
andText Define

run first :onto

5 Program as Data

run if

Run

Text
text

program data.

instruction;
procedures.

73

In most programming languages there is a sharp distinction between and
Data are the things you can manipulate in your program, things like numbers and letters.
These things live in variables, which can be given new values by your program. But the
program itself is not subject to manipulation; it’s something you write ahead of time, and
then it remains fixed.

In Logo the distinction is not so sharp. We’ve made extensive use of one mechanism
by which a program can manipulate itself: the instruction lists that are used as inputs
to , , and so on are data that can be computed by a program. For example, the
solitaire program in Chapter 4 constructs a list of Logo instruction lists, each of which
would move a card to some other legal position, and then says

to move the card to the first such position.

In this chapter we’ll use a pair of more advanced tools that allow a program to create
more program. deals with a single now we’ll be able to examine and
create

is an operation that takes one input, a word. That word must be the name of
a user-defined procedure. The output from is a list. The first member of that list
is a list containing the names of the inputs to the chosen procedure. (If the procedure



optional

not

74 Chapter 5 Program as Data

text
yes no opinion

end
end

text define
define

define
opinion

show text "opinion

define "opinion [[yes no] [print sentence :yes [is yummy.]]
[print sentence :no [is yucky.]]]

opinion [Ice cream] "Cheese

po "opinion

* Berkeley Logo allows user-defined procedures with inputs. For such a procedure, this
first sublist may contain lists, representing optional inputs, as well as words, representing required
inputs.

to opinion :yes :no
print sentence [I like] :yes
print sentence [I hate] :no
end

?
[[yes no] [print sentence [I like] :yes] [print sentence [I hate] :no]]

?

?
Ice cream is yummy.
Cheese is yucky.
?
to opinion :yes :no
print sentence :yes [is yummy.]
print sentence :no [is yucky.]
end

has no inputs, the list will be empty.)* The remaining members of the output list are
instruction lists, one for each line in the definition of the procedure.

Here is an example. Suppose we’ve defined the procedure

Here’s what the text of that procedure looks like:

In this example the output from is a list with three members. The first member is
a list containing the words and , the names of ’s inputs. (Note that the
colons that are used to indicate inputs in a title line are used here.) The second and
third members of the output list are instruction lists, one for each line in the definition.
(Note that there is no line in the definition; as I’ve remarked before, that line isn’t
an instruction in the procedure because isn’t a command.)

The opposite of is the command . This command takes two inputs.
The first must be a word and the second a list. The effect of is to define a
procedure whose name is the first input and whose text is the second input. You can
use to define a new procedure or to change the definition of an old one. For
example, I might redefine :



Automated Definition

variables,
procedures,

Automated Definition 75

define
text

opinion
strong.opinion

make
thing

define text
text thing

define text
po

edit Text define

second

third fourth

?

?
Logo is yummy.
Basic stinks!

?

to second :thing
output first butfirst :thing
end

to ordinals
ord1 [second third fourth fifth sixth seventh] [output first butfirst]
end

define "opinion lput [print sentence :no "stinks!] ~
butlast text "opinion

opinion "Logo "Basic

define "strong.opinion ~
lput [print sentence :no "stinks!] butlast text "opinion

Instead of replacing an old definition with an entirely new one, we can use
and together to change a procedure’s definition:

(Of course, I didn’t have to redefine the same procedure name. I could have said

and then I would have had two procedures, the unchanged and the new version
named .)

It may be instructive to consider the analogy between which hold data, and
which hold instructions. Variables are given values with the command

and examined with the operation . Procedures are given definitions with the
command and examined with the operation . (There is no abbreviation

for -quote, however, like the dots abbreviation for -quote.)

To illustrate and , I’ve used them in instructions typed in at top level.
In practice, you wouldn’t use them that way; it’s easier to examine a procedure with
and to change its definition with . and are meant to be used not at
top level but inside a program.

Early in the first volume I defined the operation this way:

Suppose I want more operations following this model, to be called , , and
so on. I could define them all by hand or I could write a program to do it for me:



ordinals
po "fifth

ordinals

second seventh
butfirst

F
B L R

A Single-Keystroke Program Generator

ordinal numbers,
cardinal numbers.

program-writing program

76 Chapter 5 Program as Data

to ord1 :names :instr
if emptyp :names [stop]
define first :names list [thing] (lput ":thing :instr)
ord1 (butfirst :names) (lput "butfirst :instr)
end

?
?
to fifth :thing
output first butfirst butfirst butfirst butfirst :thing
end

to onekey :name :list
local "text
make "text [[] [local "char] [print [Type ? for help]]

[make "char readchar]]
foreach :list [make "text lput (sentence [if equalp :char]

(word "" first ?)
butfirst ?)

:text]
make "text lput (lput (list "foreach :list ""print)

[if equalp :char "?]) ~
:text

make "text lput (list :name) :text
define :name :text
end

(The name comes from the phrase which is what things
like “third” are called. Regular numbers like “three” are called ) This
procedure automatically defined new procedures named through ,
each with one more in its instruction line.

A fairly common thing to do in Logo is to write a little program that lets you type a
single character on the keyboard to carry out some instruction. For example, teachers of
very young children sometimes use a program that accepts to move the turtle forward
some distance, for back, and and for left and right. What I want to write is a

that will accept a name and a list of keystrokes and instructions as
inputs and define a procedure with that name that understands those instructions.



A Single-Keystroke Program Generator 77

define
sentence list lput

instant
onekey

instant

P instant
instant PU penup

P?

onekey "instant [[F [forward 20]] [B [back 20]]
[L [left 15]] [R [right 15]]]

to instant
local "char
print [type ? for help]
make "char readchar
if equalp :char "F [forward 20]
if equalp :char "B [back 20]
if equalp :char "L [left 15]
if equalp :char "R [right 15]
if equalp :char "? [foreach [[F [forward 20]] [B [back 20]]

[L [left 15]] [R [right 15]]]
"print]

instant
end

onekey "instant [[F [forward 20]] [B [back 20]]
[L [left 15]] [R [right 15]] [P [pens]]]

onekey "pens [[U [penup stop]] [D [pendown stop]] [E [penerase stop]]]

onekey "tinyturns [[F [forward 20]] [B [back 20]]
[L [left 5]] [R [right 5]] [H [hugeturns]]]

onekey "hugeturns [[F [forward 20]] [B [back 20]]
[L [left 45]] [R [right 45]] [T [tinyturns]]]

If we use this program with the instruction

then it creates the following procedure:

In addition to illustrating the use of , this program demonstrates how
, , and can all be useful in constructing lists, when you have to

combine some constant members with some variable members.

Of course, if we only want to make one program, it’s easier just to type
it in. An automatic procedure like is useful when you want to create several
different procedures like , each with a different “menu” of characters. For
example, consider these instructions:

With these definitions, typing to prepares to accept a pen command from
the second list. In effect, recognizes two-letter commands for and
so on, except that the sequence will display the help information for just the pen
commands. Here’s another example:



Procedure Cross-Reference Listings

A
B

text

X A B C
X

A X

instr
X

if X

A if X A

if X
X

submemberp
memberp true

cross-reference listing

sublist

78 Chapter 5 Program as Data

memberp "x :instr

[if emptyp :list [x :foo stop]]

to submemberp :thing :list
if emptyp :list [output "false]
if equalp :thing first :list [output "true]
if listp first :list ~

[if submemberp :thing first :list [output "true]]
output submemberp :thing butfirst :list
end

When you’re working on a very large project, it’s easy to lose track of which procedure
invokes which other one. We can use the computer to help solve this problem by creating
a for all the procedures in a project. For every procedure in the
project, a cross-reference listing tells which other procedures invoke that one. If you
write long procedures, it can also be helpful to list which instruction line in procedure
invokes procedure .

The general strategy will be to look through the of every procedure, looking for
the name of the procedure we’re interested in. Suppose we’re finding all the references
to procedure and we’re looking through procedures , , and . For each line of each
procedure, we want to know whether the word appears in that line. (Of course you
would not really name a procedure or . You’d use meaningful names. This is just an
example.) We can’t, however, just test

(I’m imagining that the variable contains an instruction line.) The reason is that
a procedure invocation can be part of a of the instruction list if is invoked by way
of something like . For example, the word is not a member of the list

But it’s a member of a member. (Earlier I made a big fuss about the fact that if that
instruction were part of procedure , it’s actually that invokes , not . That’s the true
story, for the Logo interpreter. But for purposes of a cross-reference listing, it does us no
good to know that invokes ; what we want to know is which procedure definition to
look at if we want to find the instruction that uses .)

So the first thing we need is a procedure that takes inputs like those
of but outputs if the first input is a member of the second, or a member
of a member, and so on.



instruction

list

Procedure Cross-Reference Listings 79

Reference butfirst text :examinee ref1

target
:examinee X

X "X :X

"foo foo
print

"foo

X

to reference :target :examinee
ref1 :target :examinee butfirst text :examinee 1
end

to ref1 :target :examinee :instrs :linenum
if emptyp :instrs [stop]
if submemberp :target first :instrs ~

[print sentence "| | (word :examinee "\( :linenum "\) )]
ref1 :target :examinee butfirst :instrs :linenum+1
end

print "foo

[print "foo]

print [w x y z]

Now we want a procedure that will take two words as input, both of which are the
names of procedures, and will print a list of all the references to the first procedure in
the text of the second.

uses as the third input to to avoid the
list of inputs to the procedure we’re examining. That’s because one of those inputs might
have the same name as the procedure, and we’d get a false indication of success.
(In the body of the definition of , any reference to a variable named will
not use the word but rather the word or the word . You may find that statement
confusing. When you type an like

the Logo evaluator interprets as a request for the word , quoted (as opposed to
evaluated). So won’t print a quotation mark. But if we look at the

then we are not, right now, evaluating it as a Logo instruction. The second member of
that list is the word , quote mark and all.)

We can still get “false hits,” finding the word (or whatever procedure name we’re
looking for) in an instruction list, but not being used as a procedure name:

But cases like that will be relatively rare compared to the cases of variables and procedures
with the same name.

The reason I’m printing spaces before the information is that I’m working toward a
listing that will look like this:



all

long

80 Chapter 5 Program as Data

target1
proca procb procc target2 procb

xref

reference
reference

target1
proca(3)
procb(1)
procc(4)

target2
procb(3)
procb(4)

to xref :target :list
print :target
foreach :list [reference :target ?]
end

to xrefall :list
foreach :list [xref ? :list]
end

xrefall [xrefall xref reference ref1 submemberp]

xrefall procedures

This means that the procedure named is invoked in each of the procedures
, , and ; procedure is invoked by on two different

instruction lines.

Okay, now we can find references to one specific procedure within the text of another
specific procedure. Now we want to look for references to one procedure within the
procedures making up a project.

We’re almost done. Now we want to apply to every procedure in the project.
This involves another run through the list of projects:

To use this program to make a cross-reference listing of itself, you’d say

To cross-reference all of the procedures in your workspace, you’d say

If you try this program on a project with a large number of procedures, you should
expect it to take a time. If there are five procedures, we have to examine each of
them for references to each of them, so we invoke 25 times. If there are 10
procedures, we invoke 100 times! In general, the number of invocations is
the square of the number of procedures. The fancy way to say this is that the program
“takes quadratic time” or that it “behaves quadratically.”


