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Abstract. A certified program analysis is an analysis whose implemen-
tation is accompanied by a checkable proof of soundness. We present a
framework whose purpose is to simplify the development of certified pro-
gram analyses without compromising the run-time efficiency of the analy-
ses. At the core of the framework is a novel technique for automatically
extracting Coq proof-assistant specifications from ML implementations
of program analyses, while preserving to a large extent the structure of
the implementation. We show that this framework allows developers of
mobile code to provide to the code receivers untrusted code verifiers in
the form of certified program analyses. We demonstrate efficient imple-
mentations in this framework of bytecode verification, typed assembly
language, and proof-carrying code.

1 Introduction

When static analysis or verification tools are used for validating safety-critical
code [6], it becomes important to consider the question of whether the results of
the analyses are trustworthy [22,3]. This question is becoming more and more
difficult to answer as both the analysis algorithms and their implementations
are becoming increasingly complex in order to improve precision, performance,
and scalability. We describe a framework whose goal is to assist the developers
of program analyses in producing formal proofs that the implementations and
algorithms used are sound with respect to a concrete semantics of the code. We
call such analyses certified since they come with machine-checkable proofs of
their soundness. We also seek soundness assurances that are foundational, that
is, that avoid assumptions or trust relationships that don’t seem fundamental
to the objectives of users. Our contributions deal with making the development
of such analyses more practical, with particular emphasis on not sacrificing the
efficiency of the analysis in the process.

The strong soundness guarantees given by certified program analyzers and
verifiers are important when the potential cost of wrong results is significant.
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Moreover, the ability to check independently that the implementation of the
analysis is sound allows us to construct a mobile-code receiver that allows un-
trusted parties to provide the code verifier. The code verifier is presented as a
certified program analysis whose proof of soundness entails soundness of code
verification.

The main contributions of the framework we propose are the following:

– We describe a methodology for translating automatically implementations
of analyses written in a general-purpose language (currently, ML) into mod-
els and specifications for a proof assistant (currently, Coq). Specifically, we
show how to handle those aspects of a general-purpose language that do not
translate directly to the well-founded logic used by the proof assistant, such
as side-effects and non-primitive recursive functions. We use the framework
of abstract interpretation [12] to derive the soundness theorems that must
be proved for each certified analysis.

– We show a design for a flexible and efficient mobile-code verification protocol,
in which the untrusted code producer has complete freedom in the safety
mechanisms and compilation strategies used for mobile code, as long as it
can provide a code verifier in the form of a certified analysis, whose proof
of soundness witnesses that the analysis enforces the desired code-receiver
safety policy.

In the next section, we describe our program analysis framework and introduce
an example analyzer. Then, in Sect. 3, we present our technique for specification
extraction from code written in a general-purpose language. We then discuss
the program analyzer certification process in Sect. 4. In Sect. 5, we present an
application of certified program analysis to mobile code safety and highlight its
advantages and then describe how to implement in this architecture (founda-
tional) typed assembly language, Java bytecode verification, and proof-carrying
code in Sect. 6. Finally, we survey related work (Sect. 7) and conclude (Sect. 8).

2 The Certified Program Analysis Framework

In order to certify a program analysis, one might consider proving directly the
soundness of the implementation of the analysis. This is possible in our frame-
work, but we expect that an alternative strategy is often simpler. For each analy-
sis to be certified, we write a certifier that runs after the analysis and checks its
results. Then, we prove the soundness of the certifier. This approach has several
important advantages. Often the certifier is simpler than the analysis itself. For
example, it does not need to iterate more than once over each instruction, and
it does not need all the complicated heuristics that the analysis itself might use
to speed up the convergence to a fixpoint. Thus, we expect the certifier is easier
to prove sound than the analysis itself. The biggest benefit, however, is that we
can use an existing implementation of a program analysis as a black box, even if
it is written in a language that we are not ready to analyze formally, and even if
the analysis algorithm does not fit perfectly with the formalism desired for the
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Fig. 1. Our certified verifier architecture with the trusted code base shaded

certification and its soundness proofs. As an extreme example, the analysis itself
might contain a model checker, while we might want to do the soundness proof
using the formalism of abstract interpretation [28]. In Fig. 1, we diagram this
basic architecture for the purpose of mobile-code safety. We distinguish between
“installation time” activity, which occurs once per analyzer, and “verification
time” activity, which occurs once per program to analyze.

We choose the theory of abstract interpretation [12] as the foundation for the
soundness proofs of certifiers because of its generality and because its soundness
conditions are simple and well understood. We present first the requirements
for the developers of certifiers, and then in Sect. 4, we describe the soundness
verification.

type absval

type abs = { pc : nat; a : absval }

val ainv : abs list

val astep : abs -> result

datatype result = Fail | Succ of abs list

The core of the certifier is
an untrusted custom module con-
taining an implementation of the
abstract transition relation (pro-
vided by the certifier developer).
The custom module of a certifier
must implement the signature given adjacently. The type abs encodes abstract
states, which include a program counter and an abstract value of a type that
can be chosen by the certifier developer. The value ainv consists of the abstract
invariants. They must at a minimum include invariants for the entry points to
the code and for each destination of a jump. The function astep implements
the abstract transition relation: given an abstract state at a particular instruc-
tion, compute the set of successor states, minus the states already part of ainv .
The transition relation may also fail, for example when the abstract state does
not ensure the safe execution of the instruction. We will take advantage of this
possibility to write safety checkers for mobile-code using this framework. In our
implementation and in the examples in this paper, we use the ML language for
implementing custom certifiers.
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fun applyWithTimeout (f: ’a -> ’b, x: ’a) : ’b = ...

fun top (DonePC: nat list, ToDo: abs list) : bool =

case ToDo of

nil => true

| a :: rest =>

if List.member(a.pc, DonePC) then false else

(case applyWithTimeout(astep, a) of

Fail => false

| Succ as => top (a.pc :: DonePC, as @ ToDo))

in

top (nil, ainv)

Fig. 2. The trusted top-level analysis engine. The infix
operators :: and @ are list cons and append, respectively

In order to exe-
cute such certifiers,
the framework pro-
vides a trusted en-
gine shown in Fig. 2.
The main entry point
is the function top ,
invoked with a list
of program counters
that have been pro-
cessed and a list of
abstract states still
to process. Termina-
tion is ensured using
two mechanisms: each invocation of the untrusted astep is guarded by a time-
out, and each program counter is processed at most once. We use a timeout as a
simple alternative to proving termination of astep . A successful run of the code
shown in Fig. 2 is intended to certify that all of the abstract states given by ainv
(i.e., the properties that we are verifying for a program) are invariant, and that
the astep function succeeds on all reachable instructions. We take advantage of
this latter property to write untrusted code verifiers in this framework (Sect. 5).
We discuss these guarantees more precisely in Sect. 4.

Example: Java Bytecode Verifier. Now we introduce an example program ana-
lyzer that requires the expressivity of a general-purpose programming language
and highlights the challenges in specification extraction. In particular, we con-
sider a certifier in the style of the Java bytecode verifier, but operating on a
simple assembly language instead of bytecodes. Fig. 3 presents a fragment of
this custom verifier. The abstract value is a partial map from registers to class
names, with a missing entry denoting an uninitialized register.1

In the astep function, we show only the case of the memory write instruc-
tion. The framework provides the sel accessor function for partial maps, the
instruction decoder instrAt , the partial function fieldOf that returns the type
of a field at a certain offset, and the partial function super that returns the super
class of a class. This case succeeds only if the destination address is of the form
rdest + n , with register rdest pointing to an object of class cdest that has
at offset n a field of type c′ , which must be a super class of the type of register
rsrc .

We omit the code for calculatePreconditions , a function that obtains
some preconditions from the meta-data packaged with the .class files, and
then uses an iterative fixed-point algorithm to find a good typing precondition
for each program label. Each such precondition should be satisfied any time

1 In the actual implementation, registers that hold code pointers (e.g., return ad-
dresses, or dynamic dispatch addresses) are assigned types that specify the abstract
state expected by the destination code block.
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type absval = (reg, class) partialmap

type abs = { pc : nat; a : absval }

fun subClass (c1 : class, c2 : class) = ...

fun calculatePreconditions () : abs list = ...

val ainv: abs list = calculatePreconditions ()

fun astep (a : abs) : result =

case instrAt(a.pc) of

Write(rdest + n, rsrc) =>

(case (sel(a.a, rdest), sel(a.a, rsrc)) of

(SOME cdest, SOME csrc) =>

(case fieldOf(cdest, n) of

SOME cdest’ => if subClass(csrc, cdest’) then

Succ [ { a = a.a, pc = a.pc + 1 } ]

else Fail

| _ => Fail)

| _ => Fail)

| ...

Fig. 3. Skeleton of a verifier in the style of the Java bytecode verifier

control reaches its label. This kind of algorithm is standard and well studied, in
the context of the Java Bytecode Verifier and elsewhere, so we omit the details
here. Most importantly, we will not need to reason formally about the correctness
of this algorithm.

3 Specification Extraction

To obtain certified program analyses, we need a methodology for bridging the gap
between an implementation of the analysis and a specification that is suitable for
use in a proof assistant. An attractive technique is to start with the specification
and its proof, and then use program extraction supported by proof assistants such
as Coq or Isabelle [29] to obtain the implementation. This strategy is very proof-
centric and while it does yield a sound implementation, it makes it hard to control
non-soundness related aspects of the code, such as efficiency, instrumentation for
debugging, or interaction with external libraries.

Yet another alternative is based on verification conditions [15,17], where
each function is first annotated with a pre- and postcondition, and the entire
program is compiled into a single formula whose validity implies that the program
satisfies its specification. Such formulas can make good inputs to automated
deduction tools, but they are usually quite confusing to a human prover. They
lose much of the structure of the original program. Plus, in our experience, most
auxiliary functions in a program analyzer do good jobs of serving as their own
specifications (e.g., the subClass function).

Since it is inevitable that proving soundness will be sufficiently complicated
to require human guidance, we seek an approach that maintains as close of a
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fun subClass (depth : nat, c1 : class, c2 : class) : bool option =

c1 = c2 orelse

(case super c1 of NONE => SOME false

| SOME sup => if depth = O then NONE else subClass’(depth-1,sup,c2))

Fig. 4. Translation of the subClass function. The boxed elements are added
by our translation

correspondence between the implementation and its model as possible. For non-
recursive purely functional programs, we can easily achieve the ideal, as the
implementation can reasonably function as its own model in a suitable logic,
such as that of the Coq proof assistant. This suggests that we need a way to
handle imperative features, and a method for dealing with non-primitive re-
cursive functions. In the remainder of this section, we give an overview of our
approach. More detail can be found in the companion technical report [9].

Handling Recursion. We expect that all invocations of the recursive functions
used during certification terminate, although it may be inconvenient to write all
functions in primitive recursive form, as required by Coq. In our framework, we
force termination of all function invocations using timeouts. This means that for
each successful run (i.e., one that does not time out) there is a bound on the
call-stack depth. We use this observation to make all functions primitive recur-
sive on the call-stack depth. When we translate a function definition, we add an
explicit argument depth that is checked and decremented at each function call.
Fig. 4 shows the result of translating a typical implementation of the subClass
function for our running example. The boxed elements are added by the trans-
lation. Note that in order to be able to signal a timeout, the return type of the
function is an option type. Coq will accept this function because it can check
syntactically that it is primitive recursive in the depth argument.

This translation preserves any partial correctness property of the code. For
example, if we can prove about the specification that any invocation of subClass
that yields SOME true implies that two classes are in a subclass relationship, then
the same property holds for the original code whenever it terminates with the
value true .

Handling Imperative Features. The function calculatePreconditions from
Fig. 3 uses I/O operations to read and decode the basic block invariants from
the .class file (as in the KVM [30] version of Java), or must use an intrapro-
cedural fixed-point computation to deduce the basic block preconditions from
the method start precondition (as for standard .class files). In any case, this
function most likely uses a significant number of imperative constructs or even
external libraries. This example demonstrates a situation when the result of
complex computations is used only as a hint, whose exact value is not important
for soundness but only for completeness. We believe that this is often the case
when writing certifiers, which suggests that a monadic [31] style of translation
would unnecessarily complicate the resulting specification.
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fun readu16 (s: callstate, buff: int array, idx: int) : int =

256 * (freshread1 s) + (freshread2 s)

fun readu32 (s: callstate, buff: int array, idx: int) : int =

65536 * readu16(freshstate3 s,buff,i) + readu16(freshstate4 s,buff,i+2)

Fig. 5. Translation of a function for reading a 16-bit and 32-bit big-endian
numbers from a class file. Original body of readu16 before translation is
256 ∗ buff[i] + buff[i + 1]

For such situations we propose a cheaper translation scheme that abstracts
soundly the result of side-effecting operations. We describe this scheme infor-
mally, by means of an example of functions that read from a Java .class file
16-bit and 32-bit numbers, respectively, written in big-endian notation, shown
in Fig. 5. Each update to mutable state is ignored. Each syntactic occurrence of a
mutable-state access is replaced with a fresh abstract function (e.g., freshread1)
whose argument is an abstraction of the call-stack state. The call-stack argument
is needed to ensure that no relationship can be deduced between recursive in-
vocations of the same syntactic state access. Each function whose body reads
mutable state, or calls functions that read mutable state, gets a new parameter
s that is the abstraction of the call-stack state. Whenever such a function calls
another function that needs a call-stack argument, it uses a fresh transformer
(e.g., freshstate3) to produce the new actual state argument.

This abstraction is sound in the sense that it ensures that nothing can be
proved about results of mutable state accesses, and thus any property that we
can prove about this abstraction also holds for the actual implementation. If we
did not have the call-stack argument, one could prove that each invocation of the
readu16 function produces the same result, and thus all results of the readu32
are multiple of 65,537. This latter example also shows why we cannot use the
depth argument as an abstraction of the call-stack state.

Note that our use of “state” differs from the well-known “explicit state-
passing style” in functional programming, where state is used literally to track
all mutable aspects of the execution environment. That translation style requires
that each function that updates the state not only take an input state but also
produce an output state that must be passed to the next statement. In our
translation scheme states are only passed down to callers, and the result type of
a function does not change.

The cost for the simplicity of this translation is a loss of completeness. We
are not interested in preserving all the semantics of input programs. Based on
our conjecture that we can refactor programs so that their soundness arguments
do not depend on imperative parts, we can get away with a looser translation.
In particular, we want to be able to prove properties of the input by proving
properties of the translation. We do not need the opposite inclusion to hold.

Soundness of the Specification Extraction. We argue here informally the sound-
ness of the specification extraction for mutable state. In our implementation, the
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soundness of the code that implements the extraction procedure is assumed. We
leave for future work the investigation of ways to relax this assumption. First,
we observe that each syntactic occurrence of a function call has its own unique
freshstate transformer. This means that, in an execution trace of the speci-
fication, each function call has an actual state argument that is obtained by a
unique sequence of applications of freshstate transformers to the initial state.
Furthermore, in any such function invocation all the syntactic occurrences of a
mutable state read use unique freshread access functions, applied to unique
values of the state parameter. This means that in any execution trace of the
specification, each state read value is abstracted as a unique combination of
freshread and freshstate functions. This, in turn, means that for any actual
execution trace of the original program, there is a definition of the freshread
and freshstate parameters that yields the same results as the actual reads.
Since all the freshread and freshstate transformers are left abstract in the
specification, any proof about the specification works with any model for the
transformers, and thus applies to any execution trace of the original program. A
complete formal proof is found in the companion technical report [9].

4 Soundness Certification

We use the techniques described in the previous section to convert the ML data
type abs to a description of the abstract domain A in the logic of the proof-
assistant. Similarly, we convert the ainv value into a set AI ⊆ A . Finally, we
model the transition function astep as an abstract transition relation  ⊆
A× 2A such that a A whenever astep(a) = Succ A . We will abuse notation
slightly and identify sets and lists where convenient.

We prove soundness of the abstract transition relation with respect to a con-
crete transition relation. Let (C,C0, 7→) be a transition system for the concrete
machine. In particular, C is a domain of states; C0 is the set of allowable initial
states; and 7→ is a one-step transition relation. These elements are provided in
the proof-assistant logic and are trusted. We build whatever safety policy inter-
ests us into 7→ in the usual way; we disallow transitions that would violate the
policy, so that errors are modeled as “being stuck.” This is the precise way in
which one can specify the trusted safety policy for the certified program verifiers
(Sect. 5).

To certify the soundness of the program analyzer, the certifier developer needs
to provide additionally (in the form of a Coq definition) a soundness relation
' ⊆ C × A (written as σ in [13]), such that c ' a holds if the abstract state
a is a sound abstraction of the concrete state c . To demonstrate ' is indeed
sound, the author also provides proofs (in Coq) for the following standard, local
soundness properties of abstract interpretations and bi-simulations.

Property 1 (Initialization). For every c ∈ C0 , there exists a ∈ AI such that
c ' a .

The initialization property assures us that the abstract interpretation includes
an appropriate invariant for every possible concrete initial state.
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Property 2 (Progress). For every c ∈ C and a ∈ A such that c ' a , if there
exists A′ ⊆ A such that a A′ , then there exists c′ ∈ C such that c 7→ c′ .

Progress guarantees that, whenever an abstract state is not stuck, any corre-
sponding concrete states are also not stuck.

Property 3 (Preservation). For every c ∈ C and a ∈ A such that c ' a , if there
exists A′ ⊆ A such that a  A′ , then for every c′ ∈ C such that c 7→ c′ there
exists a′ ∈ (A′ ∪AI) such that c′ ' a′ .

Preservation guarantees that, for every step made by the concrete machine,
the resulting concrete state matches one of the successor states of the abstract
machine. Preservation is only required when the abstract machine does not reject
the program. This allows the abstract machine to reject some safe programs, if
it so desires. It is important to notice that, in order to ensure termination, the
astep function (and thus the  relation) only returns those successor abstract
states that are not already part of the initial abstract states ainv . To account
for this aspect, we use AI in the preservation theorem.

Together, these properties imply the global soundness of the certifier that
implements this abstract interpretation [12], stated as following:

Theorem 1 (Certification soundness). For any concrete state c ∈ C reach-
able from an initial state in C0 , the concrete machine can make further progress.
Also, if c has the same program counter as a state a ∈ AI , then c ' a .

In the technical report [9], we give an idea how these obligations are met in
practice by sketching how the proof goes for the example of the Java bytecode
verifier shown in Fig. 3.

5 Applications to Mobile-Code Safety

Language-based security mechanisms have gained acceptance for enforcing basic
but essential safety properties, such as memory and type safety, for untrusted
mobile code. The most widely deployed solution for mobile code safety is byte-
code verification, as in the Java Virtual Machine (JVM) [25] or the Microsoft
Common Intermediate Language (MS-CIL) [18]. A bytecode verifier uses a form
of abstract interpretation to track the types of machine registers, and to enforce
memory and type safety. The main limitation of this approach is that we must
trust the soundness of the bytecode verifier. In turn, this means that we cannot
easily change the verifier and its enforcement mechanism. This effectively forces
the clients of a code receiver to use a fixed type system and often even a fixed
source language for mobile code. Programs written in other source languages
can be compiled into the trusted intermediate language but often in unnatural
ways with a loss of expressiveness and performance [4,19,7].

A good example is the MS-CIL language, which is expressive enough to be the
target of compilers for C#, C and C++. Compilers for C# produce intermediate
code that can be verified, while compilers for C and C++ use intermediate



10 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

language instructions that are always rejected by the built-in bytecode verifier.
In this latter case, the code may be accepted if the producer of the code can
provide an explicit proof that the code obeys the required safety policy and the
code receiver uses proof-carrying code [1,20,27].

Existing work on proof-carrying code (PCC) attests to its versatility, but
often fails to address the essential issue of how the proof objects are obtained.
In the Touchstone system [11], proofs are generated by a special theorem prover
with detailed knowledge about Java object layout and compilation strategies.
The Foundational PCC work [1,20] eliminates the need to hard-code and trust
all such knowledge, but does so at the cost of increasing many times the proof
generation burden. Both these systems also incur the cost of transmitting proofs.
The Open Verifier project [10] proposes to send with the code not per-program
proofs but proof generators to be run at the code receiver end for each incoming
program. The generated proofs are then checked by a trusted proof checker, as
in a standard PCC setup.

Using certified program analyses we can further improve this process. The
producer of the mobile code writes a safety-policy verifier customized for the
exact compilation strategy and safety reasoning used in the generation of the
mobile code. This verifier can be written in the form of a certified program
analysis, whose abstract transition fails whenever it cannot verify the safety
of an instruction. For example, we discuss in Sect. 6 cases when the program
analysis is a typed assembly language checker, a bytecode verifier, or an actual
PCC verification engine relying on annotations accompanying the mobile code.

The key element is the soundness proof that accompanies an analysis, which
can be checked automatically. At verification time, the now-trusted program
analyzer is used to validate the code, with no need to manipulate explicit proof
objects. This simplifies the writing of the validator (as compared with the proof-
generating theorem prover of Touchstone, or the Open Verifier). We also show in
Sect. 6 that this reduces the validation time by more than an order of magnitude.

We point out here that the soundness proof is with respect to the trusted
concrete semantics. By adding additional safety checks in the concrete semantics
(for instance, the logical equivalents of dynamic checks that would enforce a
desired safety policy), the code receiver can construct customized safety policies.

6 Case Studies

In this section, we present case studies of applying certified program analyzers
to mobile code security. We describe experience with verifiers for typed assembly
language, Java bytecode, and proof-carrying code.

We have developed a prototype implementation of the certified program
analysis infrastructure. The concrete language to be analyzed is the Intel x86
assembly language. The specification extractor is built on top of the front-end
of the OCaml compiler, and it supports a large fragment of the ML language.
The most notable features not supported are the object-oriented features. In ad-
dition to the 3000-line extractor, the trusted computing base includes the whole
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OCaml compiler and the Coq proof checker, neither of which is designed to be
foundationally small. However, our focus here has been on exploring the ease of
use and run-time efficiency of our approach. We leave minimizing the trusted
base for future work.

Typed Assembly Language. Our first realistic use of this framework involved
Typed Assembly Language. In particular, we developed and proved correct a
verifier for TALx86, as provided in the first release of the TALC tools from
Cornell [26]. This TAL includes several interesting features, including continua-
tion, universal, existential, recursive, product, sum, stack, and array types. Our
implementation handles all of the features used by the test cases distributed
with TALC, with the exception of the modularity features, which we handle by
“hand-linking” multiple-file tests into single files. TALC includes compilers to
an x86 TAL from Popcorn (a safe C dialect) and mini-Scheme. We used these
compilers unchanged in our case study.

We implemented a TALx86 verifier in 1500 lines of ML code. This compares
favorably with the code size of the TALC type checker, which is about 6000
lines of OCaml. One of us developed our verifier over the course of two months,
while simultaneously implementing the certification infrastructure. We expect
that it should be possible to construct new verifiers of comparable complexity
in a week’s time now that the infrastructure is stable.

We also proved the local soundness properties of this implementation in
15,000 lines of Coq definitions and proof scripts. This took about a month, again
interleaved with developing the trusted parts of the infrastructure. We re-used
some definitions from a previous TAL formalization [10], but we didn’t re-use
any proofs. It’s likely that we can significantly reduce the effort required for such
proofs by constructing some custom proof tactics based on our experiences. We
don’t believe our formalization to be novel in any fundamental way. It uses ideas
from previous work on foundational TAL [2,20,14]. The main difference is that
we prove the same basic theorems about the behavior of an implementation of
the type checker, instead of about the properties of inference rules. This makes
the proofs slightly more cumbersome, but, as we will see, it brings significant
performance improvement. As might be expected, we found and fixed many bugs
in the verifier in the course of proving its soundness. This suggests that our in-
frastructure might be useful even if the developer is only interested in debugging
his analysis.

Conv CPV PCC

Up to 200 (13) 0 0.01 0.07
201-999 (7) 0.01 0.02 0.24

1000 and up (6) 0.04 0.08 1.73

Table 1. Average verifier run-
ning times (in seconds)

Table 1 presents some verification-time
performance results for our implementation,
as average running times for inputs with par-
ticular counts of assembly instructions. We
ran a number of verifiers on the test cases pro-
vided with TALC, which used up to about
9000 assembly instructions. First, the type
checker included with TALC finishes within
the resolution of our timing technique for all
cases, so we don’t include results for it. While this type checker operates on a
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special typed assembly language, the results we give are all for verifying native
assembly programs, with types and macro-instructions used as meta-data. As a
result, we can expect that there should be some inherent slow-down, since some
TAL instructions must be compiled to multiple real instructions. The experi-
ments were performed on an Athlon XP 3000+ with 1 GB of RAM, and times
are given in seconds. We give times for “Conventional (Conv),” a thin wrap-
per around the TALC type checker to make it work on native assembly code;
“CPV,” our certified program verifier implementation; and “PCC,” our TALx86
verifier implementation from previous work [10], in which explicit proof objects
are checked during verification.

The results show that our CPV verifier performs comparably with the con-
ventional verifier, for which no formal correctness proof exists. It appears our
CPV verifier is within a small constant factor of the conventional verifier. This
constant is likely because we use an inefficient, Lisp-like serialization format for
including meta-data in the current implementation. We expect this would be
replaced by a much faster binary-encoded system in a more elaborate version.

We can also see that the certified verifier performs much better than the PCC
version. The difference in performance is due to the cost required to manipulate
and check explicit proof objects during verification. To provide evidence that
we aren’t comparing against a poorly-constructed straw man, we can look to
other FPCC projects. Wu, Appel, and Stump [32] give some performance re-
sults for their Prolog-based implementation of trustworthy verifiers. They only
present results on input programs of up to 2000 instructions, with a running
time of .206 seconds on a 2.2 GHz Pentium IV. This seems on par with our own
PCC implementation. While their trusted code base is much smaller than ours,
since we require trust in our specification extractor, there is hope that we can
achieve a similarly small checking kernel by using techniques related to certifying
compilation.

Java Bytecode Verification. We have also used our framework to implement
a partial Java Bytecode Verifier (JBV) in about 600 lines of ML. It checks
most of the properties that full JBVs check, mainly excluding exceptions, object
initialization, and subroutines. Our implementation’s structure follows closely
that of our running example from Sect. 2. Its ainv begins by calling an OCaml
function that calculates a fixed point using standard techniques. Like in our
example, the precise code here doesn’t matter, as the purpose of the function
is to populate a hash table of function preconditions and control-flow join point
invariants. With this information, our astep function implements the standard
typing rules for JBVs.

While we have extracted complete proof obligations for the implementation,
we have only begun the process of proving them. However, to make sure we are
on track to an acceptable final product, we have performed some simple bench-
marks against the bytecode verifier included with Blackdown Java for Linux. We
downloaded a few Java-only projects from SourceForge and ran each verifier on
every class in each project.
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On the largest that our prototype implementation could handle, MegaMek,
our verifier finishes in 5.5 seconds for checking 668,000 bytecode instructions,
compared to 1 second for the traditional verifier. First, we note that both times
are relatively small in an absolute sense. It probably takes a user considerably
longer to download a software package than to verify it with either method.
We also see that our verifier is only a small factor away from matching the
traditional approach, whose performance we know empirically that users seem
willing to accept. No doubt further engineering effort could close this gap or
come close to doing so.

Proof-Carrying Code. We can even implement a version of Foundational PCC
in our framework: for each basic block the mobile code contains an invariant
for the start of the block, and a proof that the strongest postcondition of the
start invariant along the block implies the invariant for the successor block. The
abstract state abs of the certifier consists of a predicate written in a suitable
logic, intended to be the strongest postcondition at the given program point.
The ainv is obtained by reading invariants from a data segment accompanying
the mobile code.

fun checkProof (prf: proof) (p: pred) : bool = ...

fun astep (a: abs) : result =

case instrAt a.pc of

RegReg(r1, r2) => Succ [{

pc = a.pc + 1;

a = And(Eq(r1,r2),Exists(x,[x/r1]a.a)) }]

| Jump l =>

let dest = getInvar l in

let prf = fetchProof l in

if checkProof (prf, Imply(a.a, dest)) then

Succ [ ]

else Fail

Fig. 6. A fragment of a certifier for PCC

Fig. 6 shows a
fragment of the code
for astep , which cal-
culates the strongest
postcondition for every
instruction. At a jump
we fetch the invariant
for the destination, a
proof, and then check
the proof. To prove
soundness, we only
need to ensure that
getInvar returns one
of the invariants that
are part of ainv , and that the checkProof function is sound. More precisely,
whenever the call to checkProof returns true, then any concrete state that satis-
fies a.a also satisfies dest . In particular, we do not care at all how fetchProof
works, where it gets the proof from, whether it decrypts or decompresses it
first, or whether it actually produces the proof itself. This soundness proof for
checkProof is possible and even reasonably straightforward, since we are writing
our meta-proofs in Coq’s more expressive logic.

7 Related Work

Toward Certified Program Analyses. The Rhodium system developed by Lerner
et al. [24] is the most similar with respect to the overall goal of our work—that
of providing a realistic framework for certified program analyses. However, they
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focus on simpler compiler analysis problems whose soundness can be proved
by today’s automated methods. We expect that our proofs can similarly be
automated when our framework is used for the kinds of analyses expressible in
Rhodium-style domain specific languages.

Several systems have been developed for specifying program analyses in
domain-specific languages and generating code from these specifications [23].
Again, the expressiveness of these systems is very limited compared to what is
needed for standard mobile code safety problems.

In the other direction, we have the well-established body of work dealing
with extracting formal verification conditions from programs annotated with
specifications. Especially relevant are the Why [16] and Caduceus [17] tools,
which produce Coq proof obligations as output.

There has been a good amount of work on constructing trustworthy veri-
fiers by extracting their code from constructive proofs of soundness. Cachera et
al. [8] extracted a data-flow analysis from a proof based on a general constraint
framework. Klein and Nipkow [21] and Bertot [5] have built certified Java byte-
code verifiers through program extraction/code generation from programs and
proofs in Isabelle and Coq, respectively. None of these publications present any
performance figures to suggest that their extracted verifiers scale to real input
sizes

Enforcing Mobile-Code Safety. As alluded to earlier, most prior work in Founda-
tional Proof-Carrying Code has focused on the generality and expressivity of var-
ious formalisms, including the original FPCC project [2], Syntactic FPCC [20],
and Foundational TALT [14]. These projects have given convincing arguments for
their expressiveness, but they have not yet demonstrated a scalable implemen-
tation. Some recent research has looked into efficiency considerations in FPCC
implementations, including work by Wu, Appel, and Stump [32] and our own
work on the Open Verifier [10].

The architecture proposed by Wu, Appel, and Stump is fairly similar to the
architecture we propose, with the restriction that verifiers must be implemented
in Prolog. In essence, while we build in an abstract interpretation engine, Wu et
al. build in a Prolog interpreter. We feel that it is important to support verifiers
developed in more traditional programming languages. Also, the performance
figures provided by Wu et al. have not yet demonstrated scalability.

Our past work on the Open Verifier has heavily influenced the design of the
certified program analysis architecture. Both approaches build an abstract in-
terpretation engine into the trusted base and allow the uploading of customized
verifiers. However, the Open Verifier essentially adheres to a standard PCC ar-
chitecture in that it still involves proof generation and checking for each mobile
program to be verified, and it pays the usual performance price for doing this.

8 Conclusion

We have presented a strategy for simplifying the task of proving soundness not
just of program analysis algorithms, but also of their implementations. We be-
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lieve that starting with the implementation and extracting natural proof obliga-
tions will allow developers to fine tune non-functional aspects of the code, such
as performance or debugging instrumentation.

Certified program analyses have immediate applications for developing certi-
fied program verifiers, such that even untrusted parties can customize the verifi-
cation process for untrusted code. We have created a prototype implementation
and used it to demonstrate that the same infrastructure can support in a very
natural way proof-carrying code, type checking, or data-flow based verification
in the style of bytecode verifiers. Among these, we have completed the soundness
proof of a verifier for x86 Typed Assembly Language. The performance of our
certified verifier is quite on par with that of a traditional, uncertified TALx86
type checker. We believe our results here provide the first published evidence
that a foundational code certification system can scale.
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