
Appendices







267

Entering and Leaving Logo

Berkeley Logo Reference Manual

logo

c:\ucblogo
ucblogo bl

logo UCB Logo

bye

bye

Copyright 1993 by the Regents of the University of California

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The process to start Logo depends on your operating system:

Unix Type the word to the shell. (The directory in which you’ve installed Logo must be in
your path.)

DOS Change directories to the one containing Logo (probably ). Then type
for the large memory version, or for the 640K version.

Mac Double-click on the icon within the folder.

To leave Logo, enter the command .

Under Unix or DOS, if you include one or more filenames on the command line when
starting Logo, those files will be loaded before the interpreter starts reading commands from your
terminal. If you load a file that executes some program that includes a command, Logo will
run that program and exit. You can therefore write standalone programs in Logo and run them
with shell/batch scripts. To support this technique, Logo does not print its usual welcoming and
parting messages if you give file arguments to the logo command.



( ? 37 )

Tokenization

268 Berkeley Logo Reference Manual

throw "toplevel
pause

\

LOGOLIB

proc.lg proc

proc .lg

end true false

[2+3]

run if

+-*/=<>

?37

?

readlist readword
~ Readword

readlist

If you type your interrupt character (see table below) Logo will stop what it’s doing and return
to toplevel, as if you did . If you type your quit character Logo will pause as if
you did .

Unix DOS Mac

toplevel usually ctrl-C ctrl-Q command-. (period)
pause usually ctrl- ctrl-W command-, (comma)

If you have an environment variable called whose value is the name of a directory,
then Logo will use that directory instead of the default library. If you invoke a procedure that has
not been defined, Logo first looks for a file in the current directory named where
is the procedure name in lower case letters. If such a file exists, Logo loads that file. If the missing
procedure is still undefined, or if there is no such file, Logo then looks in the library directory for
a file named (no ) and, if it exists, loads it. If neither file contains a definition for the
procedure, then Logo signals an error. Several procedures that are primitive in most versions of
Logo are included in the default library, so if you use a different library you may want to include
some or all of the default library in it.

Names of procedures, variables, and property lists are case-insensitive. So are the special words
, , and . Case of letters is preserved in everything you type, however.

Within square brackets, words are delimited only by spaces and square brackets. is a list
containing one word. Note, however, that the Logo primitives that interpret such a list as a Logo
instruction or expression ( , , etc.) reparse the list as if it had not been typed inside brackets.

After a quotation mark outside square brackets, a word is delimited by a space, a square
bracket, or a parenthesis.

A word not after a quotation mark or inside square brackets is delimited by a space, a bracket,
a parenthesis, or an infix operator . Note that words following colons are in this category.
Note that quote and colon are not delimiters.

A word consisting of a question mark followed by a number (e.g., ), when runparsed (i.e.,
where a procedure name is expected), is treated as if it were the sequence

making the number an input to the procedure. (See the discussion of templates, below.) This
special treatment does not apply to words read as data, to words with a non-number following the
question mark, or if the question mark is backslashed.

A line (an instruction line or one read by or ) can be continued onto
the following line if its last character is a tilde ( ). preserves the tilde and the newline;

does not.



Tokenization 269

print "abc;comment ~
def

print run (se "\( 2 "+ 3 "\))

readlist readword

end

abcdef readword
readlist runparse

\

\\

readword readlist
equalp

backslashedp backslashedp

readword
readlist parse runparse

parse runparse

run

5

An instruction line or a line read by (but not by ) is automatically
continued to the next line, as if ended with a tilde, if there are unmatched brackets, parentheses,
braces, or vertical bars pending. However, it’s an error if the continuation line contains only the
word ; this is to prevent runaway procedure definitions. Lines eplicitly continued with a tilde
avoid this restriction.

If a line being typed interactively on the keyboard is continued, either with a tilde or
automatically, Logo will display a tilde as a prompt character for the continuation line.

A semicolon begins a comment in an instruction line. Logo ignores characters from the
semicolon to the end of the line. A tilde as the last character still indicates a continuation line, but
not a continuation of the comment. For example, typing the instruction

will print the word . Semicolon has no special meaning in data lines read by
or , but such a line can later be reparsed using and then comments will be
recognized.

To include an otherwise delimiting character (including semicolon or tilde) in a word, precede
it with backslash ( ). If the last character of a line is a backslash, then the newline character
following the backslash will be part of the last word on the line, and the line continues onto the
following line. To include a backslash in a word, use . If the combination backslash-newline
is entered at the terminal, Logo will issue a backslash as a prompt character for the continuation
line. All of this applies to data lines read with or as well as to instruction
lines. A character entered with backslash is to the same character without the backslash,
but can be distinguished by the predicate. (However, recgnizes
backslashedness only on characters for which it is necessary: whitespace, parentheses, brackets,
infix operators, backslash, vertical bar, tilde, quote, question mark, colon, and semicolon.)

An alternative notation to include otherwise delimiting characters in words is to enclose a
group of characters in vertical bars. All characters between vertical bars are treated as if they were
letters. In data read with the vertical bars are preserved in the resulting word. In data
read with (or resulting from a or of a word) the vertical bars do not
appear explicitly; all potentially delimiting characters (including spaces, brackets, parentheses, and
infix operators) appear as though entered with a backslash. Within vertical bars, backslash may still
be used; the only characters that must be backslashed in this context are backslash and vertical bar
themselves.

Characters entered between vertical bars are forever special, even if the word or list containing
them is later reparsed with or . Characters typed after a backslash are treated
somewhat differently: When a quoted word containing a backslashed character is runparsed,
the backslashed character loses its special quality and acts thereafter as if typed normally. This
distinction is important only if you are building a Logo expression out of parts, to be later, and
want to use parentheses. For example,

will print , but



Constructors

run (se "make ""|(| 2)

Data Structure Primitives

270 Berkeley Logo Reference Manual

library procedure

library procedure

item
setitem

print
{a b c}@0

(mdarray [3 5] 0)
[0 0] [2 4]

word
(word )

list
(list )

sentence
se
(sentence )
(se )

fput

lput

array
(array )

mdarray ( )
(mdarray )

listtoarray ( )
(listtoarray )

word1 word2
word1 word2 word3 ...

thing1 thing2
thing1 thing2 thing3 ...

thing1 thing2
thing1 thing2

thing1 thing2 thing3 ...
thing1 thing2 thing3 ...

thing list

thing list

size
size origin size

origin

sizelist
sizelist origin

list
list origin

will create a variable whose name is open-parenthesis. (Each example would fail if vertical bars and
backslashes were interchanged.)

outputs a word formed by concatenating its inputs.

outputs a list whose members are its inputs, which
can be any Logo datum (word, list, or array).

outputs a list whose members are its inputs, if those
inputs are not lists, or the members of its inputs, if those inputs are lists.

outputs a list equal to its second input with one extra member, the first
input, at the beginning.

outputs a list equal to its second input with one extra member, the first
input, at the end.

outputs an array of members (must be a positive integer),
each of which initially is an empty list. Array members can be selected with and changed with

. The first member of the array is member number 1 unless an input (must
be an integer) is given, in which case the first member of the array has that number as its index.
(Typically 0 is used as the origin if anything.) Arrays are printed by and friends, and can be
typed in, inside curly braces; indicate an origin with .

outputs a multi-dimensional array. The first input must be
a list of one or more positive integers. The second input, if present, must be a single integer that
applies to every dimension of the array. Ex: outputs a two-dimensional array
whose members range from to .

outputs an array of the same size as the input list, whose
members are the members of the input list.



index of

Selectors

Data Structure Primitives 271

word fput

G1 G2

first

map map.se foreach

butfirst

map map.se foreach

library procedure

library procedure

library procedure

library procedure

arraytolist ( )

combine ( )

reverse ( )

gensym ( )

first

firsts

last

butfirst
bf

butfirsts
bfs

array

thing1 thing2 thing2
thing1 thing2 thing2 thing1 thing2

list

thing

list

wordorlist

wordorlist
wordorlist

list
list

to firsts :list
output map "first :list
end

to transpose :matrix
if emptyp first :matrix [op []]
op fput firsts :matrix transpose bfs :matrix
end

to butfirsts :list
output map "butfirst :list
end

outputs a list whose members are the members
of the input array. The first member of the output is the first member of the array, regardless of
the array’s origin.

If is a word, outputs the result
of . If is a list, outputs the result of .

outputs a list whose members are the members of the
input list, in reverse order.

outputs a unique word each time it’s invoked. The words are of
the form , , etc.

If the input is a word, outputs the first character of the word. If the input is a list,
outputs the first member of the list. If the input is an array, outputs the origin of the array (that is,
the the first member of the array).

outputs a list containing the of each member of the input list. It is an
error if any member of the input list is empty. (The input itself may be empty, in which case the
output is also empty.) This could be written as

but is provided as a primitive in order to speed up the iteration tools , , and .

If the input is a word, outputs the last character of the word. If the input
is a list, outputs the last member of the list.

If the input is a word, outputs a word containing all but the first character of
the input. If the input is a list, outputs a list containing all but the first member of the input.

outputs a list containing the of each member of the input list. It is an
error if any member of the input list is empty or an array. (The input itself may be empty, in which
case the output is also empty.) This could be written as

but is provided as a primitive in order to speed up the iteration tools , , and .



Mutators

.setfirst

.setbf

setitem

Warning:

Warning:

Warning:

272 Berkeley Logo Reference Manual

butlast
bl

item

mditem ( )

pick ( )

remove ( )

remdup ( )

quoted ( )

setitem

mdsetitem ( )

.setfirst

.setbf

.setitem

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

wordorlist
wordorlist

index thing thing index
thing index thing
index Index

indexlist array
array indexlist

list

thing list list
thing

list list

thing

index array value index array
value value

array

indexlist array value
array indexlist value

list value list value

list value list value

index array value index array
value

If the input is a word, outputs a word containing all but the last character of
the input. If the input is a list, outputs a list containing all but the last member of the input.

If the is a word, outputs the th character of the word. If
the is a list, outputs the th member of the list. If the is an array, outputs
the th member of the array. starts at 1 for words and lists; the starting index of an
array is specified when the array is created.

outputs the member of the multidi-
mensional selected by the list of numbers .

outputs a randomly chosen member of the input list.

outputs a copy of with every member
equal to removed.

outputs a copy of with duplicate members re-
moved. If two or more members of the input are equal, the rightmost of those members is the one
that remains in the output.

outputs its input, if a list; outputs its input with a
quotation mark prepended, if a word.

command. Replaces the th member of
with the new . Ensures that the resulting array is not circular, i.e., may not be a list
or array that contains .

command. Replaces the
member of chosen by with the new .

command. Changes the first member of to be .
Primitives whose names start with a period are dangerous. Their use by non-experts is

not recommended. The use of can lead to circular list structures, which will get some
Logo primitives into infinite loops; unexpected changes to other data structures that share storage
with the list being modified; and the loss of memory if a circular structure is released.

command. Changes the butfirst of to be .
Primitives whose names start with a period are dangerous. Their use by non-experts is not
recommended. The use of can lead to circular list structures, which will get some Logo
primitives into infinite loops; unexpected changes to other data structures that share storage with
the list being modified; Logo crashes and coredumps if the butfirst of a list is not itself a list; and
the loss of memory if a circular structure is released.

command. Changes the th member of to
be , like , but without checking for circularity. Primitives whose names



Predicates

Data Structure Primitives 273

library procedure

library procedure

library procedure

library procedure

.setitem

push

queue

true false

true false

true false

true false

true false

caseignoredp
true

setitem

true

push ( )

pop ( )

queue ( )

dequeue ( )

wordp
word?

listp
list?

arrayp
array?

emptyp
empty?

equalp
equal?

beforep
before?

stackname thing thing
stackname

stackname
stackname

queuename thing thing
queuename

queuename
queuename

thing
thing

thing
thing

thing
thing

thing
thing

thing1 thing2
thing1 thing2

thing1 = thing2

word1 word2
word1 word2 word1 word2

start with a period are dangerous. Their use by non-experts is not recommended. The use of
can lead to circular arrays, which will get some Logo primitives into infinite loops; and

the loss of memory if a circular structure is released.

command. Adds the to the stack
that is the value of the variable whose name is . This variable must have a list as its
value; the initial value should be the empty list. New members are added at the front of the list.

outputs the most recently ed member of the
stack that is the value of the variable whose name is and removes that member from
the stack.

command. Adds the to the
queue that is the value of the variable whose name is . This variable must have a list as
its value; the initial value should be the empty list. New members are added at the back of the list.

outputs the least recently d member of
the queue that is the value of the variable whose name is and removes that member
from the queue.

outputs if the input is a word, otherwise.

outputs if the input is a list, otherwise.

outputs if the input is an array, otherwise.

outputs if the input is the empty word or the empty list, otherwise.

outputs if the inputs are equal, otherwise. Two numbers
are equal if they have the same numeric value. Two non-numeric words are equal if they contain
the same characters in the same order. If there is a variable named whose value
is , then an upper case letter is considered the same as the corresponding lower case letter.
(This is the case by default.) Two lists are equal if their members are equal. An array is only
equal to itself; two separately created arrays are never equal even if their members are equal. (It is
important to be able to know if two expressions have the same array as their value because arrays
are mutable; if, for example, two variables have the same array as their values then performing

on one of them will also change the other.)

outputs if comes before in ASCII collating



Queries

Warning:

274 Berkeley Logo Reference Manual

.eq

memberp
member?

substringp
substring?

numberp
number?

backslashedp
backslashed?

count

ascii

rawascii

char

caseignoredp
lessp beforep 3 12 3 1

true
false

true
equalp false true

equalp false

false
true equalp false

true false

true
\ |

false true
()[]+-*/=<>":;\~?|

rawascii

rawascii rc

thing1 thing2

thing1 thing2
thing1 thing2 thing2 thing1

thing2 thing2
thing1 thing2

thing1 thing2
thing1 thing2 thing1 thing2

thing2 thing1 thing2

thing
thing

char
char

thing

char

char

int

sequence (for words of letters, in alphabetical order). Case-sensitivity is determined by the value
of . Note that if the inputs are numbers, the result may not be the same as with

; for example, is false because collates after .

outputs if its two inputs are the same datum, so that applying a
mutator to one will change the other as well. Outputs otherwise, even if the inputs are
equal in value. Primitives whose names start with a period are dangerous. Their use by
non-experts is not recommended. The use of mutators can lead to circular data structures, infinite
loops, or Logo crashes.

If is a list or an array, outputs if is
to a member of , otherwise. If is a word, outputs if
is a one-character word to a character of , otherwise.

If or is a list or an array, outputs .
If is a word, outputs if is to a substring of ,
otherwise.

outputs if the input is a number, otherwise.

outputs if the input character was originally entered into Logo
with a backslash ( ) before it or within vertical bars ( ) to prevent its usual special syntactic
meaning, otherwise. (Outputs only if the character is a backslashed space, tab,
newline, or one of .)

outputs the number of characters in the input, if the input is a word; outputs the
number of members in the input, if it is a list or an array. (For an array, this may or may not be the
index of the last member, depending on the array’s origin.)

outputs the integer (between 0 and 255) that represents the input character in the
ASCII code. Interprets control characters as representing backslashed punctuation, and returns
the character code for the corresponding punctuation character without backslash. (Compare

.)

outputs the integer (between 0 and 255) that represents the input character
in the ASCII code. Interprets control characters as representing themselves. To find out the ASCII
code of an arbitrary keystroke, use .

outputs the character represented in the ASCII code by the input, which must be an
integer between 0 and 255.



Transmitters

Communication

Communication 275

member

lowercase

uppercase

standout

parse

runparse

thing1 thing2 thing2
thing2 thing1

thing2 thing2

word

word

thing

word

wordorlist

memberp
true

memberp false

type

standout

readlist parse readword readlist

printdepthlimit

[... ...]

printwidthlimit

printwidthlimit

If is a word or list and if with these inputs
would output , outputs the portion of from the first instance of to the
end. If would output , outputs the empty word or list according to the type of

. It is an error for to be an array.

outputs a copy of the input word, but with all uppercase letters changed to
the corresponding lowercase letter.

outputs a copy of the input word, but with all lowercase letters changed to
the corresponding uppercase letter.

outputs a word that, when printed, will appear like the input but displayed
in standout mode (boldface, reverse video, or whatever your terminal does for standout). The word
contains terminal-specific magic characters at the beginning and end; in between is the printed
form (as if displayed using ) of the input. The output is always a word, even if the input is of
some other type, but it may include spaces and other formatting characters. Note: a word output
by while Logo is running on one terminal will probably not have the desired effect if
printed on another type of terminal.

outputs the list that would result if the input word were entered in response to a
operation. That is, has the same value as for the same

characters read.

outputs the list that would result if the input word or list were entered
as an instruction line; characters such as infix operators and parentheses are separate members of
the output. Note that sublists of a runparsed list are not themselves runparsed.

Note: If there is a variable named with a nonnegative integer value, then
complex list and array structures will be printed only to the allowed depth. That is, members of
members of... of members will be allowed only so far. The members omitted because they are just
past the depth limit are indicated by an ellipsis for each one, so a too-deep list of two members will
print as .

If there is a variable named with a nonnegative integer value, then only the
first so many members of any array or list will be printed. A single ellipsis replaces all missing data
within the structure. The width limit also applies to the number of characters printed in a word,
except that a between 0 and 9 will be treated as if it were 10 when applied to
words. This limit applies not only to the top-level printed datum but to any substructures within it.



Receivers

line buffered;

does

276 Berkeley Logo Reference Manual

print
pr
(print )
(pr )

type
(type )

show
(show )

readlist
rl

readword
rw

thing
thing

thing1 thing2 ...
thing1 thing2 ...

thing
thing1 thing2 ...

thing
thing1 thing2 ...

print

type

print show

type
setcursor

wait Wait 0

print

readlist
Readlist

Readlist

readword Readword

backslashedp
backslashedp

command. Prints the input or inputs to the current write stream
(initially the terminal). All the inputs are printed on a single line, separated by spaces, ending with
a newline. If an input is a list, square brackets are not printed around it, but brackets are printed
around sublists. Braces are always printed around arrays.

command. Prints the input or inputs like , except
that no newline character is printed at the end and multiple inputs are not separated by spaces.
Note: printing to the terminal is ordinarily that is, the characters you print using
will not actually appear on the screen until either a newline character is printed (for example, by

or ) or Logo tries to read from the keyboard (either at the request of your program
or after an instruction prompt). This buffering makes the program much faster than it would
be if each character appeared immediately, and in most cases the effect is not disconcerting. To
accommodate programs that do a lot of positioned text display using , Logo will force printing
whenever is invoked. This solves most buffering problems. Still, on occasion you may
find it necessary to force the buffered characters to be printed explicitly; this can be done using
the command. will force printing without actually waiting.

command. Prints the input or inputs like , except
that if an input is a list it is printed inside square brackets.

reads a line from the read stream (initially the terminal) and outputs that line as a list. The
line is separated into members as though it were typed in square brackets in an instruction. If the
read stream is a file, and the end of file is reached, outputs the empty word (not the
empty list). processes backslash, vertical bar, and tilde characters in the read stream;
the output list will not contain these characters but they will have had their usual effect.
does not, however, treat semicolon as a comment character.

reads a line from the read stream and outputs that line as a word. The output is a single
word even if the line contains spaces, brackets, etc. If the read stream is a file, and the end of
file is reached, outputs the empty list (not the empty word). processes
backslash, vertical bar, and tilde characters in the read stream. In the case of a tilde used for
line continuation, the output word include the tilde and the newline characters, so that the
user program can tell exactly what the user entered. Vertical bars in the line are also preserved
in the output. Backslash characters are not preserved in the output, but the character following
the backslash is marked internally; programs can use to check for this marking.
(Backslashedness is preserved only for certain characters. See .)



File Access

Communication 277

to dayofweek
output first first shell [date]
end

num
num num

command
command wordflag command

filename

filename

filename

filename

readchar
rc

readchars
rcs

shell
(shell )

openread

openwrite

openappend

openupdate

readchar
readchar

readlist readword

readchars
readchars

readlist readword

\\

readlist

readword

first first

shell

reads a single character from the read stream and outputs that character as a word. If the
read stream is a file, and the end of file is reached, outputs the empty list (not the
empty word). If the read stream is a terminal, echoing is turned off when is invoked,
and remains off until or is invoked or a Logo prompt is printed. Backslash,
vertical bar, and tilde characters have no special meaning in this context.

reads characters from the read stream and outputs those characters as a word. If
the read stream is a file, and the end of file is reached, outputs the empty list (not the
empty word). If the read stream is a terminal, echoing is turned off when is invoked,
and remains off until or is invoked or a Logo prompt is printed. Backslash,
vertical bar, and tilde characters have no special meaning in this context.

Under Unix, outputs the result of running as a
shell command. (The command is sent to /bin/sh, not csh or other alternatives.) If the command
is a literal list in the instruction line, and if you want a backslash character sent to the shell, you
must use to get the backslash through Logo’s reader intact. The output is a list containing one
member for each line generated by the shell command. Ordinarily each such line is represented
by a list in the output, as though the line were read using . If a second input is given,
regardless of the value of the input, each line is represented by a word in the output as though it
were read with . Example:

This is to extract the first word of the first (and only) line of the shell output.

Under DOS, is a command, not an operation; it sends its input to a DOS command
processor but does not collect the result of the command.

The Macintosh, of course, is not programmable.

command. Opens the named file for reading. The read position is
initially at the beginning of the file.

command. Opens the named file for writing. If the file already
existed, the old version is deleted and a new, empty file created.

command. Opens the named file for writing. If the file already
exists, the write position is initially set to the end of the old file, so that newly written data will be
appended to it.

command. Opens the named file for reading and writing. The
read and write position is initially set to the end of the old file, if any. Note: each open file has



library procedure

278 Berkeley Logo Reference Manual

filename

filename
filename

filename

filename

filename

charpos
charpos

charpos
charpos

close

allopen

closeall ( )

erasefile
erf

dribble

nodribble

setread

setwrite

reader

writer

setreadpos

setwritepos

reader
writer setreadpos writepos

setreadpos
setwritepos

foreach allopen [close ?]

openwrite

writer

readlist
openread openupdate

print
openwrite openappend openupdate

readlist
setreadpos 0

print
setwritepos 0

only one position, for both reading and writing. If a file opened for update is both and
at the same time, then will also affect and vice versa. Also, if you

alternate reading and writing the same file, you must between a write and a read,
and between a read and a write.

command. Closes the named file.

outputs a list whose members are the names of all files currently open. This list does
not include the dribble file, if any.

command. Closes all open files.
Abbreviates

command. Erases (deletes, removes) the named file, which should not
currently be open.

command. Creates a new file whose name is the input, like ,
and begins recording in that file everything that is read from the keyboard or written to the
terminal. That is, this writing is in addition to the writing to . The intent is to create a
transcript of a Logo session, including things like prompt characters and interactions.

command. Stops copying information into the dribble file, and closes the file.

command. Makes the named file the read stream, used for ,
etc. The file must already be open with or . If the input is the empty list,
then the read stream becomes the terminal, as usual. Changing the read stream does not close the
file that was previously the read stream, so it is possible to alternate between files.

command. Makes the named file the write stream, used for , etc.
The file must already be open with , , or . If the input is the
empty list, then the write stream becomes the terminal, as usual. Changing the write stream does
not close the file that was previously the write stream, so it is possible to alternate between files.

outputs the name of the current read stream file, or the empty list if the read stream is
the terminal.

outputs the name of the current write stream file, or the empty list if the write stream is
the terminal.

command. Sets the file pointer of the read stream file so that the
next , etc., will begin reading at the th character in the file, counting from 0.
(That is, will start reading from the beginning of the file.) Meaningless if the read
stream is the terminal.

command. Sets the file pointer of the write stream file so that the
next , etc., will begin writing at the th character in the file, counting from 0.
(That is, will start writing from the beginning of the file.) Meaningless if the
write stream is the terminal.



Arithmetic

Arithmetic 279

Terminal Access

Numeric Operations

vector

vector

num1 num2
num1 num2 num3 ...

num1 + num2

true
false

true
not eofp

cbreak
readlist

keyp false

setcursor

x margin setcursor
Cursor

readpos

writepos

eofp
eof?

keyp
key?

cleartext
ct

setcursor

cursor

setmargins

sum
(sum )

outputs the file position of the current read stream file.

outputs the file position of the current write stream file.

predicate, outputs if there are no more characters to be read in the read stream file,
otherwise.

predicate, outputs if there are characters waiting to be read from the read stream. If
the read stream is a file, this is equivalent to . If the read stream is the terminal, then
echoing is turned off and the terminal is set to (character at a time instead of line at a
time) mode. It remains in this mode until some line-mode reading is requested (e.g., ).
The Unix operating system forgets about any pending characters when it switches modes, so the
first invocation will always output .

command. Clears the text screen of the terminal.

command. The input is a list of two numbers, the x and y coordinates
of a screen position (origin in the upper left corner, positive direction is southeast). The screen
cursor is moved to the requested position. This command also forces the immediate printing of
any buffered characters.

outputs a list containing the current x and y coordinates of the screen cursor. Logo may
get confused about the current cursor position if, e.g., you type in a long line that wraps around or
your program prints escape codes that affect the terminal strangely.

command. The input must be a list of two numbers, as for .
The effect is to clear the screen and then arrange for all further printing to be shifted down and to
the right according to the indicated margins. Specifically, every time a newline character is printed
(explicitly or implicitly) Logo will type spaces, and on every invocation of
the margins will be added to the input x and y coordinates. ( will report the cursor position
relative to the margins, so that this shift will be invisible to Logo programs.) The purpose of this
command is to accommodate the display of terminal screens in lecture halls with inadequate TV
monitors that miss the top and left edges of the screen.

outputs the sum of its inputs.



means
means

minus 3 + 4 -(3+4)
- 3 + 4 (-3)+4

280 Berkeley Logo Reference Manual

quotient 5 2
quotient 4 2 quotient

int

remainder

difference
-

minus
-

product
(product )

*

quotient
(quotient )

remainder

modulo

int

round

sqrt

power

exp

num1 num2
num1 num2

num
num

num1 num2
num1 num2 num3 ...

num1 num2

num1 num2
num

num1 / num2

num1 num2 num1 num2

num1 num2 num1 num2

num

num

num

num1 num2 num1 num2

num

outputs the difference of its inputs. Minus sign means infix difference in
ambiguous contexts (when preceded by a complete expression), unless it is preceded by a space
and followed by a nonspace.

outputs the negative of its input. Minus sign means unary minus if it is immediately
preceded by something requiring an input, or preceded by a space and followed by a nonspace.
There is a difference in binding strength between the two forms:

outputs the product of its inputs.

outputs the quotient of its inputs. The quotient of two integers is an integer if
and only if the dividend is a multiple of the divisor. (In other words, is 2.5, not 2,
but is 2, not 2.0—it does the right thing.) With a single input, outputs
the reciprocal of the input.

outputs the remainder on dividing by ; both must be
integers and the result is an integer with the same sign as num1.

outputs the remainder on dividing by ; both must be integers
and the result is an integer with the same sign as num2.

outputs its input with fractional part removed, i.e., an integer with the same sign as
the input, whose absolute value is the largest integer less than or equal to the absolute value of the
input.

Note: Inside the computer numbers are represented in two different forms, one for integers and
one for numbers with fractional parts. However, on most computers the largest number that can
be represented in integer format is smaller than the largest integer that can be represented (even
with exact precision) in floating-point (fraction) format. The operation will always output a
number whose value is mathematically an integer, but if its input is very large the output may not
be in integer format. In that case, operations like that require an integer input will
not accept this number.

outputs the nearest integer to the input.

outputs the square root of the input, which must be nonnegative.

outputs to the power. If num1 is negative, then num2 must
be an integer.

outputs e (2.718281828+) to the input power.



−

π −π

π

/ 90

/ /2 /2

y x x y x

y x x y x

Arithmetic 281

Predicates

Random Numbers

Print Formatting

2*(radarctan 0 1)

true

true

random

rerandom
random rerandom

log10

ln

sin

radsin

cos

radcos

arctan
(arctan )

radarctan
(radarctan )

lessp
less?

greaterp
greater?

random

rerandom
(rerandom )

form

num

num

degrees

radians

degrees

radians

num
x y

num
x y

num1 num2
num1 num2

num1 < num2

num1 num2
num1 num2

num1 > num2

num

seed

num width precision
num

outputs the common logarithm of the input.

outputs the natural logarithm of the input.

outputs the sine of its input, which is taken in degrees.

outputs the sine of its input, which is taken in radians.

outputs the cosine of its input, which is taken in degrees.

outputs the cosine of its input, which is taken in radians.

outputs the arctangent, in degrees, of its input. With two inputs, outputs the
arctangent of , if is nonzero, or 90 or depending on the sign of , if is zero.

outputs the arctangent, in radians, of its input. With two inputs, outputs
the arctangent of , if is nonzero, or or depending on the sign of , if is zero.

The expression can be used to get the value of .

outputs if its first input is strictly less than its second.

outputs if its first input is strictly greater than its second.

outputs a random nonnegative integer less than its input, which must be an
integer.

command. Makes the results of reproducible. Ordinarily the
sequence of random numbers is different each time Logo is used. If you need the same sequence
of pseudo-random numbers repeatedly, e.g., to debug a program, say before the first
invocation of . If you need more than one repeatable sequence, you can give
an integer input; each possible input selects a unique sequence of numbers.

outputs a word containing a printable representation of
, possibly preceded by spaces (and therefore not a number for purposes of performing



Logical Operations

Bitwise Operations

282 Berkeley Logo Reference Manual

to hex :num
op form :num -1 "|%08X %08X|
end

bitand
(bitand )

bitor
(bitor )

bitxor
(bitxor )

bitnot

ashift

lshift

and
(and )

or
(or )

not

(form -1 )

true true false
true false caseignoredp
true True TRUE

true true false
true false caseignoredp
true True TRUE

true false

width precision
precision

num format num
format

num1 num2
num1 num2 num3 ...

num1 num2
num1 num2 num3 ...

num1 num2
num1 num2 num3 ...

num

num1 num2 num1 num2

num1 num2 num1 num2

tf1 tf2
tf1 tf2 tf3 ...

tf1 tf2
tf1 tf2 tf3 ...

tf

arithmetic operations), with at least characters, including exactly digits after
the decimal point. (If is 0 then there will be no decimal point in the output.)

As a debugging feature, will print the floating point according to
the C printf , to allow

to allow finding out the exact result of floating point operations. The precise format needed may
be machine-dependent.

outputs the bitwise and of its inputs, which must be
integers.

outputs the bitwise or of its inputs, which must be integers.

outputs the bitwise exclusive-or of its inputs, which must
be integers.

outputs the bitwise not of its input, which must be an integer.

outputs arithmetic-shifted to the left by bits. If num2 is
negative, the shift is to the right with sign extension. The inputs must be integers.

outputs logical-shifted to the left by bits. If num2 is negative,
the shift is to the right with zero fill. The inputs must be integers.

outputs if all inputs are , otherwise . All inputs
must be or . (Comparison is case-insensitive regardless of the value of .
That is, or or are all the same.)

outputs if any input is , otherwise . All inputs
must be or . (Comparison is case-insensitive regardless of the value of .
That is, or or are all the same.)

outputs if the input is , and vice versa.



Graphics

Graphics 283

Turtle Motion

[-100
-100] [100 100]

[0 0]

forward
fd

back
bk

left
lt

right
rt

dist
dist

dist
dist

degrees
degrees

degrees
degrees

Berkeley Logo provides traditional Logo turtle graphics with one turtle. Multiple turtles, dynamic
turtles, and collision detection are not supported. This is the most hardware-dependent part of
Logo; some features may exist on some machines but not others. Nevertheless, the goal has been to
make Logo programs as portable as possible, rather than to take fullest advantage of the capabilities
of each machine. In particular, Logo attempts to scale the screen so that turtle coordinates

and fit on the graphics window, and so that the aspect ratio is 1:1, although
some PC screens have nonstandard aspect ratios.

The center of the graphics window (which may or may not be the entire screen, depending on
the machine used) is turtle location . Positive X is to the right; positive Y is up. Headings
(angles) are measured in degrees clockwise from the positive Y axis. (This differs from the common
mathematical convention of measuring angles counterclockwise from the positive X axis.) The
turtle is represented as an isoceles triangle; the actual turtle position is at the midpoint of the base
(the short side).

Colors are, of course, hardware-dependent. However, Logo provides partial hardware indepen-
dence by interpreting color numbers 0 through 7 uniformly on all computers:

0 black 1 blue 2 green 3 cyan
4 red 5 magenta 6 yellow 7 white

Where possible, Logo provides additional user-settable colors; how many are available depends on
the hardware and operating system environment. If at least 16 colors are available, Logo tries to
provide uniform initial settings for the colors 8–15:

8 brown 9 tan 10 forest 11 aqua
12 salmon 13 purple 14 orange 15 grey

Logo begins with a black background and white pen.

moves the turtle forward, in the direction that it’s facing, by the specified distance
(measured in turtle steps).

moves the turtle backward, i.e., exactly opposite to the direction that it’s facing, by the
specified distance. (The heading of the turtle does not change.)

turns the turtle counterclockwise by the specified angle, measured in degrees
(1/360 of a circle).

turns the turtle clockwise by the specified angle, measured in degrees (1/360 of a
circle).



setpos [0 0]

setscrunch setscrunch

284 Berkeley Logo Reference Manual

library procedure

library procedure

Turtle Motion Queries

Turtle and Window Control

pos

xcor ycor

xcor

ycor

degrees
degrees

angle radius

pos

setpos

setxy

setx

sety

home

setheading
seth

arc

pos

xcor ( )

ycor ( )

heading

towards

scrunch

showturtle
st

hideturtle
ht

clean

moves the turtle to an absolute screen position. The argument is a list of two
numbers, the X and Y coordinates.

moves the turtle to an absolute screen position. The two arguments are
numbers, the X and Y coordinates.

moves the turtle horizontally from its old position to a new absolute horizontal
coordinate. The argument is the new X coordinate.

moves the turtle vertically from its old position to a new absolute vertical coordinate.
The argument is the new Y coordinate.

moves the turtle to the center of the screen. Equivalent to .

turns the turtle to a new absolute heading. The argument is a number, the
heading in degrees clockwise from the positive Y axis.

draws an arc of a circle, with the turtle at the center, with the specified
radius, starting at the turtle’s heading and extending clockwise through the specified angle. The
turtle does not move.

outputs the turtle’s current position, as a list of two numbers, the X and Y coordinates.

outputs a number, the turtle’s X coordinate.

outputs a number, the turtle’s Y coordinate.

outputs a number, the turtle’s heading in degrees.

outputs a number, the heading at which the turtle should be facing so that it
would point from its current position to the position given as the argument.

outputs a list containing two numbers, the X and Y scrunch factors, as used by
. (But note that takes two numbers as inputs, not one list of numbers.)

makes the turtle visible.

makes the turtle invisible. It’s a good idea to do this while you’re in the middle of a complicated
drawing, because hiding the turtle speeds up the drawing substantially.

erases all lines that the turtle has drawn on the graphics window. The turtle’s state
(position, heading, pen mode, etc.) is not changed.



Graphics 285

text

xscale yscale

clearscreen
cs

wrap

window

fence

fill

label

textscreen
ts

fullscreen
fs

splitscreen
ss

setscrunch

home
clean

window fence

home wrap
fence

wrap window

splitscreen fullscreen

splitscreen textscreen

textscreen fullscreen

erases the graphics window and sends the turtle to its initial position and heading. Like
and together.

tells the turtle to enter wrap mode: From now on, if the turtle is asked to move past the
boundary of the graphics window, it will “wrap around” and reappear at the opposite edge of the
window. The top edge wraps to the bottom edge, while the left edge wraps to the right edge.
(So the window is topologically equivalent to a torus.) This is the turtle’s initial mode. Compare

and .

tells the turtle to enter window mode: From now on, if the turtle is asked to move
past the boundary of the graphics window, it will move offscreen. The visible graphics window
is considered as just part of an infinite graphics plane; the turtle can be anywhere on the plane.
(If you lose the turtle, will bring it back to the center of the window.) Compare and

.

tells the turtle to enter fence mode: From now on, if the turtle is asked to move past the
boundary of the graphics window, it will move as far as it can and then stop at the edge with an “out
of bounds” error message. Compare and .

fills in a region of the graphics window containing the turtle and bounded by lines that
have been drawn earlier. This is not portable; it doesn’t work for all machines, and may not work
exactly the same way on different machines.

takes a word or list as input, and prints the input on the graphics window, starting
at the turtle’s position.

rearranges the size and position of windows to maximize the space available in the text window
(the window used for interaction with Logo). The details differ among machines. Compare

and .

rearranges the size and position of windows to maximize the space available in the graphics
window. The details differ among machines. Compare and .

In the DOS version, switching from fullscreen to splitscreen loses the part of the picture that’s
hidden by the text window. Also, since there must be a text window to allow printing (including the
printing of the Logo prompt), Logo automatically switches from fullscreen to splitscreen whenever
anything is printed. [This design decision follows from the scarcity of memory, so that the extra
memory to remember an invisible part of a drawing seems too expensive.]

rearranges the size and position of windows to allow some room for text interaction while
also keeping most of the graphics window visible. The details differ among machines. Compare

and .

adjusts the aspect ratio and scaling of the graphics display.
After this command is used, all further turtle motion will be adjusted by multiplying the horizontal



286 Berkeley Logo Reference Manual

Turtle and Window Queries

Pen and Background Control

refresh

norefresh

shownp
shown?

pendown
pd

penup
pu

penpaint
ppt

penerase
pe

penreverse
px

setscrunch 2 1

setscrunch scrunch.dat

true false
showturtle hideturtle

up
down

paint
erase
reverse

down

up

down paint

down erase

down reverse

and vertical extent of the motion by the two numbers given as inputs. For example, after the
instruction motion at a heading of 45 degrees will move twice as far horizontally
as vertically. If your squares don’t come out square, try this. (Alternatively, you can deliberately
misadjust the aspect ratio to draw an ellipse.)

For Unix machines and Macintoshes, both scale factors are initially 1. For DOS machines, the scale
factors are initially set according to what the hardware claims the aspect ratio is, but the hardware
sometimes lies. The values set by are remembered in a file (called )
and are automatically put into effect when a Logo session begins.

tells Logo to remember the turtle’s motions so that they can be reconstructed in case
the graphics window is overlayed. The effectiveness of this command may depend on the machine
used.

tells Logo not to remember the turtle’s motions. This will make drawing faster, but
prevents recovery if the window is overlayed.

outputs if the turtle is shown (visible), if the turtle is hidden. See
and .

The turtle carries a pen that can draw pictures. At any time the pen can be (in which case
moving the turtle does not change what’s on the graphics screen) or (in which case the turtle
leaves a trace). If the pen is down, it can operate in one of three modes: (so that it draws
lines when the turtle moves), (so that it erases any lines that might have been drawn on or
through that path earlier), or (so that it inverts the status of each point along the turtle’s
path).

sets the pen’s position to , without changing its mode.

sets the pen’s position to , without changing its mode.

sets the pen’s position to and mode to .

sets the pen’s position to and mode to .

sets the pen’s position to and mode to . (This may interact in hardware-
dependent ways with use of color.)



Pen Queries

Graphics 287

library procedure

library procedure

pen

true false

paint erase reverse

setpen

colornumber
colornumber

colornumber rgblist

size
pattern

list

color
color

colornumber

setpencolor
setpc

setpalette

setpensize
setpenpattern

setpen ( )

setbackground
setbg

pendownp
pendown?

penmode

pencolor
pc

palette

pensize
penpattern

pen ( )

background
bg

sets the pen color to the given number, which must be a nonnegative
integer. Color 0 is always black; color 7 is always white. Other colors may or may not be consistent
between machines.

sets the actual color corresponding to a given
number, if allowed by the hardware and operating system. Colornumber must be an integer greater
than or equal to 8. (Logo tries to keep the first 8 colors constant.) The second argument is a list
of three nonnegative integers less than 64K (65536) specifying the amount of red, green, and blue
in the desired color. The actual color resolution on any screen is probably less than 64K, but Logo
scales as needed.

set hardware-dependent pen characteristics. These commands
are not guaranteed compatible between implementations on different machines.

sets the pen’s position, mode, and hardware-dependent
characteristics according to the information in the input list, which should be taken from an earlier
invocation of .

set the screen background color.

outputs if the pen is down, if it’s up.

outputs one of the words , , or according to the current pen
mode.

outputs a color number, a nonnegative integer that is associated with a particular color by the
hardware and operating system.

outputs a list of three integers, each in the range 0–65535, repre-
senting the amount of red, green, and blue in the color associated with the given number.

output hardware-specific pen information.

outputs a list containing the pen’s position, mode, and hardware-
specific characteristics, for use by .

outputs the graphics background color.



to ( )special form

Procedure Definition

Workspace Management

288 Berkeley Logo Reference Manual

minimum, default, maximum

minimum

rest

to

inlist [a b c] startvalue
a

inlist [a b c] startvalue x

procname :input1 :input2 ...
procname

input1

:inputname

[:inputname default.value.expression]

to proc :inlist [:startvalue first :inlist]

proc [a b c]

(proc [a b c] "x)

[:inputname]

to proc :in1 [:in2 "foo] [:in3]

command. Prepares Logo to
accept a procedure definition. The procedure will be named and there must not
already be a procedure by that name. The inputs will be called etc. Any number of inputs
are allowed, including none. Names of procedures and inputs are case-insensitive.

Unlike every other Logo procedure, takes as its inputs the actual words typed in the instruction
line, as if they were all quoted, rather than the results of evaluating expressions to provide the
inputs. (That’s what “special form” means.)

This version of Logo allows variable numbers of inputs to a procedure. Every procedure has a
and number of inputs. (The latter can be infinite.)

The number of inputs is the number of required inputs, which must come first. A
required input is indicated by the notation.

After all the required inputs can be zero or more optional inputs, represented by the following
notation:

When the procedure is invoked, if actual inputs are not supplied for these optional inputs, the
default value expressions are evaluated to set values for the corresponding input names. The
inputs are processed from left to right, so a default value expression can be based on earlier inputs.
Example:

If the procedure is invoked by saying

then the variable will have the value and the variable will have the
value . If the procedure is invoked by saying

then will have the value and will have the value .

After all the required and optional input can come a single input, represented by the following
notation:

This is a rest input rather than an optional input because there is no default value expression.
There can be at most one rest input. When the procedure is invoked, the value of this input will
be a list containing all of the actual inputs provided that were not used for required or optional
inputs. Example:



maximum

default

define

text

fulltext

Workspace Management 289

proc "x

(proc "a "b "c "d)

to proc :in1 [:in2 "foo] [:in3] 3

procname text procname
text

procname procname

procname procname

in1 x in2 foo in3 []

in1 a in2 b in3 [c d]

to

to
? >

end

to to

end
redefp true

define

to edit load

readword
end define

to
fulltext define

If this procedure is invoked by saying

then has the value , has the value , and has the value (the empty list). If it’s
invoked by saying

then has the value , has the value , and has the value .

The number of inputs for a procedure is infinite if a rest input is given; otherwise, it is
the number of required inputs plus the number of optional inputs.

The number of inputs for a procedure, which is the number of inputs that it will accept if its
invocation is not enclosed in parentheses, is ordinarily equal to the minimum number. If you want
a different default number you can indicate that by putting the desired default number as the last
thing on the line. Example:

This procedure has a minimum of one input, a default of three inputs, and an infinite maximum.

Logo responds to the command by entering procedure definition mode. The prompt character
changes from to and whatever instructions you type become part of the definition until you
type a line containing only the word .

command. Defines a procedure with name and text
. If there is already a procedure with the same name, the new definition replaces the old one.

The text input must be a list whose members are lists. The first member is a list of inputs; it looks
like a line but without the word , without the procedure name, and without the colons before
input names. In other words, the members of this first sublist are words for the names of required
inputs and lists for the names of optional or rest inputs. The remaining sublists of the text input
make up the body of the procedure, with one sublist for each instruction line of the body. (There
is no line in the text input.) It is an error to redefine a primitive procedure unless the variable

has the value .

outputs the text of the procedure named in the form expected
by : a list of lists, the first of which describes the inputs to the procedure and the rest of
which are the lines of its body. The text does not reflect formatting information used when the
procedure was defined, such as continuation lines and extra spaces.

outputs a representation of the procedure in which for-
matting information is preserved. If the procedure was defined with , , or , then the
output is a list of words. Each word represents one entire line of the definition in the form output
by , including extra spaces and continuation lines. The last member of the output
represents the line. If the procedure was defined with , then the output is a list of
lists. If these lists are printed, one per line, the result will look like a definition using . Note: the
output from is not suitable for use as input to !



thing "

Variable Definition

Property Lists

290 Berkeley Logo Reference Manual

library procedure

library procedure

copydef

make

name ( )

local
local
(local )

localmake ( )

thing
:

redefp true copydef save
copydef

po pot copydef

copydef make
name

make

local
make

local make

thing

:foo thing "foo

caseignoredp true

newname oldname newname old-
name newname

newname

varname value value varname

value varname

varname
varnamelist
varname1 varname2 ...

varname value

varname
quoted.varname

command. Makes a procedure identical to
. The latter may be a primitive. If was already defined, its previous definition

is lost. If was already a primitive, the redefinition is not permitted unless the variable
has the value . Definitions created by are not saved by ; primitives

are never saved, and user-defined procedures created by are buried. (You are likely to
be confused if you or a procedure defined with because its title line will contain
the old name. This is why it’s buried.)

Note: dialects of Logo differ as to the order of inputs to . This dialect uses “ order,”
not “ order.”

command. Assigns the value to the variable named ,
which must be a word. Variable names are case-insensitive. If a variable with the same name already
exists, the value of that variable is changed. If not, a new global variable is created.

command. Same as but with the inputs
in reverse order.

command. Accepts as inputs one or more words, or
a list of words. A variable is created for each of these words, with that word as its name. The
variables are local to the currently running procedure. Logo variables follow dynamic scope rules;
a variable that is local to a procedure is available to any subprocedure invoked by that procedure.
The variables created by have no initial value; they must be assigned a value (e.g., with

) before the procedure attempts to read their value.

command. Makes the named variable
local, like , and assigns it the given value, like .

outputs the value of the variable whose name is the input. If there is more
than one such variable, the innermost local variable of that name is chosen. The colon notation is
an abbreviation not for but for the combination

so that means .

Note: Names of property lists are always case-insensitive. Names of individual properties are
case-sensitive or case-insensitive depending on the value of , which is by
default.



contents list,

Predicates

Queries

plist

true

true

true

true

Workspace Management 291

pprop

gprop

remprop

plist

procedurep
procedure?

primitivep
primitive?

definedp
defined?

namep
name?

contents

buried

procedures

names

plistname propname value plistname
propname value

plistname propname propname
plistname

plistname propname propname
plistname

plistname
plistname

name
name

name
name

name
name

name
name

command. Adds a property to the
property list with name and value .

outputs the value of the property in the
property list, or the empty list if there is no such property.

command. Removes the property named
from the property list named .

outputs a list whose odd-numbered members are the names, and whose
even-numbered members are the values, of the properties in the property list named .
The output is a copy of the actual property list; changing properties later will not magically change
a list output earlier by .

outputs if the input is the name of a procedure.

outputs if the input is the name of a primitive procedure (one built
into Logo). Note that some of the procedures described in this document are library procedures,
not primitives.

outputs if the input is the name of a user-defined procedure, including
a library procedure. (However, Logo does not know about a library procedure until that procedure
has been invoked.)

outputs if the input is the name of a variable.

outputs a i.e., a list of three lists containing names of defined procedures,
variables, and property lists respectively. This list includes all unburied named items in the
workspace.

outputs a contents list including all buried named items in the workspace.

outputs a list of the names of all unburied user-defined procedures in the
workspace. Note that this is a list of names, not a contents list. (However, procedures that require
a contents list as input will accept this list.)

outputs a contents list consisting of an empty list (indicating no procedure names)
followed by a list of all unburied variable names in the workspace.



Inspection

292 Berkeley Logo Reference Manual

contents

po contents

po procedures

po names

po plists

po namelist

po pllist

pprop po

pot procedures

plists

namelist ( )
namelist

pllist ( )
pllist

po

poall ( )

pops ( )

pons ( )

popls ( )

pon ( )
pon

popl ( )
popl

pot

pots ( )

varname
varnamelist

plname
plnamelist

contentslist

contentslist

varname
varnamelist

varname(list)

plname
plnamelist

plname(list)

contentslist

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

outputs a contents list consisting of two empty lists (indicating no procedures or
variables) followed by a list of all unburied property lists in the workspace.

outputs a contents list consisting of an empty list followed by a
list of the name or names given as input. This is useful in conjunction with workspace control
procedures that require a contents list as input.

outputs a contents list consisting of two empty lists followed by a list of
the name or names given as input. This is useful in conjunction with workspace control procedures
that require a contents list as input.

Note: All procedures whose input is indicated as will accept a single word (taken
as a procedure name), a list of words (taken as names of procedures), or a list of three lists as
described under the command above.

command. Prints to the write stream the definitions of all procedures,
variables, and property lists named in the input contents list.

command. Prints all unburied definitions in the workspace.
Abbreviates .

command. Prints the definitions of all unburied procedures in the
workspace. Abbreviates .

command. Prints the definitions of all unburied variables in the
workspace. Abbreviates .

command. Prints the contents of all unburied property lists in
the workspace. Abbreviates .

command. Prints the definitions of the named variable(s). Abbreviates
the instruction .

command. Prints the definitions of the named property list(s). Abbreviates
the instruction .

command. Prints the title lines of the named procedures and the
definitions of the named variables and property lists. For property lists, the entire list is shown on
one line instead of as a series of instructions as in .

command. Prints the title lines of all unburied procedures in the
workspace. Abbreviates .



Workspace Control

Workspace Management 293

erase
er

erall ( )

erps ( )

erns ( )

erpls ( )

ern ( )
ern

erpl ( )
erpl

bury

buryall ( )

buryname ( )
buryname

unbury

unburyall ( )

unburyname ( )
unburyname

trace

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

contentslist
contentslist

varname
varnamelist

varname(list)

plname
plnamelist

plname(list)

contentslist

varname
varnamelist var-

name(list)

contentslist

varname
varnamelist

varname(list)

contentslist

redefp true

erase contents

erase procedures

erase names

erase plists

erase namelist

erase pllist

contents procedures
variables plists buried

poall save

bury contents

bury namelist

contents

unbury buried

unbury namelist

stop output

command. Erases from the workspace the procedures, variables, and
property lists named in the input. Primitive procedures may not be erased unless the variable

has the value .

command. Erases all unburied procedures, variables, and
property lists from the workspace. Abbreviates .

command. Erases all unburied procedures from the workspace.
Abbreviates the instruction .

command. Erases all unburied variables from the workspace.
Abbreviates .

command. Erases all unburied property lists from the workspace.
Abbreviates .

command. Erases from the workspace the variable(s) named in the input.
Abbreviates .

command. Erases from the workspace the property list(s) named in the
input. Abbreviates .

command. Buries the procedures, variables, and property lists named
in the input. A buried item is not included in the lists output by , ,

, and , but is included in the list output by . By implication, buried
things are not printed by or saved by .

command. Abbreviates .

command. Abbreviates the instruction
.

command. Unburies the procedures, variables, and property lists
named in the input. That is, the named items will be returned to view in , etc.

command. Abbreviates .

command.
Abbreviates .

command. Marks the named items for tracing. A message is printed
whenever a traced procedure is invoked, giving the actual input values, and whenever a traced
procedure s or s. A message is printed whenever a new value is assigned to a traced



shadowed

294 Berkeley Logo Reference Manual

untrace

step

unstep

edit
ed
(edit)
(ed)

edall ( )

edps ( )

edns ( )

edpls ( )

edn ( )
edn

edpl ( )
edpl

save

library procedure

library procedure

library procedure

library procedure

library procedure

library procedure

make
pprop

local

EDITOR EDITOR
edit

edit

edit

edit contents

edit procedures

edit names

edit plists

edit namelist

edit pllist

to save :filename
local "oldwriter
make "oldwriter writer
openwrite :filename
setwrite :filename
poall
setwrite :oldwriter
close :filename
end

contentslist

contentslist

contentslist

contentslist
contentslist

varname
varnamelist varname(list)

plname
plnamelist plname(list)

filename

variable using . A message is printed whenever a new property is given to a traced property
list using .

command. Turns off tracing for the named items.

command. Marks the named items for stepping. Whenever a stepped
procedure is invoked, each instruction line in the procedure body is printed before being executed,
and Logo waits for the user to type a newline at the terminal. A message is printed whenever a
stepped variable name is because a local variable of the same name is created either as a
procedure input or by the command.

command. Turns off stepping for the named items.

command. Edits the definitions of the named items, using your favorite editor as determined
by the environment variable. If you don’t have an variable, edits the definitions
using jove. If invoked without an argument, edits the same temporary file left over from
a previous instruction. When you leave the editor, Logo reads the revised definitions and
modifies the workspace accordingly.

Exceptionally, the command can be used without its default input and without parentheses
provided that nothing follows it on the instruction line.

command. Abbreviates .

command. Abbreviates .

command. Abbreviates .

command. Abbreviates .

command. Abbreviates .

command. Abbreviates .

command. Saves the definitions of all unburied procedures, variables, and
property lists in the named file. Equivalent to



library procedure

Control Structures

Control Structures 295

savel ( )

load

help
(help)

run

runresult

repeat

if
(if )

to
startup

LOGOHELP

help

run readword run readlist
~

;

true if false if
if ifelse

true false

if

local "result
make "result runresult [something]
if emptyp :result [stop]
output first :result

contentslist filename
contentslist

filename

filename

name

instructionlist

instructionlist

instructionlist

num instructionlist instructionlist
num

tf instructionlist
tf instructionlist1 instructionlist2

command. Saves the defini-
tions of the procedures, variables, and property lists specified by to the file
named .

command. Reads instructions from the named file and executes them. The
file can include procedure definitions with , and these are accepted even if a procedure by the
same name already exists. If the file assigns a list value to a variable named , then that list
is run as an instructionlist after the file is loaded.

command. Prints information from the reference manual about the primitive procedure
named by the input. With no input, lists all the primitives about which help is available. If there
is an environment variable , then its value is taken as the directory in which to look for
help files, instead of the default help directory.

Exceptionally, the command can be used without its default input and without parentheses
provided that nothing follows it on the instruction line.

Note: in the following descriptions, an can be a list or a word. In the latter
case, the word is parsed into list form before it is run. Thus, or
will work. The former is slightly preferable because it allows for a continued line (with ) that
includes a comment (with ) on the first line.

command or operation. Runs the Logo instructions in the input
list; outputs if the list contains an expression that outputs.

runs the instructions in the input; outputs an empty list if
those instructions produce no output, or a list whose only member is the output from running the
input instructionlist. Useful for inventing command-or-operation control structures:

command. Runs the repeatedly,
times.

command. If the first input has
the value , then runs the second input. If the first input has the value , then
does nothing. (If given a third input, acts like , as described below.) It is an error if the
first input is not either or .

For compatibility with earlier versions of Logo, if an instruction is not enclosed in parentheses,
but the first thing on the instruction line after the second input expression is a literal list (i.e., a list



296 Berkeley Logo Reference Manual

ifelse

test

iftrue
ift

iffalse
iff

stop

output

catch

throw
(throw )

tf instructionlist1 instructionlist2

tf

instructionlist
instructionlist

instructionlist
instructionlist

value
value

tag instructionlist

tag
tag value

if ifelse
if

true ifelse
false ifelse Ifelse

true false
iftrue iffalse test

iftrue iffalse

test
true test

test
false test

output output

throw

catch
throw

error
throw "error

catch
erract erract

erract [pause]

catch
catch throw

catch throw
catch

Throw "toplevel

in square brackets), the is treated as if it were , but a warning message is given. If this
aberrant appears in a procedure body, the warning is given only the first time the procedure is
invoked in each Logo session.

command or operation. If the
first input has the value , then runs the second input. If the first input has the value

, then runs the third input. outputs a value if the instructionlist contains
an expression that outputs a value.

command. Remembers its input, which must be or , for use by later
or instructions. The effect of is local to the procedure in which it is used;

any corresponding or must be in the same procedure or a subprocedure.

command. Runs its input if the most recent instruction had a
input. The must have been in the same procedure or a superprocedure.

command. Runs its input if the most recent instruction had a
input. The must have been in the same procedure or a superprocedure.

command. Ends the running of the procedure in which it appears. Control is returned to
the context in which that procedure was invoked. The stopped procedure does not output a value.

command. Ends the running of the procedure in which it appears. That
procedure outputs the value to the context in which it was invoked. Don’t be confused:

itself is a command, but the procedure that invokes is an operation.

command or operation. Runs its second input. Outputs
if that instructionlist outputs. If, while running the instructionlist, a instruction is
executed with a tag equal to the first input (case-insensitive comparison), then the running of the
instructionlist is terminated immediately. In this case the outputs if a value input is given
to . The tag must be a word.

If the tag is the word , then any error condition that arises during the running of the
instructionlist has the effect of instead of printing an error message and returning
to toplevel. The does not output if an error is caught. Also, during the running of the
instructionlist, the variable is temporarily unbound. (If there is an error while
has a value, that value is taken as an instructionlist to be run after printing the error message.
Typically the value of , if any, is the list .)

command. Must be used within the scope of a with an equal
tag. Ends the running of the instructionlist of the . If is used with only one input,
the corresponding does not output a value. If is used with two inputs, the second
provides an output for the .

can be used to terminate all running procedures and interactive pauses,
and return to the toplevel instruction prompt. Typing the system interrupt character (normally
control-C for Unix, control-Q for DOS, or command-period for Mac) has the same effect.



special form

Control Structures 297

value
value

time time

value

error

pause

continue
co
(continue)
(co)

wait

bye

.maybeoutput ( )

Throw "error
throw "error throw

error

throw
throw

catch "error
throw

Throw "system
edit

error

pause Pause
continue

erract
erract [pause]

\

pause
continue

pause pause

continue

Wait 0

output
stop

can be used to generate an error condition. If the error is not caught, it prints a
message ( ) with the usual indication of where the error (in this case the )
occurred. If a second input is used along with a tag of , that second input is used as the text
of the error message instead of the standard message. Also, in this case, the location indicated for
the error will be, not the location of the , but the location where the procedure containing
the was invoked. This allows user-defined procedures to generate error messages as if they
were primitives. Note: in this case the corresponding , if any, does not output,
since the second input to is not considered a return value.

immediately leaves Logo, returning to the operating system, without printing the
usual parting message and without deleting any editor temporary file written by .

outputs a list describing the error just caught, if any. If there was not an error caught
since the last use of , the empty list will be output. The error list contains four members:
an integer code corresponding to the type of error, the text of the error message, the name of the
procedure in which the error occurred, and the instruction line on which the error occurred.

command or operation. Enters an interactive pause. The user is prompted for
instructions, as at toplevel, but with a prompt that includes the name of the procedure in which

was invoked. Local variables of that procedure are available during the pause.
outputs if the pause is ended by a with an input.

If the variable exists, and an error condition occurs, the contents of that variable are run
as an instructionlist. Typically is given the value so that an interactive pause will
be entered on the event of an error. This allows the user to check values of local variables at the
time of the error.

Typing the system quit character (normally control- for Unix, control-W for DOS, or command-
comma for Mac) will also enter a pause.

command. Ends the current interactive pause, returning to the context of the
invocation that began it. If is given an input, that value is used as the output from the

. If not, the does not output.

Exceptionally, the command can be used without its default input and without
parentheses provided that nothing follows it on the instruction line.

command. Delays further execution for 60ths of a second. Also causes any
buffered characters destined for the terminal to be printed immediately. can be used to
achieve this buffer flushing without actually waiting.

command. Exits from Logo; returns to the operating system.

works like except that the expression that
provides the input value might not, in fact, output a value, in which case the effect is like .



−

ignore ( )

` ( )

for ( )

298 Berkeley Logo Reference Manual

value

list

forcontrol instructionlist

runresult

,

,@

,@

run

for

For

for for [i 1 0 1] ...
for

library procedure

library procedure

library procedure

1

(invoke "print "a "b "c)

print (invoke "word "a "b "c)

for [i 2 7 1.5] [print :i]

to invoke :function [:inputs] 2
.maybeoutput apply :function :inputs
end

?
a b c
?
abc

show `[foo baz ,[bf [a b c]] garply ,@[bf [a b c]]]

[foo baz [b c] garply b c]

?
2

This is intended for use in control structure definitions, for cases in which you don’t know whether
or not some expression produces a value. Example:

This is an alternative to . It’s fast and easy to use, at the cost of being an exception
to Logo’s evaluation rules. (Ordinarily, it should be an error if the expression that’s supposed to
provide an input to something doesn’t have a value.)

command. Does nothing. Used when an expression is
evaluated for a side effect and its actual value is unimportant.

outputs a list equal to its input but with certain substitutions.
If a member of the input list is the word (comma) then the following member should be an
instructionlist that produces an output when run. That output value replaces the comma and the
instructionlist. If a member of the input list is the word (comma atsign) then the following
member should be an instructionlist that outputs a list when run. The members of that list replace
the and the instructionlist. Example:

will print

command. The first input
must be a list containing three or four members: (1) a word, which will be used as the name of a
local variable; (2) a word or list that will be evaluated as by to determine a number, the starting
value of the variable; (3) a word or list that will be evaluated to determine a number, the limit value
of the variable; (4) an optional word or list that will be evaluated to determine the step size. If the
fourth member is missing, the step size will be 1 or depending on whether the limit value is
greater than or less than the starting value, respectively.

The second input is an instructionlist. The effect of is to run that instructionlist repeatedly,
assigning a new value to the control variable (the one named by the first member of the forcontrol
list) each time. First the starting value is assigned to the control variable. Then the value is
compared to the limit value. is complete when the sign of (current - limit) is the same as the
sign of the step size. (If no explicit step size is provided, the instructionlist is always run at least
once. An explicit step size can lead to a zero-trip , e.g., ) Otherwise, the
instructionlist is run, then the step is added to the current value of the control variable and
returns to the comparison step.



Control Structures 299

Template-Based Iteration

3.5
5
6.5

?
[4 9 16 25]

?
[ada beb cfc]

do.while ( )

while ( )

do.until ( )

until ( )

template.
slots

explicit-slot question mark

show map [? * ?] [2 3 4 5]

show (map [word ?1 ?2 ?1] [a b c] [d e f])

library procedure

library procedure

library procedure

library procedure

true
true

false

true
true false

false
true

false

false
true false

map [? * ?]
[2 3 4 5]

?1 ?2

(? 1) ?1,
(? ?1)

instructionlist tfexpression
instructionlist tfexpres-

sion instructionlist
tfexpression

tfexpression instructionlist
instructionlist tfexpression

instructionlist
tfexpression

instructionlist tfexpression
instructionlist tfexpres-

sion instructionlist
tfexpression

tfexpression instructionlist
instructionlist tfexpression

instructionlist
tfexpression

command. Repeatedly evaluates the as long as the evaluated
remains . Evaluates the first input first, so the is always run at

least once. The must be an expressionlist whose value when evaluated is
or .

command. Repeat-
edly evaluates the as long as the evaluated remains

. Evaluates the first input first, so the may never be run at all. The
must be an expressionlist whose value when evaluated is or .

command. Repeatedly evaluates the as long as the evaluated
remains . Evaluates the first input first, so the is always run at

least once. The must be an expressionlist whose value when evaluated is
or .

command. Repeat-
edly evaluates the as long as the evaluated remains

. Evaluates the first input first, so the may never be run at all. The
must be an expressionlist whose value when evaluated is or .

The procedures in this section are iteration tools based on the idea of a This is a
generalization of an instruction list or an expression list in which are provided for the tool to
insert varying data. Three different forms of template can be used.

The most commonly used form for a template is form, or form. Example:

In this example, the tool evaluated the template repeatedly, with each of the members
of the data list substituted in turn for the question marks. The same value was used
for every question mark in a given evaluation. Some tools allow for more than one datum to be
substituted in parallel; in these cases the slots are indicated by for the first datum, for the
second, and so on:

If the template wishes to compute the datum number, the form is equivalent to so
means the datum whose number is given in datum number 1. Some tools allow additional

slot designations, as shown in the individual descriptions.



show (map "word [a b c] [d e f])

300 Berkeley Logo Reference Manual

named-procedure

named-slot lambda

library procedure

library procedure

library procedure

apply

invoke ( )
(invoke )

foreach ( )
(foreach )

map ( )
(map )

?1 ?3 "proc
[proc ?1 ?2 ?3]

?

to
Apply

apply

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

template inputlist template
inputlist inputlist

template
template

template input
template input1 input2 ...

data template
data1 data2 ... template

template data
template data1 data2 ...

?
[ad be cf]

to dotprod :a :b ; vector dot product
op apply "sum (map "product :a :b)
end

to matmul :m1 :m2 [:tm2 transpose :m2] ; multiply two matrices
output map [[row] map [[col] dotprod :row :col] :tm2] :m1
end

The second form of template is the form. If the template is a word rather than
a list, it is taken as the name of a procedure. That procedure must accept a number of inputs
equal to the number of parallel data slots provided by the tool; the procedure is applied to all of
the available data in order. That is, if data through are available, the template is
equivalent to .

The third form of template is or form. This form is indicated by a template list
containing more than one member, whose first member is itself a list. The first member is taken as
a list of names; local variables are created with those names and given the available data in order
as their values. The number of names must equal the number of available data. This form is
needed primarily when one iteration tool must be used within the template list of another, and the

notation would be ambiguous in the inner template. Example:

command or operation. Runs the , filling its
slots with the members of . The number of members in must be an
acceptable number of slots for . It is illegal to apply the primitive as a template, but
anything else is okay. outputs what outputs, if anything.

command or operation. Exactly like
except that the inputs are provided as separate expressions rather than in a list.

command. Evaluates the template list repeat-
edly, once for each member of the data list. If more than one data list are given, each of them must
be the same length. (The data inputs can be words, in which case the template is evaluated once
for each character.

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

outputs a word or list, depending on the type of the



?
eea

Control Structures 301

map.se ( )
(map.se )

filter ( )

print filter "vowelp "elephant

library procedure

library procedure

template data
template data1 data2 ...

tftemplate data

word

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

sentence

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

true false true

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

data input, of the same length as that data input. (If more than one data input are given, the output
is of the same type as data1.) Each member of the output is the result of evaluating the template
list, filling the slots with the corresponding member(s) of the data input(s). (All data inputs must
be the same length.) In the case of a word output, the results of the template evaluation must be
words, and they are concatenated with .

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

outputs a list formed by evaluating the template
list repeatedly and concatenating the results using . That is, the members of the output
are the members of the results of the evaluations. The output list might, therefore, be of a different
length from that of the data input(s). (If the result of an evaluation is the empty list, it contributes
nothing to the final output.) The data inputs may be words or lists.

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

outputs a word or list, depending on
the type of the data input, containing a subset of the members (for a list) or characters (for a word)
of the input. The template is evaluated once for each member or character of the data, and it must
produce a or value. If the value is , then the corresponding input constituent is
included in the output.

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .



302 Berkeley Logo Reference Manual

find ( )

reduce ( )

crossmap ( )
(crossmap )

library procedure

library procedure

library procedure

tftemplate data

template data

template listlist
template data1 data2 ...

true

?rest
? [a b c d e]

? b ?rest [c d e]
(?rest 1) ?1

#
? [a b c d e]

? b # 2

"sum

?1 ?2
?1

?2

sum
apply reduce

reduce max
sum

Crossmap
map

to max :a :b
output ifelse :a > :b [:a] [:b]
end

print reduce "max [...]

to max [:inputs] 2
if emptyp :inputs ~

[(throw "error [not enough inputs to max])]
output reduce [ifelse ?1 > ?2 [?1] [?2]] :inputs
end

outputs the first constituent of the data
input (the first member of a list, or the first character of a word) for which the value produced by
evaluating the template with that consituent in its slot is . If there is no such constituent, the
empty list is output.

In a template, the symbol represents the portion of the data input to the right of the
member currently being used as the slot-filler. That is, if the data input is and the
template is being evaluated with replaced by , then would be replaced by . If
multiple parallel slots are used, then goes with , etc.

In a template, the symbol represents the position in the data input of the member currently
being used as the slot-filler. That is, if the data input is and the template is being
evaluated with replaced by , then would be replaced by .

outputs the result of applying the template
to accumulate the members of the data input. The template must be a two-slot function. Typically
it is an associative function name like . If the data input has only one constituent (member in
a list or character in a word), the output is that consituent. Otherwise, the template is first applied
with filled with the next-to-last consitient and with the last constituent. Then, if there are
more constituents, the template is applied with filled with the next constituent to the left and

with the result from the previous evaluation. This process continues until all constituents have
been used. The data input may not be empty.

Note: If the template is, like , the name of a procedure that is capable of accepting arbitrarily
many inputs, it is more efficient to use instead of . The latter is good for associative
procedures that have been written to accept exactly two inputs:

Alternatively, can be used to write as a procedure that accepts any number of inputs,
as does:

outputs a list containing the results of tem-
plate evaluations. Each data list contributes to a slot in the template; the number of slots is equal
to the number of data list inputs. As a special case, if only one data list input is given, that list is
taken as a list of data lists, and each of its members contributes values to a slot. differs
from in that instead of taking members from the data inputs in parallel, it takes all possible
combinations of members of data inputs, which need not be the same length.



library procedure

Control Structures 303

Computer Science Logo Style,

cascade ( )
(cascade )
(cascade )

crossmap
:1 ?1

cascade

cascade
false

cascade

Cascade #
1 2

cascade

?2

cascade

cascade

endtest template startvalue
endtest tmp1 sv1 tmp2 sv2 ...
endtest tmp1 sv1 tmp2 sv2 ... finaltemplate

?
[a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4]

?
[1 2 3 4 5]
?
ing
?
120

to fibonacci :n
output (cascade :n [?1 + ?2] 1 [?1] 0)
end

show (crossmap [word ?1 ?2] [a b c] [1 2 3 4])

show cascade 5 [lput # ?] []

show cascade [vowelp first ?] [bf ?] "spring

show cascade 5 [# * ?] 1

For compatibility with the version in the first edition of
templates may use the notation instead of to indicate slots.

outputs the result of applying a template (or several templates, as explained below) repeatedly,
with a given value filling the slot the first time, and the result of each application filling the slot for
the following application.

In the simplest case, has three inputs. The second input is a one-slot expression template.
That template is evaluated some number of times (perhaps zero). On the first evaluation, the
slot is filled with the third input; on subsequent evaluations, the slot is filled with the result of the
previous evaluation. The number of evaluations is determined by the first input. This can be either
a nonnegative integer, in which case the template is evaluated that many times, or a predicate
expression template, in which case it is evaluated (with the same slot filler that will be used for
the evaluation of the second input) repeatedly, and the evaluation continues as long as
the predicate value is . (In other words, the predicate template indicates the condition for
stopping.)

If the template is evaluated zero times, the output from is the third (startvalue) input.
Otherwise, the output is the value produced by the last template evaluation.

templates may include the symbol to represent the number of times the template has
been evaluated. This slot is filled with for the first evaluation, for the second, and so on.

Several cascaded results can be computed in parallel by providing additional template-startvalue
pairs as inputs to . In this case, all templates (including the endtest template, if used)
are multi-slot, with the number of slots equal to the number of pairs of inputs. In each round
of evaluations, represents the result of evaluating the second template in the previous round.
If the total number of inputs (including the first endtest input) is odd, then the output from

is the final value of the first template. If the total number of inputs is even, then the last
input is a template that is evaluated once, after the end test is satisfied, to determine the output
from .



Macros

outbasket

304 Berkeley Logo Reference Manual

cascade.2
( )

transfer ( )

.macro ( )

.defmacro

library procedure

library procedure

special form

cascade

Transfer

?in
?out

true

.Macro
to .defmacro define

repeat if

repeat

output stop local

endtest temp1 startval1 temp2 startval2

endtest template inbasket

inbasket

procname :input1 :input2 ...
procname text

to piglatin :word
output (cascade [vowelp first ?]

[word bf ? first ?]
:word
[word ? "ay])

end

to my.repeat :num :instructions
if :num=0 [stop]
run :instructions
my.repeat :num-1 :instructions
end

my.repeat 5 [print "hello]

to example
print [Guess my secret word. You get three guesses.]

outputs the result of invoking with the same inputs. The only
difference is that the default number of inputs is five instead of three.

outputs the result of
repeated evaluation of the template. The template is evaluated once for each member of the list

. maintains an that is initially the empty list. After each evaluation
of the template, the resulting value becomes the new outbasket.

In the template, the symbol represents the current member from the inbasket; the symbol
represents the entire current outbasket. Other slot symbols should not be used.

If the first (endtest) input is an empty list, evaluation continues until all inbasket members have
been used. If not, the first input must be a predicate expression template, and evaluation continues
until either that template’s value is or the inbasket is used up.

command. A macro is a special kind of procedure whose
output is evaluated as Logo instructions in the context of the macro’s caller. is exactly like

except that the new procedure becomes a macro; is exactly like with the
same exception.

Macros are useful for inventing new control structures comparable to , , and so on.
Such control structures can almost, but not quite, be duplicated by ordinary Logo procedures. For
example, here is an ordinary procedure version of :

This version works fine for most purposes, e.g.,

But it doesn’t work if the instructions to be carried out include , , or . For
example, consider this procedure:



Macros 305

my.repeat repeat
stop my.repeat example

my.repeat

repeat

my.repeat
my.repeat

my.repeat

my.repeat
hello

my.repeat
output stop

repeat 3 [type "|?? |
if readword = "secret [pr "Right! stop]]

print [Sorry, the word was "secret"!]
end

.macro my.repeat :num :instructions
if :num=0 [output []]
output sentence :instructions ~

(list "my.repeat :num-1 :instructions)
end

my.repeat 5 [print "hello]

[print "hello my.repeat 4 [print "hello]]

.macro my.repeat :num :instructions
catch "repeat.catchtag ~

[op repeat.done runresult [repeat1 :num :instructions]]
op []
end

to repeat1 :num :instructions
if :num=0 [throw "repeat.catchtag]
run :instructions
.maybeoutput repeat1 :num-1 :instructions
end

to repeat.done :repeat.result
if emptyp :repeat.result [op [stop]]
op list "output quoted first :repeat.result
end

This procedure works as written, but if is used instead of , it won’t work
because the will stop instead of stopping as desired.

The solution is to make a macro. Instead of actually carrying out the computation, a
macro must return a list containing Logo instructions. The contents of that list are evaluated as if
they appeared in place of the call to the macro. Here’s a macro version of :

Every macro is an operation—it must always output something. Even in the base case,
outputs an empty instruction list. To show how works, let’s take the example

For this example, will output the instruction list

Logo then executes these instructions in place of the original invocation of ; this prints
once and invokes another repetition.

The technique just shown, although fairly easy to understand, has the defect of slowness because
each repetition has to construct an instruction list for evaluation. Another approach is to make

a macro that works just like the non-macro version unless the instructions to be
repeated include or :



not

name
name

expr library procedure

macrop
macro?

macroexpand ( )

306 Berkeley Logo Reference Manual

stop output repeat1
throw

stop output
repeat.done stop output

Localmake

apply
make make "garply "hello

`

`

true

.macro localmake :name :value
output (list "local

word "" :name
"apply
""make
(list :name :value))

end

to try
localmake "garply "hello
print :garply
end

[local "garply apply "make [garply hello]]

.macro localmake :name :value
op `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

If the instructions do not include or , then will reach its base case and
invoke . As a result, my.repeat’s last instruction line will output an empty list, so the
second evaluation of the macro result will do nothing. But if a or happens, then

will output a or instruction that will be re-executed in the caller’s
context.

The macro-defining commands have names starting with a dot because macros are an advanced
feature of Logo; it’s easy to get in trouble by defining a macro that doesn’t terminate, or by failing
to construct the instruction list properly.

Lisp users should note that Logo macros are special forms. That is, the inputs to the macro are
evaluated normally, as they would be for any other Logo procedure. It’s only the output from the
macro that’s handled unusually.

Here’s another example:

It’s used this way:

outputs the list

The reason for the use of is to avoid having to decide whether or not the second input to
requires a quotation mark before it. (In this case it would— —but

the quotation mark would be wrong if the value were a list.)

It’s often convenient to use the function to construct the instruction list:

On the other hand, is pretty slow, since it’s tree recursive and written in Logo.

outputs if its input is the name of a macro.

takes as its input a Logo expression that invokes
a macro (that is, one that begins with the name of a macro) and outputs the the Logo expression
into which the macro would translate the input expression.



Error Codes

recoverable;

Error Processing

Error Processing 307

show macroexpand [localmake "pi 3.14159]

.macro localmake :name :value
op `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

?
[local "pi apply "make [pi 3.14159]]

erract error

pause

erract pause
continue pause

erract

erract

erract

erract pause

erract erract
erract

[pause] erract

erract
throw "error

throw catch "error

catch "error erract
erract catch "error

power

error

If an error occurs, Logo takes the following steps. First, if there is an available variable named
, Logo takes its value as an instructionlist and runs the instructions. The operation

may be used within the instructions (once) to examine the error condition. If the instructionlist
invokes , the error message is printed before the pause happens. Certain errors are

for one of those errors, if the instructionlist outputs a value, that value is used in place
of the expression that caused the error. (If invokes and the user then invokes

with an input, that input becomes the output from and therefore the output
from the instructionlist.)

It is possible for an instructionlist to produce an inappropriate value or no value where one
is needed. As a result, the same error condition could recur forever because of this mechanism. To
avoid that danger, if the same error condition occurs twice in a row from an instructionlist
without user interaction, the message “Erract loop” is printed and control returns to toplevel.
“Without user interaction” means that if invokes and the user provides an incorrect
value, this loop prevention mechanism does not take effect and the user gets to try again.

During the running of the instructionlist, is locally unbound, so an error in the
instructions themselves will not cause a loop. In particular, an error during a pause will

not cause a pause-within-a-pause unless the user reassigns the value to during
the pause. But such an error will not return to toplevel; it will remain within the original pause
loop.

If there is no available value, Logo handles the error by generating an internal
. (A user program can also generate an error condition deliberately by in-

voking .) If this throw is not caught by a in the user program, it is eventually
caught either by the toplevel instruction loop or by a pause loop, which prints the error message.
An invocation of in a user program locally unbinds , so the effect is that
whichever of and is more local will take precedence.

If a floating point overflow occurs during an arithmetic operation, or a two-input mathematical
function (like ) is invoked with an illegal combination of inputs, the “doesn’t like” message
refers to the second operand, but should be taken as meaning the combination.

Here are the numeric codes that appear as the first member of the list output by when an
error is caught, with the corresponding messages. Some messages may have two different codes



Special Variables

308 Berkeley Logo Reference Manual

proc datum
proc proc

proc
proc datum

datum

var

proc
throwtag

proc

var

proc

proc

value
value

badthing

depending on whether or not the error is recoverable (that is, a substitute value can be provided
through the mechanism) in the specific context. Some messages are warnings rather than
errors; these will not be caught. Errors 0 and 32 are so bad that Logo exits immediately.

Logo takes special action if any of the following variable names exists. They follow the normal
scoping rules, so a procedure can locally set one of them to limit the scope of its effect. Initially,
no variables exist except , which is and buried.

erract

0 Fatal internal error (can’t be caught)
1 Out of memory
2 Stack overflow
3 Turtle out of bounds
4 doesn’t like as input (not recoverable)
5 didn’t output to
6 Not enough inputs to
7 doesn’t like as input (recoverable)
8 Too much inside ()’s
9 You don’t say what to do with

10 ’)’ not found
11 has no value
12 Unexpected ’)’
13 I don’t know how to (recoverable)
14 Can’t find catch tag for
15 is already defined
16 Stopped
17 Already dribbling
18 File system error
19 Assuming you mean IFELSE, not IF (warning only)
20 shadowed by local in procedure call (warning only)
21 Throw "Error
22 is a primitive
23 Can’t use TO inside a procedure
24 I don’t know how to (not recoverable)
25 IFTRUE/IFFALSE without TEST
26 Unexpected ’]’
27 Unexpected ’}’
28 Couldn’t initialize graphics
29 Macro returned instead of a list
30 You don’t say what to do with
31 Can only use STOP or OUTPUT inside a procedure
32 APPLY doesn’t like as input
33 END inside multi-line instruction
34 Really out of memory (can’t be caught)

caseignoredp true



Special Variables 309

caseignoredp

erract

loadnoisily

printdepthlimit

printwidthlimit

redefp

startup

true
equalp beforep memberp true

[pause]

true
edit

print

print

true erase copydef

load

If , indicates that lower case and upper case letters should be considered
equal by , , , etc. Logo initially makes this variable , and buries it.

An instructionlist that will be run in the event of an error. Typically has the value
to allow interactive debugging.

If , prints the names of procedures defined when loading from a file
(including the temporary file made by ).

If a nonnegative integer, indicates the maximum depth of sublist structure
that will be printed by , etc.

If a nonnegative integer, indicates the maximum number of members in
any one list that will be printed by , etc.

If , allows primitives to be erased ( ) or redefined ( ).

If assigned a list value in a file loaded by , that value is run as an instructionlist
after the loading.





A

B

C

311

Index of Defined Procedures

This index lists example procedures whose definitions are in the text. The general index
lists technical terms and primitive procedures.

134
134

135
135
135

136
136

135

185
29
170

169
170
10, 13

70
70

228
136

168
136

136
31, 32

31, 32
145

185
102

107
107

231
170

65
226

70
230

107
12, 14

106
104
104

169
70

71
67

67
67

168

#gather
#test
#test2
&test
@test
@test2
@try.pred
ˆtest

a
addline
addmemr
addpunct
addrule
addword
again
allup
alphabet
always
analyze
anyof
anyof1
ask.once
ask.thrice
aunts

b
basicprompt
basicread
basicread1
beep
beliefp
bell
bind
blacktype
boundp
breadstring
break

c.if1
c.input1
c.print1
capitalize
carddis
cheat
checkempty
checkfull
checkonto
checkpriority



D

E

F

G

H

I

312 Index of Defined Procedures

168
67

28
229

230
228

103
103
105

104
103

106
104

105
105

104
104

230
146

67

228
65

168
22, 26

23, 26
21, 26

70
69

69
69

69
186

169

103
106

106
3

11, 13

144
170

28
66
66

66
27

11, 13
227

184, 244
189, 190, 240, 243

229
185
185

229

22, 27
167

168
167

140
204

145
145

145
225
226

65
71
72

225
225

103
136

231

checkrules
checktop
chop
clearword
cnt
codeword
compile
compile.end
compile.for
compile.gosub
compile.goto
compile.if
compile.input
compile.let
compile.next
compile.print
compile.return
count.
cousins
coveredp

dark
deal
decapitalize
diff.differ
diff.found
diff.same
dishand
dispile
disstack
distop
distop1
divisiblep
dorule

eraseline
expr1
expression
extract
extract.word

family
familyp
filename
findcard
findpile
findshown
firstn
firstword
fixtop
for
foreach
forletters
forloop
forstep
fullclear

getline
getsentence
getsentence1
getstuff
gprop
grade
grandchildren
granddaughters
grandfathers
guess.single
guess.triple

hand3
helper
hidden
histlet
histogram

immediate
in
index



J

K

L

M

N

O

P

Index of Defined Procedures 313

9
224

64
64

224
103

77
63

63
231

145

145

170
229

228
28

29
230

10, 13, 167

103
28
201

134
134
135
134
135
135

231
23, 26

169
229

145

187, 203
203
203

35, 36, 182

189
12

12
71
108

22, 28
11, 13

12, 15
231

169

62
76
227

74
75

133
64

64
226

226
65

40
66

67
68
65

66
66

68
182

29
230

init.vars
initcount
inithidden
initstacks
initvars
insert
instant
instruct
instruct1
invtype

justgirls

kids

lastresort
lesstext
light
linenum
lines
list.
loop

makedef
makefile
map.tree
match!
match#
match&
match?
match@
matchˆ
max.
member2
memory
moretext
mother

multifor
multiforloop
multiforstep
multiply

named.foreach
newindent
newline
newstack
nextline
nextlinenum
nextword
nofill
nonneg
norules

onegame
onekey
onetop
opinion
ordinals

parse.special
parsecmd
parsedigit
parsekey
parseloop
parsezero
play
play.by.name
playcard
playonto
playpile
playstack
playstack1
playtop
polyspi
popsaved
posn



Q

R

S
T

314 Index of Defined Procedures

139
225

186
10, 13, 24, 28
10, 13

10, 13

32
226

136, 236

71
72

21, 27
108

169
69, 227

72
70

79
68
140

68
68

183
24, 27
169
65

62
37
38

29
29

75
264
134

133
230

230
230

72
28

29
230

231
230

72
230

264
228

229
228

228
72

227
227
63

146
12, 14

11
11, 13

13
145

138
133

107
107

72
12, 14

78
72

225
264

167
167

72
15

168
136

68

pprop
prepare.guess
primep
process
putline
putwords

qa
qbind
quoted

rank
ranknum
readline
readvalue
reconstruct
redisplay
redp
redtype
reference
rempile
remprop
remshown
remshown1
rep
report
reword
rubout

s
safe.item1
safe.item2
savedp
savelines
second
series
set.in
set.special
setbound

setcnt
setcount.
setempty
setlinenum
setlines
setlist.
setmax.
setposn
settop
setunbound
setup.values
showclear
showclear1
showcode
showcode1
shown
showrow
showtop
shuffle
siblings
skip
skipfirst
skipspaces
skipword
sons
spanish
special
split
split1
stackemptyp
start
submemberp
suit

tally
term
tokenize
tokenword
top
topmar
translate
try.pred
turnup



U

W

X

Y

Z

227

67
170

28
71

80
80

13, 15

39

Index of Defined Procedures 315

twocol

upsafep
usememory

which
wingame

xref
xrefall

yesfill

zap.player





A

B

317

Apple Logo

General Index

This index lists technical terms and primitive procedures. There is also an index of
defined procedures, which lists procedures whose definitions are in the text.

*
+
-
.defmacro
.eq
.macro
.maybeoutput
.setbf
.setfirst
.setitem
/
:
<
=
>

allopen

and

apply
arc
arctan
array
array?
arrayp
arraytolist

ascii
ashift

back
background

backslashed?
backslashedp

before?
beforep

bf
bfs
bg

280
279
280

304
274

304
194, 297

272
272

272
280
290
281
273
281

Abelson, Hal xvii, 149
access, random 21
algorithm 209

278
American Standard Code for Information

Interchange 220
amplitude 248

282
149

189, 192, 300
284

281
270

273
273

271
artificial intelligence xiii, xiv, 149, 157

220, 274
282

assignment, indirect 127, 221, 259

283
287

backquote 237
274
274

BASIC 81
273
273

behaviorism 157
271

271
287

Birch, Alison xvii



C

D

318 General Index

Compulsory Miseducation

Computer Power and Human Reason

bitand
bitnot
bitor
bitxor
bk
bl

buried
bury
buryall
buryname
butfirst
butfirsts
butlast
bye

cascade
cascade.2

caseignoredp
catch

char

clean

clearscreen
cleartext
close
closeall
co

combine

contents
continue

copydef
cos
count

crossmap

cs
ct
cursor

define
defined?
definedp

dequeue

diff
difference

do.until
do.while
dribble

282
282

282
282

283
272

branching, multiple 58
291

293
293

293
271

191, 271
272

297

C++ 186
capital letter 4
cardinal number 76

303
304

case, lower 4
case, upper 4

4, 309
31, 296

catch tag 32
catching errors 36

221, 274
cipher, simple substitution 205
circular list 164
Clancy, Mike xvii
clarinet 249

284
clear text 205

285
279

2, 278
278

297
cognitive science 157

271
compiler 87
compiler, incremental 88

210
computed variable names 221
computer music 249

149
computer science xiv

291
297

conversational program 109
215, 290

281
274

cross-reference listing 78
302

cryptogram 205
cryptography xiii

285
279

279

Dao, Khang xvii
data abstraction 49
data files 1
data, program as 73
Davis, Jim xvii
debugging 143
default 129, 143, 254

74, 289
291
291

defining a procedure 74
273

Deutsch, Freeman xvii
19

280
disk, hard 2
diskette 2

299
22, 299

4, 278
dribble file 4
dynamic scope 261



E

F

G

H

General Index 319

ed
edall
edit
edn
edns
edpl
edpls
edps

empty?
emptyp

eof?
eofp
equal?
equalp
er
erall
erase
erasefile
erf
ern
erns
erpl
erpls
erps
erract
error

exp

fd

fence

fill
filter
find
first
firsts

for
foreach

form

forward

fput

fs
fullscreen
fulltext

gensym

gprop

greater?
greaterp

294
294

294
294

294
294

294
294

effect and output 52
efficiency 122
Eliza 148

273
273

end of file 3
engineering, software xiv
environment, evaluation 204

279
279

273
4, 273

293
293
293

278
278
293

293
293

293
293

309
297

errors, catching 36
evaluation environment 204
evaluation of inputs 124
evaluation, serial 126
exit, nonlocal 31

280
extensible language 186

283

285
file, dribble 4
files, data 1
fill 5

285
198, 301

302
271

191, 271
flag variables 218

298
188, 300

fork, tuning 247
281

formatter, text 5
283

Fourier series 248
Fourier, Jean-Baptiste-Joseph 248

195, 270
frequencies of occurrence 206
frequency, fundamental 246
Friedman, Batya xvii

285
285

289
fundamental frequency 246

games xiii
generated symbol 98, 160
gensym 160

98, 181, 271
Gilham, Fred xvii
Goldenberg, Paul xvii
Goodman, Paul 210

139, 291
graph 206
graphical user interface 42

281
281

hard disk 2



I

J

K

L

M

320 General Index

heading
help

hideturtle

home
ht

if
ifelse
iff
iffalse
ift
iftrue
ignore

int

invoke
item

key?

keyp

label
last
left
less?
lessp

list

list?

listp
listtoarray
ln
load
loadnoisily
local
localmake
log10

lowercase
lput
lshift
lt

macro?
macroexpand
macrop
make

harmonics 248
harmonics, odd 249

284
295

heuristic 209
284

highlighting 207
histogram 206

284
284

295
296

296
296

296
296
298

incremental compiler 88
indirect assignment 127, 221, 259
input, optional 193
inputs, evaluation of 124
inputs, keyword 257
inputs, positional 257
instruction list 73

280
intelligence, artificial xiii, xiv, 149, 157
interpreter 87
inverse video 207

300
272

iteration 181

justify 5

Katz, Michael xvii
Katz, Yehuda xvii
Kemeny, John 81

279

279
keyword inputs 257
Kurtz, Thomas 81

285
271
283

281
281

letter, capital 4
library 181
Lisp xiv, 125, 141, 160

270
list structure, modification of 160
list, circular 164
list, property 137, 138, 154, 158
list, pushdown 50

273
listing, cross-reference 78

273
270

281
295

309
290

48, 290
281

Logo 186
loop 185
lower case 4

275
270

282
283

machine language 87
macro 233

306
306

306
75, 290



N

O

P

General Index 321

map
map.se

mdarray
mditem
mdsetitem
member
member?
memberp

minus

modulo

name
name?
namelist
namep
names

nodribble

norefresh
not

number?
numberp

openappend

openread
openupdate
openwrite

or

output

palette
parse

pause
pc
pd
pe
pen
pencolor
pendown
pendown?
pendownp
penerase
penmode
penpaint
penpattern
penreverse
pensize
penup

pick

plist
plists
pllist
po
poall

300
196, 301

matcher, pattern 109
mathematics xiii

270
272

272
89, 275

274
4, 274

Mills, George xvii
Minsky, Margaret xvii

280
modification of list structure 160
modularity 15, 33

280
mouse 42
multiple branching 58
music, computer 249
musical sounds 245
mutator 22

290
291

292
291
291

node 141
4, 278

nonlocal exit 31
286

282
number, cardinal 76
number, ordinal 76

274
274

numeric iteration 183
numeric precision 260

odd harmonics 249
277

2, 277
277

2, 277
optional input 193

282
ordinal number 76
organ, pipe 249
Orleans, Doug xvii

296
output and effect 52
overtones 248

287
275

parser 92
Pascal xiv, 186
pattern 109
pattern matcher 109
pattern matching xiv

297
287
286
286

287
287

286
287
287
286

287
286

287
286

287
286

periodic waveform 245
272

pipe organ 249
141, 291

292
292

292
292



Q

R

S

322 General Index

pon
pons
pop
popl
popls
pops
pos

pot
pots
power
pprop
ppt
pr

primitive?
primitivep
print
printdepthlimit

printwidthlimit

procedure?
procedurep
procedures
product

pu
push

px

queue

quoted
quotient

radarctan
radcos
radsin
random

rawascii
rc
rcs
readchar
readchars

reader
readlist
readpos
readword

redefp
reduce
refresh
remainder
remdup
remove
remprop
repeat
rerandom
reverse

right

rl
round
rt
run
runparse
runresult
rw

292
292

273
292

292
292

284
positional inputs 257

292
292

280
139, 291

286
276

precision, numeric 260
predicate 113, 219

291
291

276
309

printer 2
309

procedure 75
procedure, defining 74

291
291
291

280
program as data 54, 73, 131
program, conversational 109
program-writing program 76
programming, systems xiii, xiv
programs, utility xiv
property list 137, 138, 154, 158
psychotherapist 147

286
273

pushdown list 50
286

quadratic time 80
quantifiers 115

96, 273

272
280

281
281
281
281

random access 21
274

277
277

277
277

reader 2, 90
278

276
279

13, 276
recursion 181

309
198, 302

286
280

272
272

139, 291
181, 295

281
271

reverse video 207
283

ringing 250
276

280
283

14, 295
275

295
276

Sargent, Randy xvii



T

U

General Index 323

save
savel

scrunch
se
sentence

setbackground
setbg
setcursor
seth
setheading
setitem
setmargins
setpalette
setpc
setpen
setpencolor
setpenpattern
setpensize
setpos
setread
setreadpos
setscrunch
setwrite
setwritepos
setx
setxy
sety
shell
show
shown?
shownp
showturtle

sin

splitscreen

sqrt

ss
st

standout
startup
step

stop

substring?
substringp
sum

test
text

textscreen
thing
throw

to
towards
trace

transfer

ts

type

unbury
unburyall
unburyname
unstep
until

294
295

science, cognitive 157
science, computer xiv
scope, dynamic 261

284
270

270
serial evaluation 126
series, Fourier 248

287
287

279
284

284
272

279
287

287
287

287
287

287
284

2, 278
278
285

2, 278
278

284
284

284
277

276
286
286

284
simple substitution cipher 205

281
sine wave 247
software engineering xiv
solitaire 41
Solomon, Cynthia xvii
sounds, musical 245

285

280
square wave 249

285
284

stack 50
44, 275

309
294

stimulus-response 157
296

substitution cipher, simple 205
274
274

279
symbol, generated 98, 160
systems programming xiii, xiv

tag, catch 32
tail recursion 201

296
73, 289

text formatter 5
285

75, 290
31, 39, 296

time, quadratic 80
288

284
293

transcript file 4
304

tree 200
285

tuning fork 247
276

293
293

293
294

299



V

W

X

Y

324 General Index

untrace

uppercase

wait

while
window
word

word?
wordp
wrap

writepos

writer

xcor

ycor

294
upper case 4

221, 275
user interface, graphical 42
utility programs xiv

van Blerkom, Dan xvii
variable 75
variable names, computed 221

297
wave, sine 247
wave, square 249
waveform 246
waveform, periodic 245
Weizenbaum, Joseph 148

299
285

270
word processor 5

273
273

285
Wright, Matthew xvii

279
writer 2

278

284

284
Yoder, Sharon xvii


