
library

iteration

181

po "gensym

show gensym

po "gensym

gensym

gensym
gensym

for foreach
while

repeat

10 Iteration, Control Structures, Extensibility

?
I don’t know how to gensym
?
g1
?
to gensym
if not namep "gensym.number [make "gensym.number 0]
make "gensym.number :gensym.number + 1
output word "g :gensym.number
end

In this chapter we’re taking a tour “behind the scenes” of Berkeley Logo. Many of
the built-in Logo procedures that we’ve been using all along are not, strictly speaking,
primitive; they’re written in Logo itself. When you invoke a procedure, if the Logo
interpreter does not already know a procedure by that name, it automatically looks in a

of predefined procedures. For example, in Chapter 6 I used an operation called
that outputs a new, unique word each time it’s invoked. If you start up a fresh

copy of Logo you can try these experiments:

The first interaction shows that is not really a Logo primitive; the error message
indicates that there is no such procedure. Then I invoked , which made Berkeley
Logo read its definition automatically from the library. Finally, once Logo has read the
definition, I can print it out.

In particular, most of the tools we’ve used to carry out a computation repeatedly
are not true Logo primitives: for numeric iteration, for list iteration, and

for predicate-based iteration are all library procedures. (The word just
means “repetition.”) The only iteration mechanisms that are truly primitive in Logo are

and recursion.

Recursion as Iteration

repeat

repeat

:side+1 :side

exactly
almost

182 Chapter 10 Iteration, Control Structures, Extensibility

repeat 50 [setcursor list random 75 random 20 type "Hi]

repeat 360 [forward 1 right 1]

to polyspi :side :angle :number
if :number=0 [stop]
forward :side
right :angle
polyspi :side+1 :angle :number-1
end

repeat :number [forward :side right :angle]

to multiply :letters :number
if equalp :number 0 [stop]
print :letters
multiply (word :letters first :letters) :number-1
end

Computers are good at doing things over and over again. They don’t get bored or
tired. That’s why, in the real world, people use computers for things like sending out
payroll checks and telephone bills. The first Logo instruction I showed you, in the first
volume, was

When you were first introduced to turtle graphics, you probably used an instruction like

to draw a circle.

The trouble with is that it always does the same thing repeatedly. In a real
application, like those payroll checks, you want the computer to do the same thing
each time but with a different person’s name on each check. The usual way to program
an almost- in Logo is to use a recursive procedure, like this:

This is a well-known procedure to draw a spiral. What makes it different from

is that the first input in the recursive invocation is instead of just . We’ve
used a similar technique for almost-repetition in procedures like this one:

Numeric Iteration

Numeric Iteration 183

repeat

repeat

repeat

rep repeat
run

Polyspi

to fivesay.with.repeat :text
repeat 5 [print :text]
end

to fivesay.with.recursion :text
fivesay1 5 :text
end

to fivesay1 :times :text
if :times=0 [stop]
print :text
fivesay1 :times-1 :text
end

to rep :count :instr
if :count=0 [stop]
run :instr
rep :count-1 :instr
end

polyspi 50 60 4

Since recursion can express any repetitive computation, why bother inventing other
iteration tools? The answer is that they can make programs easier to read. Recursion is
such a versatile mechanism that the intention of any particular use of recursion may be
hard to see. Which of the following is easier to read?

or

The version using makes it obvious at a glance what the program wants to do;
the version using recursion takes some thought. It can be useful to invent mechanisms
that are intermediate in flexibility between and recursion.

As a simple example, suppose that Logo did not include as a primitive
command. Here’s how we could implement it using recursion:

(I’ve used the name instead of to avoid conflict with the primitive version.)
The use of to carry out the given instructions is at the core of the techniques we’ll
use throughout this chapter.

is an example of an iteration in which the value of a numeric variable changes
in a uniform way. The instruction

−

for repeat
repeat for

side 50 53

polyspi for

for

initial
final

step

184 Chapter 10 Iteration, Control Structures, Extensibility

forward 50 right 60
forward 51 right 60
forward 52 right 60
forward 53 right 60

for [side 50 53] [forward :side right 60]

to polyspi :start :angle :number
for [side :start [:start+:number-1]] [forward :side right :angle]
end

to for :values :instr
localmake "var first :values
local :var
localmake "initial run first butfirst :values
localmake "final run item 3 :values
localmake "step forstep
localmake "tester ~

ifelse :step < 0 [[:value < :final]] [[:value > :final]]
forloop :initial
end

is equivalent to the series of instructions

As you know, we can represent the same instructions this way:

The command takes two inputs, very much like . The second input, like
’s second input, is a list of Logo instructions. The first input to is different,

though. It is a list whose first member is the name of a variable; the second member of
the list must be a number (or a Logo expression whose value is a number), which will
be the value of that variable; and the third member must be another number (or
numeric expression), which will be the value of the variable. In the example above,
the variable name is , the initial value is , and the final value is . If there is a
fourth member in the list, it’s the amount to add to the named variable on each iteration;
if there is no fourth member, as in the example above, then the amount is either 1
or 1, depending on whether the final value is greater than or less than the initial value.

As an example in which expressions are used instead of constant numeric values,
here’s the procedure using :

Most of the work in writing is in evaluating the expressions that make up the
first input list. Here is the program:

loop,

that

Numeric Iteration 185

for
for

for forloop

local for for

for for

A foo
B for I for B

I for A

make forloop :var "var
var

var

to forstep
if (count :values)=4 [output run last :values]
if :initial > :final [output -1]
output 1
end

to forloop :value
make :var :value
if run :tester [stop]
run :instr
forloop :value+:step
end

local :var

to a
for [i 1 5] [b]
end

to b
for [i 1 3] [print "foo]
end

One slightly tricky part of this program is the instruction

near the beginning of . The effect of this instruction is to make whatever variable is
named by the first member of the first input local to . As it turns out, this variable
isn’t given a value in itself but only in its subprocedure . (A by the
way, is a part of a program that is invoked repeatedly.) But I’m thinking of these three
procedures as a unit and making the variable local to that whole unit. The virtue of this

instruction is that a program that uses can invent variable names for
freely, without having to declare them local and without cluttering up the workspace with
global variables. Also, it means that a procedure can invoke another procedure in the
instruction list of a without worrying about whether procedure uses itself.
Here’s the case I’m thinking of:

Invoking should print the word fifteen times: three times for each of the five
invocations of . If didn’t make a local variable, the invocation of within
would mess up the value of in the outer invoked by . Got that?

Notice that the instruction in has as its first input, not .
This instruction does not assign a new value to the variable ! Instead, it assigns a new
value to the variable whose name is the value of .

Logo: an Extensible Language

186 Chapter 10 Iteration, Control Structures, Extensibility

for

stop output

for

forloop forloop false
primep false

for

repeat

for
for

repeat

for

to primep :num
for [trial 2 [:num-1]] [if divisiblep :num :trial [output "false]]
output "true
end

to divisiblep :big :small
output equalp remainder :big :small 0
end

run :instr

The version of actually used in the Berkeley Logo library is a little more
complicated than this one. The one shown here works fine as long as the instruction
list input doesn’t include or , but it won’t work for an example like the
following. To check whether or not a number is prime, we must see if it is divisible by
anything greater than 1 and smaller than the number itself:

This example will work in the Berkeley Logo , but not in the version I’ve written in
this chapter. The trouble is that the instruction

in will make output if a divisor is found, whereas we really
want to output ! We’ll see in Chapter 12 how to solve this problem.

There are two ways to look at a program like . You can take it apart, as I’ve been doing
in these last few paragraphs, to see how it works inside. Or you can just think of it as an
extension to Logo, an iteration command that you can use as you’d use , without
thinking about how it works. I think both of these perspectives will be valuable to you. As
a programming project, demonstrates some rather advanced Logo techniques. But
you don’t have to think about those techniques each time you use . Instead you can
think of it as a primitive, as we’ve been doing prior to this chapter.

The fact that you can extend Logo’s vocabulary this way, adding a new way to control
iteration that looks just like the primitive , is an important way in which Logo
is more powerful than toy programming languages like C++ or Pascal. C++ has several
iteration commands built in, including one like , but if you think of a new one,
there’s no way you can add it to the language. In Logo this kind of language extension is
easy. For example, here is a preview of a programming project I’m going to develop later

−

Multifor

if repeat for

for

for

No Perfect Control Structures

and

control structure
data structure

No Perfect Control Structures 187

multifor [[size 50 100 5] [angle 50 100 10]] [forward :size right :angle]

forward 50 right 50
forward 55 right 60
forward 60 right 70
forward 65 right 80
forward 70 right 90
forward 75 right 100

in this chapter. Suppose you’re playing with spirals, and you’d like to see what happens
if you change the line length the turning angle at the same time. That is, you’d like
to be able to say

and have that be equivalent to the series of instructions

should step each of its variables each time around, stopping whenever any
of them hits the final value. This tool strikes me as too specialized and complicated to
provide in the Logo library, but it seems very appropriate for certain kinds of project. It’s
nice to have a language in which I can write it if I need it.

Among enthusiasts of the Fortran family of programming languages (that is, all the
languages in which you have to say ahead of time whether or not the value of some
numeric variable will be an exact integer), there are fierce debates about the “best”
control structure. (A is a way of grouping instructions together, just as a

is a way of grouping data together. A list is a data structure. A procedure is
a control structure. Things like , , and are special control structures that
group instructions in particular ways, so that a group of instructions can be evaluated
conditionally or repeatedly.)

For example, all of the Fortran-derived languages have a control structure for
numeric iteration, like my procedure. But they differ in details. In some languages
the iteration variable must be stepped by 1. In others the step value can be either 1 or

1. Still others allow any step value, as does. Each of these choices has its defenders
as the “best.”

Sometimes the arguments are even sillier. When Fortran was first invented, its
designers failed to make explicit what should happen if the initial value of an iteration
variable is greater than the final value. That is, they left open the interpretation of a

Iteration Over a List

do
for

do
for

do
do

do

do

primep

foreach

foreach [chocolate [rum raisin] pumpkin] [print sentence [I like] ?]

you your

188 Chapter 10 Iteration, Control Structures, Extensibility

for [var 10 5 1] [print :var]

?
I like chocolate
I like rum raisin
I like pumpkin

Fortran statement (that’s what its numeric iteration structure is called) equivalent to
this instruction:

In this instruction I’ve specified a positive step (the only kind allowed in the Fortran
statement), but the initial value is greater than the final value. (What will do in
this situation?) Well, the first Fortran compiler, the program that translates a Fortran
program into the “native” language of a particular computer, implemented so that
the statements controlled by the were carried out once before the computer noticed
that the variable’s value was already too large. Years later a bunch of computer scientists
decided that that behavior is “wrong”; if the initial value is greater than the final value,
the statements shouldn’t be carried out at all. This proposal for a “zero trip loop” was
fiercely resisted by old-timers who had by then written hundreds of programs that relied
on the original behavior of . Dozens of journal articles and letters to the editor carried
on the battle.

The real moral of this story is that there is no right answer. The right control
structure for to use is the one that best solves immediate problem. But only
an extensible language like Logo allows you the luxury of accepting this moral. The
Fortran people had to fight out their battle because they’re stuck with whatever the
standardization committee decides.

In the remainder of this chapter I’ll present various kinds of control structures, each
reflecting a different way of looking at the general idea of iteration.

Numeric iteration is useful if the problem you want to solve is about numbers, as in the
example, or if some arbitrary number is part of the rules of a game, like the

seven stacks of cards in solitaire. But in most Logo projects, it’s more common to want
to carry out a computation for each member of a list, and for that purpose we have the

control structure:

template

Iteration Over a List 189

foreach for
foreach for

foreach
for

for

run

foreach
run

apply

apply

apply run
apply foreach

named.foreach "flavor [lychee [root beer swirl]] ~
[print sentence [I like] :flavor]

apply [print ?+3] [5]

apply [print word first ?1 first ?2] [Peter Dickinson]

to named.foreach :var :data :instr
local :var
if emptyp :data [stop]
make :var first :data
run :instr
named.foreach :var (butfirst :data) :instr
end

?

I like lychee
I like root beer swirl

?
8
?
PD

to foreach :list :template
if emptyp :list [stop]
apply :template (list first :list)
foreach (butfirst :list) :template
end

In comparing with , one thing you might notice is the use of the
question mark to represent the varying datum in , while requires a user-
specified variable name for that purpose. There’s no vital reason why I used these
different mechanisms. In fact, we can easily implement a version of that takes
a variable name as an additional input. Its structure will then look similar to that of :

Just as in the implementation of , there is a recursive invocation for each member
of the data input. We assign that member as the value of the variable named in the first
input, and then we the instructions in the third input.

In order to implement the version of that uses question marks instead
of named variables, we need a more advanced version of that says “run these
instructions, but using this value wherever you see a question mark.” Berkeley Logo has
this capability as a primitive procedure called . It takes two inputs, a (an
instruction list with question marks) and a list of values. The reason that the second
input is a list of values, rather than a single value, is that can handle templates
with more than one slot for values.

It’s possible to write in terms of , and I’ll do that shortly. But first, let’s just
take advantage of Berkeley Logo’s built-in to write a simple version of :

190 Chapter 10 Iteration, Control Structures, Extensibility

Apply run

apply

foreach

foreach

foreach inputs
:inputs

foreach
inputs

(foreach [John Paul George Ringo] [rhythm bass lead drums]
[print (sentence ?1 "played ?2)]

(demo "alpha "beta "gamma)

?

John played rhythm
Paul played bass
George played lead
Ringo played drums

to foreach [:inputs] 2
foreach.loop (butlast :inputs) (last :inputs)
end

to foreach.loop :lists :template
if emptyp first :lists [stop]
apply :template firsts :lists
foreach.loop (butfirsts :lists) :template
end

to demo [:stuff]
print sentence [The first input is] first :stuff
print sentence [The others are] butfirst :stuff
end

?
The first input is alpha
The others are beta gamma

, like , can be either a command or an operation depending on whether its
template contains complete Logo instructions or a Logo expression. In this case, we are
using as a command.

The version of in the Berkeley Logo library can take more than one data
input along with a multi-input template, like this:

We can implement this feature, using a special notation in the title line of to
notify Logo that it accepts a variable number of inputs:

First look at the title line of . It tells Logo that the word is a formal
parameter—the name of an input. Because is inside square brackets, however,
it represents not just one input, but any number of inputs in the invocation of .
The values of all those inputs are collected as a list, and that list is the value of .
Here’s a trivial example:

default

list of lists

Iteration Over a List 191

show firsts [[a b c] [1 2 3] [y w d]]

show butfirsts [[a b c] [1 2 3] [y w d]]

?
[a 1 y]
?
[[b c] [2 3] [w d]]

to firsts :list.of.lists
output map "first :list.of.lists
end

to butfirsts :list.of.lists
output map "butfirst :list.of.lists
end

demo

sentence sum word local

Demo
foreach 2 foreach

Foreach
foreach foreach.loop

foreach.loop
firsts butfirsts first butfirst

firsts butfirsts

foreach map

firsts butfirsts
foreach.loop foreach

As you know, the Logo procedures that accept a variable number of inputs have
a number that they accept without using parentheses; if you want to use more
or fewer than that number, you must enclose the procedure name and its inputs in
parentheses, as I’ve done here with the procedure. Most Logo primitives that
accept a variable number of inputs have two inputs as their default number (for example,

, ,) but there are exceptions, such as , which takes one input
if parentheses are not used. When you write your own procedure with a single input
name in brackets, its default number of inputs is zero unless you specify another number.

, for example, has zero as its default number. If you look again at the title line of
, you’ll see that it ends with the number ; that tells Logo that expects

two inputs by default.

uses all but its last input as data lists; the last input is the template to be
applied to the members of the data lists. That’s why invokes
as it does, separating the two kinds of inputs into two variables.

Be careful when reading the definition of ; it invokes procedures
named and . These are not the same as and !
Each of them takes a as its input, and outputs a list containing the first members
of each sublist, or all but the first members, respectively:

It would be easy to write and in Logo:

but in fact Berkeley Logo provides these operations as primitives, because implementing
them as primitives makes the iteration tools such as and (which, as we’ll
see, also uses them) much faster.

Except for the use of and to handle the multiple data inputs,
the structure of is exactly like that of the previous version of
that only accepts one data list.

ApplyImplementing

show apply "first [Logo]

is

192 Chapter 10 Iteration, Control Structures, Extensibility

to app :template :input.value
run :template
end

to %
output :input.value
end

?
L

for foreach
stop output

apply

app apply %

app

App run

? apply % app

? %
app

% input.value app
% app

%
app

apply

app

Like , the version of presented here can’t handle instruction lists that
include or correctly.

Berkeley Logo includes as a primitive, for efficiency, but we could implement it in
Logo if necessary. In this section, so as not to conflict with the primitive version, I’ll use
the name for my non-primitive version of , and I’ll use the percent sign ()
as the placeholder in templates instead of question mark.

Here is a simple version of that allows only one input to the template:

This is so simple that it probably seems like magic. seems to do nothing but
its template as though it were an ordinary instruction list. The trick is that a template

an instruction list. The only unusual thing about a template is that it includes special
symbols (in the real , in) that represent the given value. We see now that
those special symbols are really just ordinary names of procedures. The question mark
() procedure is a Berkeley Logo primitive; I’ve defined the analogous procedure here
for use by .

The procedure outputs the value of a variable, , that is local to .
If you invoke in some context other than an template, you’ll get an error message
because that variable won’t exist. Logo’s dynamic scope makes it possible for to use

’s variable.

The real accepts a procedure name as argument instead of a template:

We can extend to accept named procedures, but the definition is somewhat messier:

optional input.

default value

Implementing 193

app [print word first (% 1) first (% 2)] [Paul Goodman]

app

app apply
app

app %
Index

foreach
%

%
index %

index

(% 1)

(% 1) ?1 apply

to app :template.or.name :input.value
ifelse wordp :template.or.name ~

[run list :template.or.name "%] ~
[run :template.or.name]

end

to app :template :input.values
run :template
end

to % [:index 1]
output item :index :input.values
end

?
PG

to %1 to %2 to %3
output (% 1) output (% 2) output (% 3)
end end end

Apply

If the first input is a word, we construct a template by combining that procedure name
with a percent sign for its input. However, in the rest of this section I’ll simplify the
discussion by assuming that accepts only templates, not procedure names.

So far, takes only one value as input; the real takes a list of values. I’ll
extend to match:

No change is needed to , but has been changed to use another new notation in
its title line. is the name of an Although this notation also uses
square brackets, it’s different from the notation used in because the brackets
include a as well as the name for the input. This version of accepts either
no inputs or one input. If is invoked with one input, then the value of that input will
be associated with the name , just as for ordinary inputs. If is invoked with no
inputs, then will be given the value 1 (its default value).

A percent sign with a number as input selects an input value by its position within the list
of values. A percent sign by itself is equivalent to .

The notation isn’t as elegant as the used in the real . You can solve
that problem by defining several extra procedures:

show runparse [print word first ?1 first ?2]

194 Chapter 10 Iteration, Control Structures, Extensibility

?2 (? 2)

runparse

apply app

catch

run
output

.maybeoutput

output

?
[print word first (? 1) first (? 2)]

to app.oper :template :input.values
output run :template
end

to app :template :input.values
catch "error [output run :template]
ignore error
end

to app :template :input.values
.maybeoutput run :template
end

Berkeley Logo recognizes the notation and automatically translates it to , as you
can see by this experiment:

(The primitive operation takes a list as input and outputs the list as it would
be modified by Logo when it is about to be run. That’s a handwavy description, but the
internal workings of the Logo interpreter are too arcane to explore here.)

Unlike the primitive , this version of works only as a command, not as an
operation. It’s easy to write a separate version for use as an operation:

It’s not so easy in non-Berkeley versions of Logo to write a single procedure that can serve
both as a command and as an operation. Here’s one solution that works in versions with

:

This isn’t an ideal solution, though, because it doesn’t report errors other than “
didn’t output to .” It could be improved by testing the error message more
carefully instead of just ignoring it.

Berkeley Logo includes a mechanism that solves the problem more directly, but it’s
not very pretty:

The primitive command is followed by a Logo expression that may or
may not produce a value. If so, that value is output, just as it would be by the ordinary

command; the difference is that it’s not considered an error if no value is
produced.

Mapping

Mapping 195

apply app
apply

map foreach

map

Map

fput sentence

fput

show map [?*?] [1 2 3 4]

show map [first ?] [every good boy does fine]

?
[1 4 9 16]
?
[e g b d f]
?

to squares :numbers
if emptyp :numbers [output []]
output fput ((first :numbers) * (first :numbers)) ~

(squares butfirst :numbers)
end

to map :template :values
if emptyp :values [output []]
output fput (apply :template (list first :values)) ~

(map :template butfirst :values)
end

From now on I’ll use the primitive . I showed you for two reasons. First,
I think you’ll understand better by seeing how it can be implemented. Second,
this implementation may be useful if you ever work in a non-Berkeley Logo.

So far the iteration tools we’ve created apply only to commands. As you know, we also
have the operation , which is similar to except that its template is an
expression (producing a value) rather than an instruction, and it accumulates the values
produced for each member of the input.

When implementing an iteration tool, one way to figure out how to write the program
is to start with a specific example and generalize it. For example, here’s how I’d write the
example about squaring the numbers in a list without using :

is very similar, except that it applies a template to each datum instead of squaring it:

You may be wondering why I used rather than in these procedures.
Either would be just as good in the example about squares of numbers, because each
datum is a single word (a number) and each result value is also a single word. But it’s
important to use in an example such as this one:

196 Chapter 10 Iteration, Control Structures, Extensibility

map.se sentence

list
map.list

foreach

foreach map
word fput

template.number map1
#

show map [swap ?] [[Sherlock Holmes] [James Pibble] [Nero Wolfe]]

show map.se [swap ?] [[Sherlock Holmes] [James Pibble] [Nero Wolfe]]

show map [list ? #] [a b c]

to swap :pair
output list last :pair first :pair
end

?
[[Holmes Sherlock] [Pibble James] [Wolfe Nero]]

?
[Holmes Sherlock Pibble James Wolfe Nero]

to map :map.template [:template.lists] 2
op map1 :template.lists 1
end

to map1 :template.lists :template.number
if emptyp first :template.lists [output first :template.lists]
output combine (apply :map.template firsts :template.lists)

(map1 bfs :template.lists :template.number+1)
end

to combine :this :those
if wordp :those [output word :this :those]
output fput :this :those
end

?
[[a 1] [b 2] [c 3]]

Berkeley Logo does provide an operation in which is used as the
combiner; sometimes that’s what you want, but not, as you can see, in this example. (A
third possibility that might occur to you is to use as the combiner, but that never
turns out to be the right thing; try writing a and see what results it gives!)

As in the case of , the program gets a little more complicated when we
extend it to handle multiple data inputs. Another complication that wasn’t relevant to

is that when we use a word, rather than a list, as the data input to , we must
use as the combiner instead of . Here’s the complete version:

This is the actual program in the Berkeley Logo library. One feature I haven’t discussed
until now is the variable used as an input to . Its purpose is to
allow the use of the number sign character in a template to represent the position of
each datum within its list:

Mapping as a Metaphor

print count [how now brown cow]

to #
output :template.number
end

?
4

implemented

data

you

Mapping as a Metaphor 197

?

map1

map

Count

count

equalp memberp

count

count

The implementation is similar to that of in templates:

It’s also worth noting the base case in . When the data input is empty, we must
output either the empty word or the empty list, and the easiest way to choose correctly is
to return the empty input itself.

In this chapter, we got to the idea of mapping by this route: iteration, numeric iteration,
other kinds of iteration, iteration on a list, iterative commands, iterative operations,
mapping. In other words, we started thinking about the mapping tool as a particular
kind of repetition in a computer program.

But when I first introduced as a primitive operation, I thought about it in a
different way. Never mind the fact that it’s through repetition. Instead think
of it as extending the power of the idea of a list. When we started thinking about lists, we
thought of the list as one complete entity. For example, consider this simple interaction
with Logo:

is a primitive operation. It takes a list as input, and it outputs a number that is a
property of the entire list, namely the number of members in the list. There is no need
to think of as embodying any sort of repetitive control structure. Instead it’s one
kind of handle on the structure called a list.

There are other operations that manipulate lists, like and . You’re
probably in the habit of thinking of these operations as “happening all at once,” not as
examples of iteration. And that’s a good way to think of them, even though it’s also
possible to think of them as iterative. For example, how does Logo know the of a
list? How would find out the number of members of a list? One way would be to count
them on your fingers. That’s an iteration. Logo actually does the same thing, counting
off the list members one at a time, as it would if we implemented recursively:

Other Higher Order Functions

map
map

map reduce
filter

apply
reduce

show 1+[5 10 15]

show map [1+?] [5 10 15]

198 Chapter 10 Iteration, Control Structures, Extensibility

to cnt :list
if emptyp :list [output 0]
output 1+cnt butfirst :list
end

?
[6 11 16]

?
[6 11 16]

to reduce :reduce.function :reduce.list
if emptyp butfirst :reduce.list [output first :reduce.list]
output apply :reduce.function (list (first :reduce.list)

(reduce :reduce.function
butfirst :reduce.list))

end

I’m showing you that the “all at once” Logo primitives can be considered as iterative
because, in the case of , I want to shift your point of view in the opposite direction.
We started thinking of as iterative; now I’d like you to think of it as happening all at
once.

Wouldn’t it be nice if we could say

That is, I’d like to be able to “add 1 to a list.” I want to think about it that way, not as “add
1 to each member of a list.” The metaphor is that we’re doing something to the entire
list at once. Well, we can’t quite do it that way, but we can say

Instead of thinking “Well, first we add 1 to 5, which gives us 6; then we add...” you should
think “we started with a list of three numbers, and we’ve transformed it into another list
of three numbers using the operation add-one.”

Along with , you learned about the higher order functions , which combines
all of the members of a list into a single result, and , which selects some of the
members of a list. They, too, are implemented by combining recursion with .
Here’s the Berkeley Logo library version of :

Other Higher Order Functions 199

filter
map #

map map1 template.number
filter template.number

filter filter

filter template.lists
map filter

template.lists
filter

?rest
?

to filter :template :data
if emptyp :data [output []]
if apply :template (list first :data) ~

[output fput (first :data)
(filter :template butfirst :data)]

output filter :template butfirst :data
end

to filter :filter.template :template.list [:template.number 1]
localmake "template.lists (list :template.list)
if emptyp :template.list [output :template.list]
if apply :filter.template (list first :template.list) ~

[output combine (first :template.list)
(filter :filter.template (butfirst :template.list)

:template.number+1)]
output (filter :filter.template (butfirst :template.list)

:template.number+1)
end

If there is only one member, output it. Otherwise, recursively reduce the butfirst of
the data, and apply the template to two values, the first datum and the result from the
recursive call.

The Berkeley Logo implementation of is a little more complicated, for some
of the same reasons as that of : the ability to accept either a word or a list, and the
feature in templates. So I’ll start with a simpler one:

If you understand that, you should be able to see the fundamentally similar structure of
the library version despite its extra details:

Where used a helper procedure to handle the extra input ,
uses an alternate technique, in which is declared as an

optional input to itself. When you invoke you always give it the default
two inputs, but it invokes itself recursively with three.

Why does need a local variable named ? There was a
variable with that name in because it accepts more than one data input, but
doesn’t, and in fact there is no reference to the value of within

. It’s there because of another feature of templates that I haven’t mentioned:
you can use the word in a template to represent the portion of the data input to
the right of the member represented by in this iteration:

Mapping Over Trees

?rest map filter

uppercase

tree,

200 Chapter 10 Iteration, Control Structures, Extensibility

to remove.duplicates :list
output filter [not memberp ? ?rest] :list
end

? show remove.duplicates [ob la di ob la da]
[di ob la da]

to ?rest [:which 1]
output butfirst item :which :template.lists
end

[[the [quick brown] fox] [[jumped] [over [the [lazy] dog]]]]

map [uppercase ?] ~
[[the [quick brown] fox] [[jumped] [over [the [lazy] dog]]]]

Since is allowed in templates as well as in templates, its implementa-
tion must be the same for both:

It’s time to move beyond the iteration tools in the Logo library and invent our own new
ones.

So far, in writing operations on lists, we’ve ignored any sublist structure within the
list. We do something for each top-level member of the input list. It’s also possible to
take advantage of the complex structures that lists make possible. For example, a list can
be used to represent a a data structure in which each branch can lead to further
branches. Consider this list:

My goal here is to represent a sentence in terms of the phrases within it, somewhat like
the sentence diagrams you may have been taught in elementary school. This is a list with
two members; the first member represents the subject of the sentence and the second
represents the predicate. The predicate is further divided into a verb and a prepositional
phrase. And so on. (A representation something like this, but more detailed, is used in
any computer program that tries to understand “natural language” interaction.)

Suppose we want to convert each word of this sentence to capital letters, using
Berkeley Logo’s primitive that takes a word as input. We can’t just say

Iteration and Tail Recursion

word

not

both

Iteration and Tail Recursion 201

show map.tree [uppercase ?]~
[[the [quick brown] fox] [[jumped] [over [the [lazy] dog]]]]

map.tree

Map.tree
map.tree

down countdown
one.per.line countdown for

one.per.line foreach Down

downup hanoi

?

[[THE [QUICK BROWN] FOX] [[JUMPED] [OVER [THE [LAZY] DOG]]]]

to map.tree :template :tree
if wordp :tree [output apply :template (list :tree)]
if emptyp :tree [output []]
output fput (map.tree :template first :tree) ~

(map.tree :template butfirst :tree)
end

because the members of the sentence-list aren’t words. What I want is a procedure
that applies a template to each within the input list but maintains the

shape of the list:

After our previous adventures in mapping, this one is relatively easy:

This is rather a special-purpose procedure; it’s only good for trees whose “leaves”
are words. That’s sometimes the case but not always. But if you’re dealing with sentence
trees like the one in my example, you might well find several uses for a tool like this.
For now, I’ve introduced it mainly to make the point that the general idea of iteration
can take many different forms, depending on the particular project you’re working on.
(Technically, this is an iteration, because it doesn’t have a two-part structure in which
the first part is to perform one step of a computation and the second part is to perform
all the rest of the steps. does have a two-part structure, but parts are
recursive calls that might carry out several steps. But does generalize the
broad idea of dividing a large computation into similar individual pieces. We’ll go into
the nature of iteration more carefully in a moment.)

If you look back at the introduction to recursion in the first volume, you’ll find that some
recursive commands seem to be carrying out an iteration, like , , or

. (In this chapter we’ve seen how to implement using ,
and you should easily be able to implement using . isn’t
exactly covered by either of those tools; can you see why I call it an iterative problem
anyway?) Other recursive commands don’t seem to be repeating or almost-repeating
something, like or . The difference is that these commands don’t do
something completely, then forget about it and go on to the next repetition. Instead,

ForMultiple Inputs to

tail

mean

teachers,

202 Chapter 10 Iteration, Control Structures, Extensibility

downup

poly polyspi
downup

multifor for
for

map foreach firsts butfirsts map
for multifor

the first invocation of , for example, still has work of its own to do after all the
lower-level invocations are finished.

It turns out that a command that is recursive is one that can be thought of
as carrying out an iteration. A command that invokes itself somewhere before the last
instruction is not iterative. But the phrase “tail recursive” doesn’t “equivalent to
an iteration.” It just happens to work out, for commands, that the two concepts are
equivalent. What “tail recursive” means, really, is “invokes itself just before stopping.”

I’ve said before that this isn’t a very important thing to worry about. The reason
I’m coming back to it now is to try to clear up a confusion that has been part of the
Logo literature. Logo implementors talk about tail recursion because there is a tricky
way to implement tail recursion that takes less memory than the more general kind of
recursion. Logo on the other hand, tend to say “tail recursive” when they really
mean “iterative.” For example, teachers will ask, “Should we teach tail recursion first and
then the general case?” What’s behind this question is the idea that iteration is easier to
understand than recursion. (By the way, this is a hot issue. Most Logo teachers would say
yes; they begin by showing their students an iterative command like or . I
generally say no; you may recall that the first recursive procedure I showed you is .
One reason is that I expect some of my readers have programmed in Pascal or C, and I
want to make it as hard as possible for such readers to convince themselves that recursion
is just a peculiar way to express the idea of iteration.)

There are two reasons people should stop making a fuss about tail recursion.
One is that they’re confusing an idea about control structures (iteration) with a Logo
implementation strategy (tail recursion). The second is that this way of thinking directs
your attention to commands rather than operations. (When people think of iterative
procedures as “easier,” it’s always commands that they have in mind. Tail recursive
operations are, if anything, less straightforward than versions that are non-tail recursive.)
Operations are more important; they’re what gives Logo much of its flexibility. And the
best way to think about recursive operations isn’t in implementation terms but in terms
of data transformation abstractions like mapping, reduction, and filters.

Earlier I promised you , a version of that controls more than one numeric
variable at a time. Its structure is very similar to that of the original , except that
we use or (or or , which are implicit uses of) in
almost every instruction to carry out ’s algorithm for each of ’s numeric
variables.

for

ForMultiple Inputs to 203

multifor [[a 10 100 5] [b 100 10 -10]] ~
[print (sentence :a "+ :b "= (:a + :b))]

This is a very dense program; I wouldn’t expect anyone to read and understand it
from a cold start. But if you compare it to the implementation of on page 184, you
should be able to make sense of how each line is transformed in this version.

Here is an example you can try:

to multifor :values.list :instr
localmake "vars firsts :values.list
local :vars
localmake "initials map "run firsts butfirsts :values.list
localmake "finals map [run item 3 ?] :values.list
localmake "steps (map "multiforstep :values.list :initials :finals)
localmake "testers map [ifelse ? < 0 [[?1 < ?2]] [[?1 > ?2]]] :steps
multiforloop :initials
end

to multiforstep :values :initial :final
if (count :values)=4 [output run last :values]
if :initial > :final [output -1]
output 1
end

to multiforloop :values
(foreach :vars :values [make ?1 ?2])
(foreach :values :finals :testers [if run ?3 [stop]])
run :instr
multiforloop (map [?1+?2] :values :steps)
end

?

10 + 100 = 110
15 + 90 = 105
20 + 80 = 100
25 + 70 = 95
30 + 60 = 90
35 + 50 = 85
40 + 40 = 80
45 + 30 = 75
50 + 20 = 70
55 + 10 = 65
?

grade 50

The Evaluation Environment Bug

run apply

forloop
final

for

midterm
grade forloop

final grade final

run

run
evaluation environment

204 Chapter 10 Iteration, Control Structures, Extensibility

to grade :final
for [midterm 10 100 10] [print (sum :midterm :final) / 2]
end

?

to map :template :inputs

to map :map.qqzzqxx.template :map.qqzzqxx.inputs

There’s a problem with all of these control structure tools that I haven’t talked about.
The problem is that each of these tools uses or to evaluate an expression
that’s provided by the calling procedure, but the expression is evaluated with the tool’s
local variables active, in addition to those of the calling procedure. This can lead to
unexpected results if the name of a variable used in the expression is the same as the
name of one of the local variables in the tool. For example, has an input
named . What happens if you try

Try this example with the implementation of in this chapter, not with the Logo
library version. You might expect each iteration to add 10 and 50, then 20 and 50, then
30 and 50, and so on. That is, you wanted to add the iteration variable to the
input to . In fact, though, the variable that contributes to the sum is ’s

, not ’s .

The way to avoid this problem is to make sure you don’t use variables in superproce-
dures of these tools with the same names as the ones inside the tools. One way to ensure
that is to rewrite all the tool procedures so that their local variables have bizarre names:

becomes

Of course, you also have to change the names wherever they appear inside the definition,
not just on the title line. You can see why I preferred not to present the procedures to
you in that form!

It would be a better solution to have a smarter version of , which would allow
explicit control of the —the variable names and values that should
be in effect while evaluating ’s input. Some versions of Lisp do have such a capability.

