Human-Readable Machine-Verifiable Proofs for Teaching Constructive Logic

Andreas Abel, Bor-Yuh Evan Chang, and Frank Pfenning

Workshop on Proof Transformations, Proof Presentations and Complexity of Proofs International Joint Conference on Automated Reasoning Siena, Italy June 19, 2001

Disclaimer: Work in Progress!

Acknowledgments: Steve Awodey, University Education Council

A Course in Constructive Logic

- Website: http://www.cs.cmu.edu/~fp/courses/logic/
- Outline:
 - Intuitionistic propositional logic
 - Proofs as programs
 - Recursion
 - First-order logic
 - Arithmetic
 - Structural induction
 - Decidable fragments
- One goal: teach how to prove formally
- Audience: mostly 3rd/4th year undergraduate Computer Science students
- Computer support desirable for assignments

Tutch - A Tutorial Proof Checker

- Compiler-like tool
 - input: a text file with proofs written following a strict grammar
 - output: indication of acceptance or of gaps remaining in the proofs
- Linear syntax of single-step natural deduction (ND) proofs
- Also supports proofs given by proof terms
- Contrast with interactive proof tutor systems
- Well received in its initial use in an undergraduate course.

Overview

- Tutch syntax for single-step natural deduction proofs
 - examples
 - experiences from usage in an undergraduate logic course
- Toward human-readable machine-verifiable proofs
 - motivation for extending Tutch
- Extending Tutch
 - contrasting examples
 - focused proofs
- Conclusion

Tutch Syntax

- Linearization of natural deduction trees
- Sequence of assertions
- Step must follow using a single inference rule from already proven propositions
- Final step is the assertion proven
- Brackets scope use of assumptions *frames*
- No explicit justification necessary

Example: Modus Ponens

Tutch Syntax

Proof	S^+	::=	A	Final step
			$S;S^+$	Step sequence
Step	S	::=	A	Assertion
			$[H; S^+]$	Frame
Hypothesis	H	::=	A	Assertion $(\supset \mathcal{I}, \lor \mathcal{E})$
			x: $ au$	Parameter ($\forall \mathcal{I}$)
			x: $ au, A(x)$	Constraint $(\exists \mathcal{E})$

Tutch Syntax

• Notational definitions

$$\neg A = A \supset \bot$$

 $A \equiv B = (A \supset B) \land (B \supset A)$

• Concrete syntax

op, ot	T, F	truth, absurdity
$A \equiv B$	A <=> B	A if and only if B
$A \supset B$	A => B	A implies B
$A \lor B$	A B	A or B
$A \wedge B$	A & B	A and B
$\neg A$	~A	not A
$\exists x : \tau . A(x)$?x:t.A(x)	there exists $x:t$ s.t. $A(x)$
$\forall x : \tau. A(x)$!x:t.A(x)	for all $x:t$, $A(x)$

proof EnnA : (?x:t.~A(x)) => (~!x:t.A(x)) =
begin

Student Experience

- Midterm evaluation:
 - Utility (avg. score: 4.28)
 - * 15 out of 26 students rated Tutch very helpful (5 out of 5 points)
 - * only 1 student found it *unhelpful* (1 point)
 - Usability (avg. score: 3.96)
 - * attribute to the similarity to programming
- Personal experience:
 - Forced understanding of each step
 - Motivated appreciation of logical system
 - Appreciated familiar programming-like interface

- Becomes tedious to explicitly state one-step inferences in the natural deduction calculus after the logic has been mastered
- Granularity of single step in the natural deduction calculus is too small
- Proving mathematical theorems or properties of programs is infeasible in this manner
- Explicitness interrupts rather than support flow of reasoning
- Rigorous mathematical proofs rely on humans applying rules "in the background"

Toward Human-Readable Machine-Verifiable Proofs

- Two extremes:
 - supply each ND proof step (Tutch linear syntax)
 - give only proposition (fully automated theorem prover)
- Compromise: Language for proofs that are
 - readable for humans (in the way JAVA source code is readable)
 - efficiently verifiable by machine
- Size of proof steps should be logically justified
 - Focused Proofs (Andreoli)
 - Assertion Level Proofs (Huang)

Focused Proofs

• Classification of Sequent Calculus rules

	Left Rules (Hypotheses)	Right Rules (Conclusion)
Invertible	$\lor L$, $\exists L$, $\land L$, $\bot L$	$\supset R$, $\forall R$, $\land R$, $\top R$
Non-Invertible	$\supset L, \forall L, \land L_1, \land L_2$	$\vee R_1$, $\vee R_2$, $\exists R$

- Strategy of *focusing* is complete [Andreoli '92][Pfenning '99]
 - 1. Apply invertible rules
 - 2. Focus on a hypothesis or the conclusion and apply sequence of non-invertible rules

Proofs on the Assertion Level

- Proof presentation for classical logic (PROVERB project)
- Three levels of justifications [Huang '94]
 - **Logical level** Tutch as described above operates at this level where each step is explicitly expressed.
 - **Assertion level** Humans in mathematical proofs give justification at this level by citing axioms, definitions, and theorems.
 - **Proof level** Justifications such as "by analogy" are at the proof level.
- Proof step at the assertion level is equivalent to a chain of non-invertible rules.
- *Goal*: Extend Tutch to allow steps at the assertion level. Plus: Chain invertible rules.

Extending Tutch - Guiding Principle

- What is considered a single proof step in mathematical practice?
 - 1. Introduction of new hypotheses ("assume", "let") and parameters ("fix").
 - 2. Application of an axiom, a definition, a lemma or a theorem.
 - 3. Application of a local lemma.
 - 4. Distinguishing cases.
 - 5. Initiating mathematical induction.
 - 6. Reference to the induction hypothesis.
 - 7. Use of a special inference rule for a special area of mathematics.

Old and New Syntax

```
P = (A\&B | C) \& (A = >B = >D) = > (C | D)
```

```
proof ex1 : P =
                               assertion proof ex1 : P =
begin
  [ (A&B | C) & (A=>B=>D); assume (A&B | C) & (A=>B=>D) in
    A \implies B \implies D;
    A&B | C;
                                 case A&B | C of
    [ A&B;
                                       A&B -->
      A;
     B \Rightarrow D;
      Β;
     D;
                                                D
    C | D];
                                    || C --> C
    [ C;
    C | D];
    C | D ];
                                  proves C | D
  Ρ
end;
                                end;
```

Proof
$$S^+::= S \mid S; S^+$$

Step $S ::= assume H_1, \dots, H_n \text{ in } S^+ \text{ end}$
 $\mid case \vec{A} \text{ of } \vec{K^1} \longrightarrow S^{+1} \mid\mid \dots \mid\mid \vec{K^n} \longrightarrow S^{+n}$
proves C
 $\mid A \text{ by lemma } l$
 $\mid \text{ triv } A$

Hypothesis $H ::= A \mid x:\tau$ Constraint $K ::= \langle x_1:\tau_1, \dots, x_m:\tau_m \rangle A$

Extending Tutch - Syntax Classification

	Left Rules (Hypotheses)	Right Rules (Conclusion)
Inv.	$\lor L$, $\exists L$, $\perp L$	$\supset R$, $orall R$
Structure	Case distinction and wit- ness extraction.	Hypothesis and parame- ter introduction.
	case	assume
Non-Inv.	case $\supset L, \ \forall L, \ \wedge L_1, \ \wedge L_2$	assume $\lor R_1$, $\lor R_2$, $\exists R$, $\land R$,
Non-Inv.	case $\supset L, \ \forall L, \ \wedge L_1, \ \wedge L_2$	assume $\forall R_1, \ \forall R_2, \ \exists R, \ \land R, \ \ \top R, \ \supset R^-, \ \forall R^-, \ \bot L$
Non-Inv. Strategy	case $\supset L, \forall L, \land L_1, \land L_2$ Focusing	assume $\lor R_1, \lor R_2, \exists R, \land R,$ $\top R, \supset R^-, \forall R^-, \bot L$ Finishing

- $\wedge L$ is always available
- $\supset R^-$ and $\forall R^-$ are the non-invertible forms of $\supset R$ and $\forall R$

Before Verify a step by checking that it follows directly using a single inference rule.

Now Verify a step by focused proof search.

- still decidable
- polynomial complexity
- prototype implementation in Twelf
- soundness formally proven
- completeness wrt. one-step inferences formally proven
- logically justified \longrightarrow intuitive(?)

Example: Split Natural Numbers

 $\begin{array}{ll} \texttt{axiom} \textit{indNat} : P(0) \supset (\forall x: \textit{nat}. P(x) \supset P(s(x))) \supset \forall n: \textit{nat}. P(n); \\ \texttt{axiom} \textit{eq0} : & 0 = 0; \\ \texttt{axiom} \textit{eqS} : & \forall x: \textit{nat}. \forall y: \textit{nat}. x = y \supset s(x) = s(y); \end{array}$

assertion proof splitNat : $\forall x: nat. 0 = x \lor \exists y: nat. s(y) = x \equiv assume x: nat in$

```
% Induction on x:nat
```

```
% Base case: x = 0

0 = 0 by axiom eq0;

% Step case: x = s(x')

assume x':nat, 0 = x' \lor \exists y:nat.s(y) = x' in

case 0 = x' \lor \exists y:nat.s(y) = x' of

0 = x' \longrightarrow s(0) = s(x') by axiom eqS

|| y:nat where s(y) = x' \longrightarrow s(s(y)) = s(x') by axiom eqS

proves 0 = s(x') \lor \exists y:nat.s(y) = s(x')

end;

0 = x \lor \exists y:nat.s(y) = x by axiom indNat
```

end;

Related Work

- Mizar [Rudnicki '92]
 - Mathematics formalized in syntax close to natural language
- Isar [Wenzel '99]
 - High-level proof language for theorem prover Isabelle
 - Derived inference rules instead of focusing proofs
 - No chaining of left-invertible rules
 - Interface to tactics
- Proof verbalization PROVERB [Huang & Fiedler '97]

Future Work

- Implement big-step checking in Tutch
- Syntax for induction
- Add support for equational reasoning

- Compiler-like proof checker Tutch
 - linearization of intuitionistic natural deduction proofs
 - noted positive experience in the classroom due to programming like interface
- Human-readable machine-verifiable proofs
 - Four basic constructs (assume, case, lemma, triv)
 - Derived from focused proof search
 - Applicable in other logics (classical, linear, temporal, modal, ...)