever

the bit-width selected is marginal or nearly insufficient. If
the system being analyzed is marginal, but small, we recom-
mend the use of BV and if it is relatively safe, but large, LI is
recommended.

Do bit-precise analyses allow us to find bugs we could not
otherwise find? Bit-precise analyses allow us to easily find
limit cycles in fixed-point IIR filters. Limit cycles are prevalent
in fixed-point IIR filters as Table 2. From our twelve test cases,
this table shows the number of examples where we did not find
a limit cycle (column Pass), the number where we found one
(column Fail), and the remaining that timed out. The remaining
columns show the mean, median, and standard deviation of the
running time for limit cycle detection. Due to their prevalence,
most limit cycles are quite easy for the SMT solver to find
(using the bit-vector theory). Most limit cycles are found with
short unrollings, quickly.

Because limit cycles can be detected efficiently, the de-
signer can make informed decisions about those situations.
Often designers will add extra circuitry to eliminate limit cy-
cles, but if the designer knew the kinds of limit cycles that
exist, the designer may elect to simplify the design and not
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Fig. 8. Performance of bit-precise analysis methods as a function of the number of bits.

Table 2. Detection of limit cycles. Most fixed-point filters have limit cycles. Pass indicates the number of examples for which no limit cycle was found. Fail
indicates the number for which a limit cycle was found. The remaining examples timeout.

Unroll Pass Fail Timeout Mean (s) Median (s) Std Dev (s)

2 2 10 0 1.22 0.35 4.88
5 0 7 5 22.6 10.3 89.8
8 0 6 6 55.8 21.7 133.8

add that circuitry. We have discovered limit cycles varying
from small, 1-2 least significant bits, to large, oscillating from
near the maximum value to near the minimum value. In the
latter case, the designer may elect to design a different circuit.

Is unbounded search necessary and feasible? Figure 5
shows the precision of the various analysis techniques. We
see that the three unbounded techniques IT, PD, and DP have
similar characteristics. There are examples where DP was
able to verify filters that IT was not, such as lp4, but generally
the capabilities are comparable. More interestingly in every
example where the filter was verified, one of the bounded
verification techniques was able to run to maximum depth
without timing out. Clearly, unbounded verification seems
to be “easy” on the same kind of systems where bounded
checking seems feasible to large enough depths.

Likewise, it seems that overflow errors, if present, are
found by bounded verification techniques in relatively few
steps. Finally, if the bounded techniques time out at very low
bounds, the unbounded techniques seem unlikely to do better.

Figure 9 compares the performance of DP against IT. We
see that DP is more than an order of magnitude faster than IT.
We see similar performance characteristics to the same test
using BV (Figure 8). This is unsurprising since DP first uses a
bounded search just like BV and only if that fails to find any

bugs does it try unbounded algorithms. The differences we
do see are due to a different simplification engine, different
bit-level implementations of operators, different underlying
SAT solvers, and different random seeds.

The fact that IT has a similar shape to LI is coincidental.
The techniques have no similarities other than their use of
SAT-based decision procedures. The use of interpolation to
find a bug is similar to bounded approaches where it unrolls
the transition relation to find a bug and thus most of the time
performs similarly. Because of the interpolation process, it
may do significantly more work along the way as we can see
with the test with very few bits where it times out rather than
finding the counterexample.

Looking more closely at the performance of unbounded
methods in Figure 10 reveals that the portfolio approach (DP)
is heavily focused on performance for easy problems. When
problems take around one second, it tends to be almost ten
times as fast as BV on simple examples. Unfortunately we
can see that there are a good number of filters that do not
finish when using unbounded approaches. This indicates that
bounded techniques should still be used in addition to un-
bounded techniques.

Comparing the unbounded techniques, we see that IT is
almost universally slower than DP. This is unsurprising as DP
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Fig. 9. Performance of DP and IT unbounded model checking as a function of the number of bits.

tries the method from IT as part of its algorithm. If IT were
especially suited to the problem, DP would use interpolation.
There is an instance where IT is faster, and this case is due to
the several other attempts DP makes before trying the algo-
rithm from IT. Comparing DP to PD reveals the benefits of
advanced preprocessing and interpolation methods. The pri-
mary algorithm used by DP is that of PD, so we can conclude
that preprocessing is a universal benefit.

These results indicate that while unbounded verification
is sometimes feasible, it is less often feasible than bounded
verification. While it provides stronger guarantees do not ap-
pear to have much tangible benefit. The kinds of filters where
unbounded techniques are effective are also those filters were
bounded techniques are especially effective. It still may be
worthwhile to run these techniques if the bounded search fails
to find any errors and is especially quick at doing so.

7 Threats to Validity

In this section, we briefly consider the key threats to the valid-
ity of the conclusions drawn from the experimental evaluation
presented in Section 6.

The main threat arises from the fact that filters are by no
means the only component in a system. Often, they consti-
tute small but important components in a larger system. The
presence of arbitrary components whose outputs feed into the
filter’s input leads to the problem of deducing an appropriate
precondition for the filter inputs. Our work considers filters
with input preconditions in the form of range constraints. How-
ever, the constraints on the input pertaining to a filter that is
part of a larger system may be more complex and harder to
write down. As a result, the bugs found here may not be real-
izable in practice. If the constraints can be expressed using a
suitable constraint language, we may carry out the verification
by encoding the input constraints as part of the transition sys-
tem of the filter. Another solution is to compute preconditions
on the input signals that guarantee the absence of overflows.

A related threat concerns the harm caused by a single
overflow in a filter that is part of a larger system. The effect of
each overflow is hard to characterize, unless we make stringent
assumptions on how filter outputs are used.

Our experimental evaluation relies on a set of benchmarks
that were designed using the Matlab filter design toolbox. It
is an open question as to how representative the benchmarks
used are of filters that occur in safety critical systems used
in automobiles and avionics. The lack of large open source
control and signal processing systems makes obtaining a truly
representative set of examples quite hard.

8 Related Work

Verification of fixed-point digital filters has focused mostly on
the problem of discovering safe bit-widths for the implementa-
tion. While verification for a specific bit-width is one method
for solving this problem, other works have considered interval
arithmetic, affine arithmetic [16, 22], spectral techniques [27],
and combinations thereof [28].

Approaches based on SMT solvers, on the other hand, offer
the promise of enhanced accuracy and exhaustive reasoning.
Kinsman and Nicolici use a SMT solver to search for a precise
range for each variable in fixed-point implementations of more
general MIMO systems [21]. Their analysis uses the non-
linear constraint solver HySAT [18] using a real-arithmetic
model without modeling the errors precisely. Furthermore,
since HySAT converges on an interval for each input variable,
their analysis potentially lacks the ability to reason about
specific values of inputs.

We have focused on comparing against some simple tech-
niques for test input generation in this paper. Others have
considered more advanced heuristics for tackling this prob-
lem [30], which may be worthy of further study.

Several researchers have tackled the difficult problem of
verifying floating-point digital filters as part of larger and more
complex systems [17, 24]. The static analysis approach to
proving numerical properties of control systems implemented
using floating point has had some notable successes [6, 19].
In particular, the analysis of digital filters has inspired special-
ized domains such as the ellipsoidal domain [2, 17]. While
floating-point arithmetic is by no means easy to reason with,
the issues faced therein are completely different from the ones
considered here for fixed-point arithmetics. Whereas we fo-
cus on analyzing overflows and limit cycles, these are not
significant problems for floating-point implementations. The
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Fig. 10. Performance of DP vs BV (depth 8), IT and PD respectively. Marks
that appear above the line indicate that DP is faster.

use of bit-precise reasoning for floating-point C programs has
recently been explored by Kroening et al. [9].

Yet another distinction is that of proving safety versus
trying to find bugs. The approaches considered in this paper
clearly focus on bug finding using bounded-depth verification.
While a similar study for techniques to prove properties may
be of interest, the conservative nature of the real-arithmetic

model suggests that its utility in proving highly optimized
implementations may also be limited.

One approach to verifying digital filters is to perform a
manual proof using a theorem prover [1]. Such approaches
tend to be quite general and extensible. However, they are
mostly manual and often unsuitable for use by DSP designers,
who may be unfamiliar with these tools.

9 Conclusion

Our results show that fixed-point digital filters designed using
industry standard tools may sometimes suffer from overflow
problems. Commonly used frequency-domain design tech-
niques and extensive simulations are insufficient for finding
overflows. In this work, we have compared different formal
verification techniques based on bounded and unbounded mo-
del checking using SMT and SAT solvers.

We have shown that error approximation using real-arith-
metic can alert designers to otherwise unknown issues in filters.
These alarms are often spurious and may lead the designer to
draw false conclusions about their designs. Secondly, in spite
of fundamental complexity considerations, the real-arithmetic
solvers can often be slower than bit-precise approaches, pos-
sibly due to the need for arbitrary precision arithmetic. The
use of floating-point simplex in conjunction with arbitrary
precision numbers may be a promising remedy [25].

While unbounded approaches do provide stronger assur-
ance of the correctness of these systems, in practice they seem
largely unnecessary as they were unable to find any bugs that
were not already known. This stronger assurance comes at
a performance cost, but these techniques still may be worth
using if the assurance is needed. There is hope that, in the near
future, word-level unbounded approaches will become fast
enough to be useful for verifying filters [20]. Currently word-
level unbounded approaches are not designed to efficiently
handle the intricate mathematics of digital filters.

Finally, we demonstrated that bit-precise verification is
possible and efficient using modern SMT solvers and hardware
model checkers. Also, bit-precise verification is able to find
situations where error approximations would have otherwise
prevented a designer from shrinking a filter by one more bit.
We also saw that both integer and bit-vector based methods
are required to achieve maximum performance.
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