
1

Software Engineering

Prof. Brewer CS169 Lecture 1 1

CS169

Spring 2009

Administrivia

• If you are enrolled, you need do nothing

• If you are on the waiting list, follow the
normal procedures

Prof. Brewer CS169 Lecture 1 2

• Discussion sections?
– Cancelled!
– Focus is on team projects

• You will have team meetings instead

• Pick up class account forms after next lecture

Course Staff

• Eric Brewer, brewer@cs
– 623 Soda Hall
– Office hours: Tu 5-6pm, Th 10-11am
– Founded Inktomi (Yahoo! Search), usa.gov

Prof. Brewer CS169 Lecture 1 3

• RJ Honicky, honicky@cs
– CS Grad Student
– Office Hours TBA

• Bonnie Kirkpatrick, bbkirk@cs
– CS Grad Student
– Office Hours TBA

Course Communication

• All class materials will be on bSpace
– Lecture notes, handouts, papers to read, etc.
– So why should you come to lecture then?

Prof. Brewer CS169 Lecture 1 4

• Read the class site and the forum
– “Projects” topic is a good way to create teams
– Ask questions in the “General questions” topic
– Preferred for most questions over email
– [replaces ucb.class.cs169 newsgroup]

Class Survey

20

25

30

35

nt

Web Apps
Phones
Open Source
IP
AJAX
Team Dynamics
Design Patterns

0

5

10

15

20

Waste of
Time

Interested Definitely
Cover

Excited

C
ou

n Design Patterns

Academic Honesty

• Policy on web site
– Expected to cooperate on projects
– … but not on homeworks/exam

• Default penalty: D in class

Prof. Brewer CS169 Lecture 1 6

PLAGIARISM

2

Course Structure

• Lectures
– Course taught mostly from notes

• Supplemented by readings
– Programmer’s view of software engineering

h l b

Prof. Brewer CS169 Lecture 1 7

• Technology issues over business issues

• Homework
– TBD

• Midterm exam (no final)
• Project …

The Project

• A BIG project
– Can be (almost) anything
– Web app, phone app, desktop app, combo…

Prof. Brewer CS169 Lecture 1 8

• Done in teams of 5-7 students
– You do everything
– Design, code, and test in several assignments

• Be prepared for a lot of work (and fun, and
satisfactions, …)

One of My Opinions

• Good software engineering can be learned
– But it is hard to teach
– Most people only learn through experience (i.e.

mistakes)

Prof. Brewer CS169 Lecture 1 9

• How can you get that experience?
– Do a project, in a team
– Hear from other projects
– Each project will present ?? times to the class

Project Timeline

• Project nominations
• Project selection, team assignments
• Requirements and specification
• Project design & plan

Prof. Brewer CS169 Lecture 1 10

Project design & plan
• Design review

– Done by other teams
• Iterative implementation
• Presentation and Demo

What is Software Engineering?

• Your thoughts here

Prof. Brewer CS169 Lecture 1 11

What is Software Engineering?

• As defined in IEEE Standard 610.12:
– The application of a systematic, disciplined,

quantifiable approach to the development,

Prof. Brewer CS169 Lecture 1 12

operation, and maintenance of software; that is,
the application of engineering to software.

3

An Opinion

• The IEEE definition is really pretty good

• But it is descriptive not prescriptive

Prof. Brewer CS169 Lecture 1 13

But it is descriptive, not prescriptive
– It doesn’t say how to do anything
– It just says what qualities S.E. should have
– As a result many people understand SE differently

End-User License Agreement

• From Microsoft Office (just tiny part):
– Can’t disassembly or reverse engineer
– If it does something bad, you have only one

“remedy”
• Money back or return product (you pay shipping)

Prof. Brewer CS169 Lecture 1 14

Money back or return product (you pay shipping)
– Never entitled to any “damages”

• Even breach of contract, failure to support product
• Even admitted problems

– Product is “as is and with all faults”
– Any implied warranty is not valid

• … doesn’t matter if we said it would work

What is Software Engineering?

• Often compared to civil engineering
– building a bridge

• A surprisingly good analogy
– Size matters: a dog house vs. a skyscraper

Prof. Brewer CS169 Lecture 1 15

g y p
– Team effort with careful planning
– Difficulties to change designs?
– Penalties for failures?
– Many terms come from this metaphor: building,

scaffolding, architecture, components, …

But, a software revolution is in progress…

• Old:
– Desktop software released every year or two
– Physically distributed on CD
– Hard to update, hard to test with all configurations

Prof. Brewer CS169 Lecture 1 16

• New:
– Applications in the “cloud”
– Access via browsers, phones, …
– Easy to update every day or every hour

• Small penalty for errors, just fix them quickly

“Penalties” drive the process

• Medical equipment, air traffic control
– Errors cost lives (Therac-25 coming later)

• Traditional apps:
– Errors are hard to fix, therefore long lived

Prof. Brewer CS169 Lecture 1 17

, g
– Cost $$, reputation

• Web apps:
– Errors are easy to fix (limits the penalty!)
– Can also test ideas live with small random groups

• Free apps: users are tolerant

Different penalties => different processes

Tradition SE
• Several fixed steps
• Heavy specification
• Extensive testing

“Agile” SE
• Many small iterations
• Limited specification

– React to previous version
E t h

Prof. Brewer CS169 Lecture 1 18

• Controlled release
• Physical Distribution

• Often large teams

• Easy to change course
• Some testing (but less)
• Frequent simple releases
• No distribution

• Typically small teams

4

Software Engineering vs. Civil Engineering

• Software generally unable to reuse
components…
– E.g. standard pipes, light bulbs, outlets, etc.
– Exception: really big components

Prof. Brewer CS169 Lecture 1 19

• Databases, Apache, Ruby on Rails
• Must be big enough to have their own staff, agenda

• Software generally doesn’t work
– Customers rarely demand it !

• Software is much easier to fix
– (but harder than people think)

Software vs. Hardware Reliability Curve

• Harware wears out
• Software changes

Hardware

wear

ct
s

Time

Prof. Brewer CS169 Lecture 1 20

• Software changes
– or its environment

changes
– called “bit-rot”

Software

changes
ideal

actual

D
ef

ec Time

Software Engineering Myths: Management

• “We have books with rules. Isn’t that
everything my people need?”
– Which book do you think is perfect for you?

• “If we fall behind, we add more programmers”

Prof. Brewer CS169 Lecture 1 21

p g
– “Adding people to a late software project, makes it

later”
• “We can outsource it”

– If you do not know how to manage and control it
internally, you will struggle to do this with
outsiders

Software Engineering Myths: Customer

• “We can refine the requirements later”
– A recipe for disaster if you can’t change easily.

• “The good thing about software is that we can
h it l t il ”

Prof. Brewer CS169 Lecture 1 22

change it later easily”
– As time passes, cost of changes grows rapidly
– Depends on the size of the project, contracts,

distribution, ???
– This is really somewhere between laziness and

rationalization…

Software Engineering Myths: Practitioner

• “Let’s write the code, so we’ll be done faster”
– This is an open question!
– “The sooner you begin writing code, the longer it’ll take to

finish”
– Writing tests first has shown value

Question is do you:

Prof. Brewer CS169 Lecture 1 23

– Question is do you:
• specify then implement? OR
• implement in iterations?

• “Until I finish it, I cannot assess its quality”
– Software and design reviews are more effective than testing

(find 5 times more bugs)
• “There is no time for software engineering”

– But is there time to do it over?

My List: What is Software Engineering For?

• We want to build a system

• How will we know the system works?

Prof. Brewer CS169 Lecture 1 24

• How do we develop system efficiently?
– Minimize time
– Minimize dollars
– Minimize …

5

Problem 1: How Do We Know It Works?

• Buggy software is a huge problem
– But you likely already know that

• Defects in software are commonplace
M h th i th i i

Prof. Brewer CS169 Lecture 1 25

– Much more common than in other engineering
disciplines

• Examples (see “Software Crisis” reading)

• This is not inevitable---we can do better!

What is It?

• But how do we know behavior is a bug?

• Because we have some separate specification
of what the program must do

Prof. Brewer CS169 Lecture 1 26

– Separate from the code
– Like a blueprint for a building…

• Thus, knowing whether the code works
requires us first to define what “works” means
– A specification

Teams and Specifications

Principle #1:

Communication is hard

Prof. Brewer CS169 Lecture 1 27

Communication is hard.

In any conversation, the participants will have
(slightly) differing interpretations of what

was said.

Teams and Specifications (Cont.)

• Principle #1 is devastating for software
development

• People will

Prof. Brewer CS169 Lecture 1 28

People will
– Discuss what to do
– Divide up the work
– Implement incompatible components
– Be surprised when it doesn’t all just work together

What Can We Do?

• Write specifications
– Write down what it is supposed to do
– Make sure everyone understands it
– Keep the specification up to date

Prof. Brewer CS169 Lecture 1 29

• This does not solve the problem completely
– There are always ambiguities, contradictions
– These lead to bugs
– But the problem is reduced to manageable size

Summary of Problem #1

• A specification allows us to:
– Build software in teams at all
– Check whether software works

Prof. Brewer CS169 Lecture 1 30

• Actually checking that software works is hard
– Code reviews
– Static analysis tools
– Testing and more testing
– We will examine this problem closely

6

Problem #2: How Do We Code Efficiently?

• Assume we want to minimize time
– Usually the case
– Time-to-market exerts great pressure in software

Prof. Brewer CS169 Lecture 1 31

• How can we code faster?
– Obvious answer: Hire more programmers!

Parallel Development

• How many programmers can we keep busy?
– As many as there are independent tasks

• People can work on different modules

Prof. Brewer CS169 Lecture 1 32

p
– Thus we get parallelism
– And save time

• What are the pitfalls?

Pitfalls of Parallel Development

• The problems are the same as in parallel computing

• More people = more communication
– Which is hard

Prof. Brewer CS169 Lecture 1 33

• Individual tasks must not be too fine-grain
– Increases communication overhead further

• Inherent sequential constraints
– E.g., pipeline architecture

Interfaces

• The chunks of work must be independent
– But work together in the final system

• We need interfaces between the components

Prof. Brewer CS169 Lecture 1 34

p
– To isolate them from one another
– To ensure the final system works

• The interfaces must not change (much)!
– Otherwise, development is not parallel

Defining Interfaces

• What are interfaces?

• They are just specifications!

Prof. Brewer CS169 Lecture 1 35

• But of a special kind
– Interfaces are the boundaries between components

• And people

Defining Interfaces

• Specifying interfaces is most important
– Interfaces should not change a lot
– Effort must be spent ensuring everyone

understands the interfaces

Prof. Brewer CS169 Lecture 1 36

– Both things require preplanning and time

• But often we can stop at specifying interfaces
– Let individual programmers handle the internals

themselves

7

Software Architecture

• To define interfaces, we must decompose a
system into separate pieces with boundaries

• How do we do this?

Prof. Brewer CS169 Lecture 1 37

How do we do this?

• Your thoughts

My Opinions

The decomposition of a system is driven by:

– What it does

Prof. Brewer CS169 Lecture 1 38

– How we build it

– Who builds it

Decomposition: What the System Does

• The application itself often dictates natural
decomposition

• A compiler is a pipeline consisting of

Prof. Brewer CS169 Lecture 1 39

A compiler is a pipeline consisting of
– Lexer
– Parser
– Type checker
– Optimizer
– Etc.

Decomposition: How We Build It

• Buildings need scaffolding during construction
• So does software!

• Two areas in particular:

Prof. Brewer CS169 Lecture 1 40

– Lots of extra code that is not really part of the final product
– Influence of third-party subsystems

• Test harnesses, stubs, ways of building and running
partial systems

Decomposition: Who Builds It

• Software architecture reflects the structure
of the organization that builds it

• Often, 5 developers = 5 components

Prof. Brewer CS169 Lecture 1 41

Often, 5 developers 5 components

Summary of Problem #2

• Efficient development requires
– Decomposing system into pieces
– Good interfaces among pieces

Prof. Brewer CS169 Lecture 1 42

• The pieces should be large
– Don’t try to break up into too many pieces

• Interfaces are specifications of boundaries
– Must be well thought-out and well communicated

8

Conclusions

• Software engineering boils down to several
issues:
– Specification: Know what you want to do
– Design: Develop an efficient plan for doing it

Prof. Brewer CS169 Lecture 1 43

– Programming: Do it
– Validation: Check that you have got what you wanted

• Specifications are important
– To even define what you want to do
– To ensure everyone understands the plan

Conclusions (Cont.)

• Is that all?

• NO!

Prof. Brewer CS169 Lecture 1 44

• Why?
– Because specifications do change!
– Because you were wrong about what you wanted
– Because the world changes
– We’ll talk about this next time . . .

