
Human-Readable Machine-Verifiable Proofs for
Teaching Constructive Logic

Andreas Abel, Bor-Yuh Evan Chang, and Frank Pfenning

Workshop on Proof Transformations, Proof Presentations and

Complexity of Proofs

International Joint Conference on Automated Reasoning

Siena, Italy

June 19, 2001

Disclaimer: Work in Progress!

Acknowledgments: Steve Awodey, University Education

Council
1

A Course in Constructive Logic

• Website: http://www.cs.cmu.edu/~fp/courses/logic/

• Outline:

– Intuitionistic propositional logic

– Proofs as programs

– Recursion

– First-order logic

– Arithmetic

– Structural induction

– Decidable fragments

• One goal: teach how to prove formally

• Audience: mostly 3rd/4th year undergraduate Computer
Science students

• Computer support desirable for assignments

2

Tutch - A Tutorial Proof Checker

• Compiler-like tool

– input: a text file with proofs written following a strict

grammar

– output: indication of acceptance or of gaps remaining in

the proofs

• Linear syntax of single-step natural deduction (ND) proofs

• Also supports proofs given by proof terms

• Contrast with interactive proof tutor systems

• Well received in its initial use in an undergraduate course.

3

Overview

• Tutch syntax for single-step natural deduction proofs

– examples

– experiences from usage in an undergraduate logic course

• Toward human-readable machine-verifiable proofs

– motivation for extending Tutch

• Extending Tutch

– contrasting examples

– focused proofs

• Conclusion

4

Tutch Syntax

• Linearization of natural deduction trees

• Sequence of assertions

• Step must follow using a single inference rule from already

proven propositions

• Final step is the assertion proven

• Brackets scope use of assumptions – frames

• No explicit justification necessary

5

Example: Modus Ponens

u

A ∧ (A ⊃ B)
∧E1

A

u

A ∧ (A ⊃ B)
∧E2

A ⊃ B
⊃E

B
⊃Iu

A ∧ (A ⊃ B) ⊃ B

proof mp: A & (A=>B) => B =

begin

[A & (A=>B);

A;

A=>B;

B];

A & (A=>B) => B

end;

6

Tutch Syntax

Proof S+ : : = A Final step

| S;S+ Step sequence

Step S : : = A Assertion

| [H;S+] Frame

Hypothesis H : : = A Assertion (⊃I,∨E)

| x:τ Parameter (∀I)

| x:τ,A(x) Constraint (∃E)

7

Tutch Syntax

• Notational definitions

¬A = A ⊃ ⊥

A ≡ B = (A ⊃ B) ∧ (B ⊃ A)

• Concrete syntax

>,⊥ T, F truth, absurdity

A ≡ B A <=> B A if and only if B

A ⊃ B A => B A implies B

A ∨B A | B A or B

A ∧B A & B A and B

¬A ~A not A

∃x:τ.A(x) ?x:t.A(x) there exists x:t s.t. A(x)

∀x:τ.A(x) !x:t.A(x) for all x:t, A(x)

8

Example: Exist-Not Implies Not-All

u

∃x:τ.¬A(x)

w

¬A(c)

v

∀x:τ.A(x)

c

c:τ
∀E

A(c)
⊃E

⊥
∃Ec,w

⊥
⊃Iv

¬∀x:τ.A(x)
⊃Iu

∃x:τ.¬A(x) ⊃ ¬∀x:τ.A(x)

proof EnnA : (?x:t.~A(x)) => (~!x:t.A(x)) =
begin
[?x:t.~A(x);
[!x:t.A(x);

[c:t, ~A(c);
A(c);
F];

F];
~!x:t.A(x)];

(?x:t.~A(x)) => (~!x:t.A(x))
end;

9

Student Experience

• Midterm evaluation:

– Utility (avg. score: 4.28)

∗ 15 out of 26 students rated Tutch very helpful (5 out
of 5 points)

∗ only 1 student found it unhelpful (1 point)

– Usability (avg. score: 3.96)

∗ attribute to the similarity to programming

• Personal experience:

– Forced understanding of each step

– Motivated appreciation of logical system

– Appreciated familiar programming-like interface

10

Issues

• Becomes tedious to explicitly state one-step inferences in

the natural deduction calculus after the logic has been

mastered

• Granularity of single step in the natural deduction calculus

is too small

• Proving mathematical theorems or properties of programs is

infeasible in this manner

• Explicitness interrupts rather than support flow of reasoning

• Rigorous mathematical proofs rely on humans applying

rules “in the background”

11

Toward Human-Readable Machine-Verifiable Proofs

• Two extremes:

– supply each ND proof step (Tutch linear syntax)

– give only proposition (fully automated theorem prover)

• Compromise: Language for proofs that are

– readable for humans (in the way JAVA source code is

readable)

– efficiently verifiable by machine

• Size of proof steps should be logically justified

– Focused Proofs (Andreoli)

– Assertion Level Proofs (Huang)

12

Focused Proofs

• Classification of Sequent Calculus rules

Left Rules Right Rules
(Hypotheses) (Conclusion)

Invertible ∨L, ∃L, ∧L, ⊥L ⊃R, ∀R, ∧R, >R

Non-Invertible ⊃L, ∀L, ∧L1, ∧L2 ∨R1, ∨R2, ∃R

• Strategy of focusing is complete

[Andreoli ’92][Pfenning ’99]

1. Apply invertible rules

2. Focus on a hypothesis or the conclusion and apply

sequence of non-invertible rules

13

Proofs on the Assertion Level

• Proof presentation for classical logic (PROVERB project)

• Three levels of justifications [Huang ’94]

Logical level Tutch as described above operates at this
level where each step is explictly expressed.

Assertion level Humans in mathematical proofs give
justification at this level by citing axioms, definitions,
and theorems.

Proof level Justifications such as “by analogy” are at the
proof level.

• Proof step at the assertion level is equivalent to a chain of
non-invertible rules.

• Goal: Extend Tutch to allow steps at the assertion level.
Plus: Chain invertible rules.

14

Extending Tutch - Guiding Principle

• What is considered a single proof step in mathematical

practice?

1. Introduction of new hypotheses (“assume”, “let”) and

parameters (“fix”).

2. Application of an axiom, a definition, a lemma or a

theorem.

3. Application of a local lemma.

4. Distinguishing cases.

5.� Initiating mathematical induction.

6.� Reference to the induction hypothesis.

7.� Use of a special inference rule for a special area of

mathematics.

15

Old and New Syntax

P = (A&B | C) & (A=>B=>D) => (C | D)

proof ex1 : P = assertion proof ex1 : P =

begin

[(A&B | C) & (A=>B=>D); assume (A&B | C) & (A=>B=>D) in

A => B => D;

A&B | C; case A&B | C of

[A&B; A&B -->

A;

B => D;

B;

D; D

C | D];

[C; || C --> C

C | D];

C | D]; proves C | D

P

end; end;

16

Extending Tutch - Syntax

Proof S+: : = S | S;S+

Step S : : = assumeH1, . . . ,Hn in S+ end

| case ~A of ~K1 −→ S+1 || . . . || ~Kn −→ S+n

proves C

| A by lemma l

| triv A

Hypothesis H : : = A | x:τ

Constraint K : : = 〈x1:τ1, . . . , xm:τm〉A

17

Extending Tutch - Syntax Classification

Left Rules Right Rules
(Hypotheses) (Conclusion)

Inv. ∨L, ∃L, ⊥L ⊃R, ∀R

Structure Case distinction and wit-
ness extraction.

Hypothesis and parame-
ter introduction.

case assume

Non-Inv. ⊃L, ∀L, ∧L1, ∧L2 ∨R1, ∨R2, ∃R, ∧R,

>R, ⊃R−, ∀R−, ⊥L
Strategy Focusing Finishing

lemma, triv (focus on hyp.) triv (focus on conclusion)

• ∧L is always available

• ⊃R− and ∀R− are the non-invertible forms of ⊃R and ∀R

18

Extending Tutch - How to Verify Assertion Proofs

Before Verify a step by checking that it follows directly using a

single inference rule.

Now Verify a step by focused proof search.

• still decidable

• polynomial complexity

• prototype implementation in Twelf

• soundness formally proven

• completeness wrt. one-step inferences formally proven

• logically justified −→ intuitive(?)

19

Example: Split Natural Numbers

axiom indNat : P(0) ⊃ (∀x:nat. P(x) ⊃ P(s(x))) ⊃ ∀n:nat.P(n);
axiomeq0 : 0 = 0;
axiomeqS : ∀x:nat.∀y:nat. x = y ⊃ s(x) = s(y);

assertion proof splitNat : ∀x:nat.0 = x ∨ ∃y:nat.s(y) = x ≡
assumex:nat in

% Induction on x:nat

% Base case: x = 0
0 = 0 by axiomeq0 ;

% Step case: x = s(x′)
assumex′:nat, 0 = x′ ∨ ∃y:nat.s(y) = x′ in
case 0 = x′ ∨ ∃y:nat.s(y) = x′ of

0 = x′ −→ s(0) = s(x′) by axiomeqS
|| y:nat where s(y) = x′ −→ s(s(y)) = s(x′) by axiomeqS

proves 0 = s(x′) ∨ ∃y:nat.s(y) = s(x′)
end;

0 = x ∨ ∃y:nat.s(y) = x by axiom indNat
end;

20

Related Work

• Mizar [Rudnicki ’92]

– Mathematics formalized in syntax close to natural

language

• Isar [Wenzel ’99]

– High-level proof language for theorem prover Isabelle

– Derived inference rules instead of focusing proofs

– No chaining of left-invertible rules

– Interface to tactics

• Proof verbalization - PROVERB [Huang & Fiedler ’97]

21

Future Work

• Implement big-step checking in Tutch

• Syntax for induction

• Add support for equational reasoning

22

Summary

• Compiler-like proof checker Tutch

– linearization of intuitionistic natural deduction proofs

– noted positive experience in the classroom due to

programming like interface

• Human-readable machine-verifiable proofs

– Four basic constructs (assume, case, lemma, triv)

– Derived from focused proof search

– Applicable in other logics (classical, linear, temporal,

modal, . . .)

23

