
17

CHANGE 6-8 6-7

2 Example: Finding File Differences

diff

diff
diff
diff

< >

CHANGE INSERT DELETE

Program file for this chapter:

As an example of a practical program that manipulates data files, this chapter is about
comparing two similar files to find the differences between them. This program is most
often useful in comparing a current version of a file with an earlier version to see what has
changed. On the next page is an example of two input files and the program’s output.
The output shows only those lines that differ between the two files, indicating changed
lines, insertions, and deletions. When several consecutive lines are different, they are
grouped together as a single reported change. (To demonstrate all of the program’s
capabilities, I’ve used short input files with more lines different than identical, and so the
program’s report is longer than the input files themselves. In a more realistic example,
the input files might be hundreds of lines long, with only a few differences, so it would
be easier to read the program’s output than to examine the files directly.)

I’ve called this program because it was inspired by a similar program of that
name in the Unix operating system. The format of the report that my generates is
similar to that of the Unix version. In particular, I’ve followed the Unix convention
that when a line from one of the input files appears in the report, it is marked by either a
“ ” character if it’s from the first file or a “ ” character if it’s from the second file.

The numbers in the lines that begin with , , or are line
numbers, counting from one, in each of the two files. For example, the line

indicates that lines 6 through 8 in the first file were replaced by lines 6 through 7 in
the second file. (The program considers a change to be finished when it finds two
consecutive identical lines in the two files. In this case, lines 9 and 10 of the first file are
identical to lines 8 and 9 of the second file.)

Text1 Text2
Input Files

Output File

18 Chapter 2 Example: Finding File Differences

My goal in this series of books My goal in this series of books
is to make the goals and methods is to make the goals and methods
of a serious computer scientist of a mad computer scientist
accessible, at an introductory accessible, at an introductory
level, to people who are level, to people who are
interested in computer interested in playing computer
programming but are not computer games.
science majors. If you’re an
If you’re an adult or teenaged hobbyist,
adult or teenaged hobbyist, you’re definitely part of this
or a teacher who wants to use the audience.
computer as an educational tool, And I hope you appreciate
you’re definitely part of this the privilege!
audience.

DIFF results:
< File 1 = Text1
> File 2 = Text2
==========
CHANGE 3-3 3-3
< of a serious computer scientist

> of a mad computer scientist
==========
CHANGE 6-8 6-7
< interested in computer
< programming but are not computer
< science majors.

> interested in playing computer
> games.
==========
DELETE 11-12 10
< or a teacher who wants to use the
< computer as an educational tool,
==========
INSERT 15 12-13
> and I hope you appreciate
> the privilege!
==========

Program Overview

diff "Text1 "Text2 []

numbers

every

remember

Program Overview 19

diff

setread

Diff

diff.same

diff.differ
diff.found

diff.differ
diff.same

diff.differ

report
diff.same

The procedure takes three inputs. The first two are names of the two input
files; the third is either a name for an output file or an empty list, in which case the
program’s results are printed on the screen. For example, to see the results of my sample
run, I’d say

I picked this project partly because it requires switching between two input files, so you
can see how the program uses repeatedly.

reads lines from the two input files in alternation. As long as the corresponding
lines are equal, the program just moves on to the next pair of lines. (Procedure

handles this process.) When a difference is found, the program’s operation
becomes more complicated. It must remember all the lines that it reads from both
files until it finds two consecutive equal pairs of lines. (Procedures and

do this.)

Life would be simple if the differences between the two files were only changes within
a line, without adding or removing entire lines. (This would be a realistic assumption if,
for example, the second file had been created by applying a spelling correction program
to the first file. Individual words would then be different, but each line of the second file
would correspond to one line of the first.) In that case, the structure of
could be similar to that of : Read a line from each file, compare the two, and
report the pairs that are different.

But in practice, a change to a paragraph may make the file longer or shorter. It may
turn out, as in my sample run, that three lines from the first file correspond to only two
lines from the second one. If that’s the case, then there’s no guarantee that the equal
lines that mark the end of a change will be at the same line in the two files. (In
the sample, line 9 of the first file matches line 8 of the second.) Whenever the program
reads a line from one file, therefore, it must compare that line to line that it’s read
from the other file since the two started being different. Therefore, must

all of the lines that it reads from both files.

Finally, when two pairs of equal lines are found, the program must report the
difference that it’s detected. That’s the job of procedure . Once the change has
been reported, the program continues in until another difference is found.

The program finishes its work when the ends of both input files have been reached.

pending
saved

20 Chapter 2 Example: Finding File Differences

report

setread

diff

makefile
which filename linenum lines

popsaved

The File Information Block Abstract Data Type

Saving and Re-Reading Input Lines

Original line 2 Changed line 2
Original line 3 Changed line 3
Original line 4 New line 3.1

New line 3.2
New line 3.3
Changed line 4

setread filename :fib1

Original line 1 Original line 1

Original line 5
Original line 6
Original line 7
Original line 8 Original line 5
Original line 9 Original line 6

For each of the two input files, the program must remember several kinds of information.
The procedure must know which is file number 1 and which file number 2,
in order to print the lines with the correct starting character. The name of each file
is needed as the input to . The current line number is needed in order to
report the location within each file of a changed section. As I’ve just explained, there is
a collection of lines during the examination of a change; we’ll see shortly that
another collection of lines is used for another purpose.

To keep all the information for a file collected together, uses an abstract data
type called a “file information block,” or FIB, that is implemented as an array with five
members. The array is made by a constructor procedure , and there are
selectors for four of the five components: , , , and .
For the fifth component, the saved lines, instead of a selector for the entire collection
the program uses a selector that outputs a single line each time it’s invoked.
(This will make more sense when you read about saved lines in the next section.)

The procedures within this program use these two FIBs as inputs instead of just the
filenames. To read from one of the files, for example, the program will say

One further detail complicates the program. Suppose that a change is found in which
the two groups of differing lines are of different lengths. For example, suppose three
lines in the first file turn into six lines in the second file, like this:

The program has been reading lines alternately from the two files. It has just read the
line saying “Original line 6” from the second file, and that’s the second consecutive match
with a line previously read from the first file. So the program is ready to report a change
from lines 2–4 of the first file to lines 2–7 of the second.

Skipping Equal Lines

diff.same

diff.same

setread
readword popsaved

re-read

position random access
buffer

Skipping Equal Lines 21

Original line 10 Original line 7

to readline :fib
if savedp :fib [output popsaved :fib]
setread filename :fib
output readword
end

to diff.same :fib1 :fib2
local [line1 line2]
do.while [make "line1 getline :fib1

make "line2 getline :fib2
if and listp :line1 listp :line2 [stop] ; Both files ended.

] [equalp :line1 :line2]
addline :fib1 :line1 ; Difference found.
addline :fib2 :line2
diff.differ :fib1 :fib2
end

The trouble is that the program has already read three lines of the first file (the last
three lines shown above) that have to be compared to lines that haven’t yet been read
from the second file. Suppose that the files continue as follows:

We can’t just say, “Okay, we’ve found the end of a difference, so now we can go back to
and read lines from the two files.” If we did that, we’d read “Original line

10” from file 1, but “Original line 7” from file 2, and we’d think there is a difference
when really the two files are in agreement.

To solve this problem we must arrange for to the three unused
lines from file 1. Logo allows a programmer to re-read part of a file by changing the
current within the file (this ability is called), but in this program
I found it easier to the lines by saving them in a list and then, the next time the
program wants to read a line from the file, using one of the saved lines instead.

The first instruction of this procedure says, “If there are any saved lines for this file,
remove the first one from the list and output it.” Otherwise, if there are no saved lines,
then the procedure directs the Logo reader to the desired file (using) and uses

to read a line. Because removes a line from the list of saved lines,
eventually the saved lines will be used up and then the program will continue reading
from the actual file.

Here is the procedure that skips over identical pairs of lines:

Comparing and Remembering Unequal Lines

mutators

22 Chapter 2 Example: Finding File Differences

setitem do.while
true false

Do.while
true do.while

false
:line1 :line2

Getline
nextlinenum

Diff.differ

diff.found

diff.differ

to getline :fib
nextlinenum :fib
output readline :fib
end

to nextlinenum :fib
setitem 3 :fib (item 3 :fib)+1
end

to diff.differ :fib1 :fib2
local "line
make "line readline :fib1
addline :fib1 :line
ifelse memberp :line lines :fib2 ~

[diff.found :fib1 :fib2] ~
[diff.differ :fib2 :fib1]

end

Most of the names you don’t recognize are selectors and for the FIB abstract
data type. (A mutator is a procedure that changes the value of an existing datum, such
as for arrays.) One new Berkeley Logo primitive used here is . It
takes two inputs, an instruction list and an expression whose value is or .

first carries out the instructions in the first input. Then it evaluates the
predicate expression. If it’s , then repeats the process, carrying out the
instructions and evaluating the predicate, until the predicate becomes . In this
case, the idea is “Keep reading lines as long as and are equal.”

reads a line, either from the file or from the saved lines, and also adds one
to the current line number by invoking :

This is a typical mutator; I won’t show the others until the complete program listing at
the end of the chapter.

reads a line (perhaps a saved line) from one of the files, adds it to
the collection of pending lines (not saved lines!) for that file, then looks to see whether
a line equal to this one is pending in the other file. If so, then we may have found the
end of the changed area, and is called to make sure there is a second pair
of equal lines following these two. If not, we must read a line from the other file; this is
accomplished by a recursive call to with the two inputs in reversed order.

first

two

Comparing and Remembering Unequal Lines 23

show member2 "and "joy [she’s my pride and joy etcetera]

show member2 "pride "joy [she’s my pride and joy etcetera]

:fib1 :fib2

diff.differ readline getline

report

Diff.found

member2

member2

member2

member2
diff.differ

report report

member2 firstn

to diff.found :fib1 :fib2
local "lines
make "lines member2 (last butlast lines :fib1) ~

(last lines :fib1) ~
(lines :fib2)

ifelse emptyp :lines ~
[diff.differ :fib2 :fib1] ~
[report :fib1 :fib2 (butlast butlast lines :fib1)

(firstn (lines :fib2) (count lines :fib2)-(count :lines))]
end

>
[and joy etcetera]

>
[]

What was this time will be in the recursive call, and vice versa. (This is why
the FIB data type must include a record of which is the original file 1 and file 2.)

The reason that uses rather than to read from
the input files is that it doesn’t advance the line number. When dealing with a difference
between the files, we are keeping a range of lines from each file, not just a single line.
The line number that the program keeps in the FIB is that of the different line; the
line number of the last different line will be computed by the procedure later.

is called when the last line read from file 1 matches some line pending
from file 2. Its job is to find out whether the last lines from file 1 match two
consecutive lines from file 2. Most of the work is done by the straightforward helper
procedure , which works this way:

If the first two inputs are consecutive members of the third, then outputs the
portion of its third input starting from the point at which the first input was found. If
not, then outputs the empty list.

If ’s output is empty, we continue reading lines from the two files by
invoking . If not, then we’ve found the end of a change, and we invoke

to print the results. The first two inputs to are the two files; the third
and fourth are the corresponding sets of unequal lines. The unequal lines from file 1 are
all but the last two, the ones we just matched; the unequal lines from file 2 are all but the
ones that output. Helper procedure is used to select those lines.

Reporting a Difference

24 Chapter 2 Example: Finding File Differences

report

report
:fib1 report

Report INSERT DELETE
CHANGE process

Process < >

The procedure is somewhat lengthy, but mostly because differences in which
one of the sets of lines is empty are reported specially (as an insertion or a deletion,
rather than as a change).

Here’s how to read : The first step is to ensure that the files are in the proper
order, so that is file number 1. (If not, invokes itself with its inputs
reordered.) The next step is to compute the ending line number for each changed
section; it’s the starting line number (found in the file data structure) plus the number of
unmatched lines, minus one. then prints a header, choosing , ,
or as appropriate. Finally, it invokes once for each file.

prints the unmatched lines, with the appropriate file indicator (or).
Then it takes whatever pending lines were not included in the unmatched group and

to report :fib1 :fib2 :lines1 :lines2
local [end1 end2 dashes]
if equalp (which :fib1) 2 [report :fib2 :fib1 :lines2 :lines1 stop]
print "==========
make "end1 (linenum :fib1)+(count :lines1)-1
make "end2 (linenum :fib2)+(count :lines2)-1
make "dashes "false
ifelse :end1 < (linenum :fib1) [

print (sentence "INSERT :end1+1 (word (linenum :fib2) "- :end2))
] [ifelse :end2 < (linenum :fib2) [

print (sentence "DELETE (word (linenum :fib1) "- :end1) :end2+1)
] [

print (sentence "CHANGE (word (linenum :fib1) "- :end1)
(word (linenum :fib2) "- :end2))

make "dashes "true
]]
process :fib1 "|< | :lines1 :end1
if :dashes [print "-----]
process :fib2 "|> | :lines2 :end2
diff.same :fib1 :fib2
end

to process :fib :prompt :lines :end
foreach :lines [type :prompt print ?]
savelines :fib butfirst butfirst chop :lines (lines :fib)
setlines :fib []
setlinenum :fib :end+2
end

process

process

Program Listing

Program Listing 25

to diff :file1 :file2 :output
local "caseignoredp
make "caseignoredp "false
openread :file1
openread :file2
if not emptyp :output [openwrite :output]
setwrite :output
print [DIFF results:]
print sentence [< File 1 =] :file1
print sentence [> File 2 =] :file2
diff.same (makefile 1 :file1) (makefile 2 :file2)
print "==========
setread []
setwrite []
close :file1
close :file2
if not emptyp :output [close :output]
end

transfers them to the saved lines, so that they will be read again. (As a slight efficiency
improvement, skips over the two lines that we know matched two lines in
the other file; there’s no need to read those again.) The set of pending lines is made
empty, since no file difference is pending. Finally, the line number in the file structure is
increased to match the position following the two lines that ended the difference.

If confuses you, look back at the example I gave earlier, when I first talked
about saving and re-reading lines. In that example, the lines from “Original line 7” to
“Original line 9” in the first file are the ones that must be moved from the list of pending
lines to the list of saved lines. (No lines will be moved in the second file, since that one
had the longer set of lines in this difference, six lines instead of three.)

By the way, in the places where the program adds or subtracts one or two in a line
number calculation, I didn’t work those out in advance. I wrote the program without
them, looked at the wrong results, and then figured out how to correct them!

I’ve discussed the most important parts of this program, but not all of the helper
procedures. If you want to understand the program fully, you can read this complete
listing:

26 Chapter 2 Example: Finding File Differences

;; Skip over identical lines in the two files.

to diff.same :fib1 :fib2
local [line1 line2]
do.while [make "line1 getline :fib1

make "line2 getline :fib2
if and listp :line1 listp :line2 [stop] ; Both files ended.

] [equalp :line1 :line2]
addline :fib1 :line1 ; Difference found.
addline :fib2 :line2
diff.differ :fib1 :fib2
end

;; Remember differing lines while looking for ones that match.

to diff.differ :fib1 :fib2
local "line
make "line readline :fib1
addline :fib1 :line
ifelse memberp :line lines :fib2 ~

[diff.found :fib1 :fib2] ~
[diff.differ :fib2 :fib1]

end

to diff.found :fib1 :fib2
local "lines
make "lines member2 (last butlast lines :fib1) ~

(last lines :fib1) ~
(lines :fib2)

ifelse emptyp :lines ~
[diff.differ :fib2 :fib1] ~
[report :fib1 :fib2 (butlast butlast lines :fib1)

(firstn (lines :fib2) (count lines :fib2)-(count :lines))]
end

to member2 :line1 :line2 :lines
if emptyp butfirst :lines [output []]
if and equalp :line1 first :lines equalp :line2 first butfirst :lines ~

[output :lines]
output member2 :line1 :line2 butfirst :lines
end

Program Listing 27

to firstn :stuff :number
if :number = 0 [output []]
output fput (first :stuff) (firstn butfirst :stuff :number-1)
end

;; Read from file or from saved lines.

to getline :fib
nextlinenum :fib
output readline :fib
end

to readline :fib
if savedp :fib [output popsaved :fib]
setread filename :fib
output readword
end

;; Matching lines found, now report the differences.

to report :fib1 :fib2 :lines1 :lines2
local [end1 end2 dashes]
if equalp (which :fib1) 2 [report :fib2 :fib1 :lines2 :lines1 stop]
print "==========
make "end1 (linenum :fib1)+(count :lines1)-1
make "end2 (linenum :fib2)+(count :lines2)-1
make "dashes "false
ifelse :end1 < (linenum :fib1) [

print (sentence "INSERT :end1+1 (word (linenum :fib2) "- :end2))
] [ifelse :end2 < (linenum :fib2) [

print (sentence "DELETE (word (linenum :fib1) "- :end1) :end2+1)
] [

print (sentence "CHANGE (word (linenum :fib1) "- :end1)
(word (linenum :fib2) "- :end2))

make "dashes "true
]]
process :fib1 "|< | :lines1 :end1
if :dashes [print "-----]
process :fib2 "|> | :lines2 :end2
diff.same :fib1 :fib2
end

28 Chapter 2 Example: Finding File Differences

to process :fib :prompt :lines :end
foreach :lines [type :prompt print ?]
savelines :fib butfirst butfirst chop :lines (lines :fib)
setlines :fib []
setlinenum :fib :end+2
end

to chop :counter :stuff
if emptyp :counter [output :stuff]
output chop butfirst :counter butfirst :stuff
end

;; Constructor, selectors, and mutators for File Information Block (FIB)
;; Five elements: file number, file name, line number,
;; differing lines, and saved lines for re-reading.

to makefile :number :name
local "file
make "file array 5 ; Items 4 and 5 will be empty lists.
setitem 1 :file :number
setitem 2 :file :name
setitem 3 :file 0
output :file
end

to which :fib
output item 1 :fib
end

to filename :fib
output item 2 :fib
end

to linenum :fib
output item 3 :fib
end

to nextlinenum :fib
setitem 3 :fib (item 3 :fib)+1
end

to setlinenum :fib :value
setitem 3 :fib :value
end

Program Listing 29

to addline :fib :line
setitem 4 :fib (lput :line item 4 :fib)
end

to setlines :fib :value
setitem 4 :fib :value
end

to lines :fib
output item 4 :fib
end

to savelines :fib :value
setitem 5 :fib (sentence :value item 5 :fib)
end

to savedp :fib
output not emptyp item 5 :fib
end

to popsaved :fib
local "result
make "result first item 5 :fib
setitem 5 :fib (butfirst item 5 :fib)
output :result
end

