
data files

1

1 Data Files

Reader and Writer

format

readlist readchar
print type

Program file for this chapter:

The programming techniques that you learned in the first volume of this series are all you
need to express any computation. That is, given any question that a computer program
can answer, you can write the program in Logo using those techniques. Also, those
techniques can be used, with few if any changes in notation, in any implementation of
Logo. However, saying that a problem can be solved using certain tools doesn’t mean
that it can be solved in the most convenient way. In this volume the overall goal is to
expand your repertoire of Logo techniques, so that you’ll find it easier to deal with more
difficult problems. Some of the techniques here are unique to Berkeley Logo; others
exist in other dialects, but in significantly different forms.

Probably the most glaring omission in the first volume is that we made no provision
for saving information from one session to the next. (You do know how to save a Logo
workspace, but that’s too all-or-nothing to be very useful. You’d like to be able to save
specific kinds of information, and perhaps use that information in some program outside
of Logo.) In this chapter we’ll explore the use of in Logo programs.

There isn’t much in the way of truly new ideas here. There are a few new primitives
and a few grubby details about how files are named in your particular computer, but
for the most part you won’t have to change the way you think about the programming
process. My plan for this chapter is to give a quick summary of the vocabulary you’ll
need, and spend most of the chapter on a practical programming project that will show
you the sort of thing you can accomplish easily in Logo.

We’ve been reading and writing data all along. We’ve been reading from the keyboard,
with operations like and , and we’ve been writing to your screen,
with commands like and .

Openwrite
openupdate

openappend

reader; writer.

open

2 Chapter 1 Data Files

readlist readchar
print

setread setwrite

save load

setread
setwrite

setread setwrite
openread openwrite

setread setwrite

close

setwrite
setwrite

* creates a new, empty file, replacing any file that might previously have existed with
the same name. Berkeley Logo also provides , which opens an existing file for both
reading and writing simultaneously, and , which opens an existing file for writing,
putting the newly written data after the old contents of the file. I won’t use those in this book,
though.

The goal now is to read and write the same data, but from and to other devices. This
includes files on a hard disk or a diskette, but also things like printers or TV cameras
if you have them. The same procedures that read the keyboard and write the screen
can be used for these other devices as well. The trick is to divert the attention of those
procedures to someplace else.

The part of the Logo interpreter that reads characters for and
is called the the part that handles and its friends is the The commands

and tell the reader and the writer, respectively, what file or device
to use. The input to either command is the name of a file or device. The format of that
name will vary from one operating system to another, so you should look it up in your
computer’s reference manual. Generally it will be the same format that you (I assume)
have already been using as input to the and commands.

If you invoke with the empty list as input, it tells the reader to read from
the keyboard. If you give the empty list as input, it tells the writer to write to
the screen. In other words the empty list “turns off” whatever file or device you may have
been using and returns to Logo’s usual style of interaction.

You can switch the attention of the reader or the writer among several files in rotation
without “losing your place” in each one. You must a file when you want to begin
reading or writing it before you can use it as input to or . You do
this with the or command.* Once a file is opened, you can

or to it, read or write some data, then switch to a different file for
a while, and then continue where you left off. When you’re finished using the file, you
must it.

Some operating systems allow access to devices like printers using the same program-
ming interface that works for files. In those systems, you can to a printer just
as you can to a disk file. The format of the input to may be different (a device
name instead of a file name), but there is no conceptual difference.

End of File

extract "brian "phonelist

before

word
list

End of File 3

eofp
true

eofp false

readlist
Readchar

wordp listp

Extract

to extract :word :file
openread :file
setread :file
extract1 :word
setread []
close :file
end

to extract1 :word
local "line
if eofp [stop]
make "line readlist
if memberp :word :line [print :line]
extract1 :word
end

?
Brian Harvey 555-2368
Brian Silverman 555-5274

When reading information from a file, the problem arises of what happens when there is
no more left to read. How does a program know it’s reached the end of the file?

Berkeley Logo provides two ways to answer this question. If the structure of your
program makes it convenient to test for the end of the file attempting to read more
information from the file, you can use the predicate , which takes no inputs, and
returns if the file currently being read is at its end. (If Logo is reading from the
keyboard, then always returns .)

In some cases it may be more convenient to try to read from the file, and then later
test whether there was really any information available to read. To make this possible, the
reading operations output an empty datum when there is nothing left to read, but of the
opposite type from their usual output. In other words , which usually outputs
a list, outputs an empty to indicate the end of a file. , which normally
outputs a word, outputs an empty when there are no more characters to be read. You
can use or , therefore, to check for the end of the file.

Here’s an example. is a command that takes two inputs, a word and a
filename. Its effect is to print every line in that file that contains the chosen word.
For example, you might have a file in which each line contains someone’s name and
telephone number; you could use this procedure to find a particular person in the file.

make "caseignoredp "false

Case Sensitivity

Dribble Files

not

everything

transcript file, dribble file.

in addition to

instead of

4 Chapter 1 Data Files

phonelist

brian extract
Brian

caseignoredp true
equalp memberp

print PRINT

dribble
nodribble

setwrite

Notice that the program restores reading from the keyboard when it’s done reading the
file. In the example I’m assuming that is the name of a file you’ve created
earlier, with a Logo program or with your favorite text editor outside of Logo.

In this example, I used the word , in all lower case letters, as the input to ,
whereas the data file contained the word with an initial upper case or capital
letter. You can control whether or not Logo considers those two words equal by changing
the value of the variable . If this variable has the value , as it does
by default, then and consider upper and lower case letters the same.
But if you say

then upper and lower case letters will not be equal. (This variable does affect Logo’s
understanding of the names of procedures and variables, in which case is always ignored.
The words and always name the same procedure, for example.)

Not everything Logo prints goes through the writer. Error messages and trace output
always go to the screen, not into a file. The idea is that even when you’re using files,
you’re still programming interactively, and those messages are part of the programming
process rather than part of the result of your program.

Sometimes, though, you want to capture in a file that happens while you’re
using Logo. Some programming teachers, for instance, like to look over their students’
shoulders but can’t look at everyone at once. If you record everything you do, your
teacher can print out the record, take it home, and study it overnight. The formal name
for this kind of record is a but it’s more popularly known as a
(The metaphor is that there’s a leak in the pipe between the computer and the screen
and some of the data dribbles out into the file.)

The command takes a file name as input and starts dribbling into that
file. The command, with no input, turns off dribbling. Information is sent
to the dribble file being printed on your screen, or written in a file by the
writer. Compare this with the effect of , which tells Logo to print into a file

onto the screen.

po

yesfill

* nofill

fill

A Text Formatter

fill
justify

formatting commands

A Text Formatter 5

* I’d have liked to call the command , as it would be in a commercial word processing
program, but unfortunately that’s the name of a primitive procedure in Logo.

If you want to keep a transcript of a programming session, remember that much of
your interaction with Logo happens in the Logo editor and that that kind of interaction
can’t be recorded in a dribble file. So you might want to make it a habit to the
procedures you’ve edited, each time you leave the editor.

Okay, it’s time for the practical project I promised you. Probably the most useful “real”
program you can find for a home computer is a word processor. There are two parts
to a word processing package: a text editor and a formatter. The editor is the part
of the system that lets you type in your document, correct errors, and make additions
and deletions later. The formatter is the part that takes what you type and turns it into
beautiful printed pages with even margins and so on. (In most word processors, these
two parts are integrated, so that every character you type makes an immediate change in
the beautifully formatted document. But in principle the two tasks are separable.)

I’m going to write a text formatter. I assume that you have some way to put text
into a file. (In some versions of Logo the same editor that you use for procedures can
also edit text files. Otherwise you probably have a separate program that edits files, or
else you can write one in Logo!) The formatter will read lines from a file, fill and justify
paragraphs, and print the result. (To text means to fit as many words as possible into
each printed line. To the text is to insert extra spaces between words so that both
margins line up.) You can see how the formatter will work by examining the example on
the following pages. I’ve shown both what’s in the file and what my program prints.

For the most part the formatter just copies words from one file to another, filling and
justifying as it goes. A blank line in the file indicates a break between paragraphs. The
program skips a line between paragraphs and indents the first line of the new paragraph.
It’s possible to control the formatter’s work by including in the file.
These are the lines that start with asterisks in the example. For example, the line that says

means, “From now on, stop filling paragraphs. Instead, each line in the input file should
be one line in the printed result.” The command returns to normal paragraph
style.*

formatter input file

6 Chapter 1 Data Files

When I wrote the first edition of this book in 1984, I said that the study of
computer programming was intellectually rewarding for young children in
elementary school, and for computer science majors in college, but that high
school students and adults studying on their own generally had an
intellectually barren diet, full of technical details of some particular
computer brand.

At about the same time I wrote those words, the College Board was introducing
an Advanced Placement exam in computer science. Since then, the AP course has
become popular, and similar official or semi-official computer science
curricula have been adopted in other countries as well. Meanwhile, the
computers available to ordinary people have become large enough and powerful
enough to run serious programming languages, breaking the monopoly of BASIC.
* nofill
I think that there shall never exist
a poem as lovely as a tree-structured list.
* yesfill
So, the good news is that intellectually serious computer science is within
the reach of just about everyone. The bad news is that the curricula tend to
be imitations of what is taught to beginning undergraduate computer science
majors, and I think that’s too rigid a starting point for independent
learners, and especially for teenagers.

See, the wonderful thing about computer programming is that it’s fun, perhaps
not for everyone, but for very many people. There aren’t many mathematical
activities that appeal so spontaneously. Kids get caught up in the
excitement of programming, in the same way that other kids (or maybe the
same ones) get caught up in acting, in sports, in journalism (provided the
paper isn’t run by teachers), or in ham radio. If schools get too serious
about computer science, that spontaneous excitement can be lost. I once
heard a high school teacher say proudly that kids used to hang out in his
computer lab at all hours, but since they introduced the computer science
curriculum, the kids don’t want to program so much because they’ve learned
that programming is just a means to the end of understanding the
curriculum. No! The ideas of computer science are a means to the end of
getting computers to do what you want.
*skip 4
*make "nofilltab 15
*nofill
Computer
Science
Apprenticeship
*yesfill
*make "spacing 2
My goal in this series of books is to make the goals and methods of a serious
computer scientist accessible, at an introductory level, to people who are
interested in computer programming but are not computer science majors. If
you’re an adult or teenaged hobbyist, or a teacher who wants to use the
computer as an educational tool, you’re definitely part of this audience.
I’ve taught these ideas to teachers and to high school students. What I enjoy
most is teaching high school freshmen who bring a love of programming into the
class with them--the ones who are always tugging at my arm to tell me what they
found in the latest Byte.

i nt r oduct or y@@l evel , @@t o@@peopl e@@who@@ar e@i nt er est ed@i n@comput er

pr ogr ammi ng@@but @@ar e@@not @@comput er @sci ence@maj or s. @I f @you' r e@an

adul t @@or @@t eenaged@@hobbyi st , @@or @a@t eacher @who@want s@t o@use@t he

comput er @@as@@an@educat i onal @t ool , @you' r e@def i ni t el y@par t @of @t hi s

audi ence. @@I ' ve@t aught @t hese@i deas@t o@t eacher s@and@t o@hi gh@school

st udent s. @@What @I @enj oy@most @i s@t eachi ng@hi gh@school @f r eshmen@who

br i ng@@a@@l ove@@of @pr ogr ammi ng@i nt o@t he@cl ass@wi t h@t hem- - t he@ones

who@@ar e@@al ways@@t uggi ng@at @my@ar m@t o@t el l @me@what @t hey@f ound@i n

t he@l at est @Byt e.

@@@@@When@@I @wr ot e@t he@f i r st @edi t i on@of @t hi s@book@i n@1984, @I @sai d
t hat @@@t he@@st udy@@of @@comput er @@pr ogr ammi ng@@was@@i nt el l ect ual l y
r ewar di ng@@f or @@young@@chi l dr en@@i n@@el ement ar y@@school , @@and@f or
comput er @sci ence@maj or s@i n@col l ege, @but @t hat @hi gh@school @st udent s
and@@adul t s@st udyi ng@on@t hei r @own@gener al l y@had@an@i nt el l ect ual l y
bar r en@@di et , @@f ul l @@of @@t echni cal @@det ai l s@@of @@some@@par t i cul ar
comput er @br and.

@@@@@At @@about @@t he@@same@@t i me@@I @wr ot e@t hose@wor ds, @t he@Col l ege
Boar d@@was@@i nt r oduci ng@@an@@Advanced@@Pl acement @exam@i n@comput er
sci ence. @@Si nce@@t hen, @@t he@@AP@@cour se@@has@@become@popul ar , @and
si mi l ar @of f i c i al @or @semi - of f i c i al @comput er @sci ence@cur r i cul a@have
been@adopt ed@i n@ot her @count r i es@as@wel l . @Meanwhi l e, @t he@comput er s
avai l abl e@@t o@@or di nar y@@peopl e@@have@@become@@l ar ge@@enough@@and
power f ul @@enough@@t o@@r un@ser i ous@pr ogr ammi ng@l anguages, @br eaki ng
t he@monopol y@of @BASI C.

I @t hi nk@t hat @t her e@shal l @never @exi st
a@poem@as@l ovel y@as@a@t r ee- st r uct ur ed@l i st .

@@@@@So, @@t he@@good@@news@i s@t hat @i nt el l ect ual l y@ser i ous@comput er
sci ence@@i s@wi t hi n@t he@r each@of @j ust @about @ever yone. @The@bad@news
i s@@t hat @t he@cur r i cul a@t end@t o@be@i mi t at i ons@of @what @i s@t aught @t o
begi nni ng@@under gr aduat e@@comput er @@sci ence@@maj or s, @@and@I @t hi nk
t hat ' s@@t oo@@r i gi d@a@st ar t i ng@poi nt @f or @i ndependent @l ear ner s, @and
especi al l y@f or @t eenager s.

@@@@@See, @@t he@wonder f ul @t hi ng@about @comput er @pr ogr ammi ng@i s@t hat
i t ' s@@f un, @@per haps@@not @@f or @ever yone, @but @f or @ver y@many@peopl e.
Ther e@@@ar en' t @@@many@@mat hemat i cal @@act i v i t i es@@t hat @@appeal @@so
spont aneousl y. @@@Ki ds@@@get @@@caught @@up@@i n@@t he@@exci t ement @@of
pr ogr ammi ng, @@i n@@t he@same@way@t hat @ot her @ki ds@(or @maybe@t he@same
ones) @get @caught @up@i n@act i ng, @i n@spor t s, @i n@j our nal i sm@(pr ovi ded
t he@paper @i sn' t @r un@by@t eacher s) , @or @i n@ham@r adi o. @I f @school s@get
t oo@@ser i ous@@about @comput er @sci ence, @t hat @spont aneous@exci t ement
can@@be@l ost . @I @once@hear d@a@hi gh@school @t eacher @say@pr oudl y@t hat
k i ds@used@t o@hang@out @i n@hi s@comput er @l ab@at @al l @hour s, @but @si nce
t hey@@i nt r oduced@@t he@comput er @sci ence@cur r i cul um, @t he@ki ds@don' t
want @@t o@pr ogr am@so@much@because@t hey' ve@l ear ned@t hat @pr ogr ammi ng
i s@@j ust @@a@means@t o@t he@end@of @under st andi ng@t he@cur r i cul um. @No!
The@@i deas@@of @comput er @sci ence@ar e@a@means@t o@t he@end@of @get t i ng
comput er s@t o@do@what @you@want .

@@@@@@@@@@@@@@@Comput er
@@@@@@@@@@@@@@@Sci ence
@@@@@@@@@@@@@@@Appr ent i ceshi p

@@@@@My@@goal @@i n@@t hi s@@ser i es@of @books@i s@t o@make@t he@goal s@and

met hods@@of @@a@@ser i ous@@comput er @@sci ent i st @@accessi bl e, @@at @@an

A
TextForm

atter
7

form
atted

output

lines

topmar

spacing

width

filltab

nofilltab

leftmar

pageheight

parskip

Page Geometry

8 Chapter 1 Data Files

format

pageheight
topmar
lines
parskip
spacing
leftmar
width
filltab
nofilltab nofill

To run the program, invoke the command. This command takes two inputs:
the name of a file to read and the name of a file to write. The latter might be the name
of the printer if your operating system allows it.

The program uses several global variables to determine the layout of a printed page.
Vertical measurements are in vertical lines (6 per inch for most computer printers); hor-
izontal measurements are in characters (10 per inch is common, although there is more
variation in this unit). The program assumes fixed-width characters; a more professional
program would handle variable-width character fonts, but the added complexity wouldn’t
help you learn the things I’m most interested in now.

Height of the entire sheet of paper, including margins.
Number of lines of margin at the top of each page.
Number of lines to be printed on each page.
Number of blank lines between paragraphs.
1 for single spaced printing, 2 for double spaced, etc.
Number of characters of margin at the left of the page.
Number of characters to print on each line.
Number of characters to indent the first line of a paragraph.
Number of characters to indent each line.

The Program

The Program 9

The formatter recognizes formatting commands, in the file it’s reading, to change
the values of these variables. By a strange coincidence these formatting commands look
similar to the Logo commands to set a variable. In the sample file, for instance, the
formatting command

is used to start double spacing.

Here are the procedures that make up the formatter.

*make "spacing 2

to format :from :to
openread :from
openwrite :to
setread :from
setwrite :to
init.vars
loop
setread []
setwrite []
close :from
close :to
end

to init.vars
make "pageheight 66
make "topmar 6
make "lines 54
make "leftmar 7
make "width 65
make "filltab 5
make "nofilltab 0
make "parskip 1
make "spacing 1
make "started "false
make "filling "true
make "printed 0
make "inline []
end

10 Chapter 1 Data Files

to loop
forever [if process nextword [stop]]
end

;; Add a word to the output file, starting a new line if necessary

to process :word
if listp :word [output "true]
if not :started [start]
if (:linecount+1+count :word) > :width [putline]
addword :word
output "false
end

to addword :word
if not emptyp :line [make "linecount :linecount+1]
make "line lput :word :line
make "linecount :linecount+count :word
end

to putline
repeat :leftmar+:indent [type "| |]
putwords :line ((count :line)-1) (:width-:linecount)
newline
skip :spacing
end

to putwords :line :spaces :filler
local "perword
if emptyp :line [stop]
type first :line
make "perword ifelse :spaces > 0 [int ((:filler+:spaces-1)/:spaces)] [0]
if :filler > 0 [repeat :perword [type "| |]]
type "| |
putwords (butfirst :line) (:spaces-1) (:filler-:perword)
end

The Program 11

;; Get the next input word, reading a new line if necessary

to nextword
if not emptyp :inline [output extract.word]
if not :filling [break]
make "inline readword
if listp :inline [break output []]
if emptyp :inline [break output nextword]
if equalp first :inline "|*| ~

[run butfirst :inline
make "inline "]

make "inline skipspaces :inline
output nextword
end

to extract.word
local "result
make "result firstword :inline
make "inline skipfirst :inline
output :result
end

to firstword :word
if emptyp :word [output "]
if equalp first :word "| | [output "]
output word (first :word) (firstword butfirst :word)
end

to skipfirst :word
if emptyp :word [output "]
if equalp first :word "| | [output skipspaces :word]
output skipfirst butfirst :word
end

to skipspaces :word
if emptyp :word [output "]
if equalp first :word "| | [output skipspaces butfirst :word]
output :word
end

12 Chapter 1 Data Files

;; Formatting helpers

to start
make "started "true
repeat :topmar [print []]
newindent
end

to newindent
newline
make "indent ifelse :filling [:filltab] [:nofilltab]
make "linecount :indent
end

to newline
make "line []
make "indent 0
make "linecount 0
end

to break
if emptyp :line [stop]
make "linecount :width
putline
newindent
if :filling [skip :parskip]
end

;; Formatting commands to be invoked by the user

to skip :howmany
break
repeat :howmany [print []]
make "printed :printed+:howmany
if :printed < :lines [stop]
repeat :pageheight-:printed [print []]
make "printed 0
end

to nofill
break
make "filling "false
newindent
end

The Program 13

to yesfill
break
if not :filling [skip :parskip]
make "filling "true
newindent
end

loop nextword process
nextword process

process putline
process addword

Addword
:linecount

:linecount

Putline print

type putwords
:spaces

:Filler
:perword

putline
putwords :perword

nextword
inline Nextword readword

readlist
Readword

readword
extract.word firstword skipword skipspaces

nextword
:inline nextword

To help you understand this program, you should start by imagining that the text
file contains one big paragraph with no formatting commands. For each word in the
file, invokes to read the word and to process it. Just take

on faith for now and look at . The third and fourth instruction lines
are the interesting ones. The third line asks whether adding this word to the partially
filled print line will overflow its width. If so, invokes to print that
line and start a new one. Then, in either case, invokes to add the
word to the print line it’s accumulating. puts the word at the end of the line
and also adds its length to , the number of characters in the line. If this
isn’t the first word of a new line, then it must also add another character to
to take account of the space between words.

is essentially just a fancy command. The complication comes in
because the program is trying to justify the line by adding spaces where needed between
words. To do this, it has to the line a word at a time; that’s the task of .
In that procedure, is the number of spaces between words not yet printed; in
other words it’s the number of positions into which extra spaces can be shoved. (The idea
is to spread out the necessary spaces as evenly as possible.) is the total number
of extra spaces we need to insert; is the number that should be inserted
after the particular word we’re typing right now. (When I started writing and

, I thought that I could just calculate once for each line. But if the
number of extra spaces we want to insert is not a multiple of the number of positions
available, then the number of extra spaces may not be equal for every word in the line.)

That’s pretty much the whole story about the printing part of the program. The
reading part is handled by . It reads a line at a time into the variable

. uses the Logo primitive to read a line, rather than the
usual , to avoid Logo’s usual special handling of parentheses and brackets.

outputs a word containing all of the characters on the line that it reads, even if
the line includes spaces, which would ordinarily separate words. Therefore, the program
must divide the long word output by into ordinary words; that’s the job of

and its subprocedures , , and .

Each time is invoked, it removes one word from the line and outputs
that word. When is empty, reads a new line from the file. There

*make "topmar 10

Improving the Formatter

before

14 Chapter 1 Data Files

Listp
nextword

nextword break

nextword run
nextword

run

skip

skip break break skip

started
start Start process

started
false true start

start format loop

start
format

:topmar

make

are four possibilities: First, the end of the file may be reached. tests for this;
if so, outputs an empty list. Second, the new line can be empty, indicating
a paragraph break. In this case invokes and reads another line.
Third, the new line can be a formatting command, starting with an asterisk. In this case

just s the line, minus the asterisk, and reads another line. Fourth, the
line can be an ordinary text line, in which case goes back to extracting words
from the line.

In most programming languages, most of the effort in writing a formatter like this
would be in recognizing and evaluating the formatting commands. I hope you appreciate
how much Logo’s ability to instructions found in a file simplifies this task! The
danger in this technique is that an invalid instruction in the input file will crash the
formatting program, giving a Logo error message. (This is especially bad because after
the error message we are left with a half-written output file still open.) I’d like to “catch”
errors while running the user’s instructions; you’ll see how to do that in Chapter 3.

The rest of the program is just a bunch of detail. The command is written to
be used both by the formatting program itself and as a formatting command, as in the
example I showed earlier. As an exercise in understanding program structure, notice
that invokes and invokes ; then explain why they don’t just
keep invoking each other forever, like a recursive procedure without a stop rule.

Another slightly tricky part to understand is the variable and the procedure
. is invoked by , but only once, before processing the very first

word of the text. Ensuring the “only once” is the sole purpose of , a variable
that initially contains and is changed to by . Instead, why don’t I
just invoke from before calling ? The answer is that this technique
allows the file to start with an instruction like

Any such instructions will be evaluated processing the first text word. If
were invoked by , the top margin would be skipped before this instruction had a
chance to set .

Actually, using as a formatting command is a little schlock—not what I’d call good
“human engineering.” If you wanted to make a million dollars selling this program,
you’d add several little procedures like this:

really

nofill yesfill

skip

run

modularity.

Improving the Formatter 15

to topmar :lines
make "topmar :lines
end

* If you’re ambitious, you could try teaching the program about footnotes!

Like and , these procedures would be used only as formatting com-
mands, not as part of the formatter itself.

The program leaves out a lot of things you’d like to be able to do. You should be
able to number pages automatically in the top or bottom margins. (That’s a pretty easy
modification; most of the work would be in .) You’d like to be able to center lines
on the page for chapter headings. If your printer can underline or use different type
faces, you’ll want a way to control those things with formatting commands.*

Still, this is a usable program carrying out a real task. It takes 19 Logo procedures
averaging 7 lines each. This would be a much harder project in most languages. What
makes it so manageable in Logo? First, A small procedure for each task makes
the overall program easier to understand than it would be if it were all in one piece.
Second, Logo’s data types, words and lists, are well suited to this problem. Third, Logo’s
control mechanisms, especially recursive operations and , have the needed flexibility.

