

December 9, 1994 4:14 pm

1

 of

20

A Case for NOW (Networks of Workstations)

Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW team

Abstract:

In this paper, we argue that because of recent technology advances, networks
of workstations (NOWs) are poised to become the primary computing infrastructure for
science and engineering, from low end interactive computing to demanding sequential
and parallel applications. We identify three opportunities for NOWs that will benefit end-
users: dramatically improving virtual memory and file system performance by using the
aggregate DRAM of a NOW as a giant cache for disk; achieving cheap, highly available,
and scalable file storage by using redundant arrays of workstation disks, using the LAN
as the I/O backplane; and finally, multiple CPUs for parallel computing. We describe the
technical challenges in exploiting these opportunities – namely, efficient communication
hardware and software, global coordination of multiple workstation operating systems,
and enterprise-scale network file systems. We are currently building a 100-node NOW
prototype to demonstrate that practical solutions exist to these technical challenges.

Keywords: Networks of Workstations, Communications, Parallel Computing, Mes-
sage Passing, File Systems, Network Virtual Memory, Global Resource Manage-
ment, Availability

1. Introduction

A fundamental concept in biology is the stable food chain: big fish eat smaller fish,
which in turn feed on still smaller fish, and so on. Each type of fish is adapted to its own
ecological niche. Computer systems also occupy ecological niches, of a sort. Personal
computers and workstations are small systems, designed to provide fast and predictable
interactive performance on jobs of modest size. Servers and mainframes are more
expensive, oriented to more demanding applications and larger numbers of users.
Finally, supercomputers are designed to achieve the ultimate in performance at any cost.

The computing food chain seems to operate in reverse, however: the smallest fish, per-
sonal computers, are eating the market for workstations, which have consumed the mar-
ket for minicomputers and are eating away at that for larger mainframes and
supercomputers. Why is this? One reason is the effect of volume manufacturing on
computer price-performance. The rapid improvement each year in computer system per-
formance does not happen by accident; it requires a huge investment in engineering and
manufacturing. For personal computers and workstations, this investment can be amor-
tized over a large sales volume. With much smaller sales volume, mainframes and
supercomputers must either forgo performance advances or obtain them at higher per-
unit cost. Workstation price-performance is improving at 80% per year, while that of
supercomputers is improving at only 20-30% per year. Given that desktop computers
offer the best price-performance in this era of sustained rapid change, why would any-
one buy a supercomputer? One reason is there may be no choice: you have a task that is
bigger than will feasibly run on a workstation.

Background

2

 of

 20

A Case for NOW (Networks of Workstations)

How can we exploit this transformation of the technology base towards small comput-
ers? We argue that the on-going technological convergence of local area networks and
massively parallel processor interconnects will allow networks of workstations (NOWs)

to replace the entire computer food chain.

1

 Instead of small computers for interactive
use and larger computers for demanding sequential and parallel applications, we pro-
pose using NOWs for

all

the needs of computer users. In particular, the Berkeley NOW
project tries to harness all the computers in a building to satisfy the needs of both desk-
top computing and applications that need a hundredfold more computing resources than
found in any single machine within that building.

In Section 2 we discuss the technological and economic factors motivating our investi-
gation into NOW systems, paying particular attention to the lessons learned from mas-
sively parallel processing systems. In Section 3 we examine the new opportunities that
are enabled by a NOW system with a fast, scalable interconnect. In Section 4 we discuss
some of the key technical challenges to realizing these opportunities and how they are
being addressed in the Berkeley NOW project.

2. Background

2.1 Technology Trends

For most of the VLSI generation, a handful of dominant technological forces have
shaped the design of computer systems. Microprocessors have been improving in per-
formance at a rate of 50% to 100% per year. DRAM memories and disks have been qua-
drupling in capacity roughly every three years [PaHe90]. These trends provide the basis
for many abstract cost metrics and analyses of what is practical at various points in time.
However, the danger in abstracting too far away from the industry that produces the
technology is losing sight of two critical constraints: volume and dollars.

Cheaper computers are attractive to a larger market. PCs are manufactured in much
larger volumes than workstations or servers, which in turn are in much larger volume
than mainframes or supercomputers. Larger volume means that the massive develop-
ment costs required to sustain the rate of technological innovation is amortized over a
larger number of units. Other economies of scale further contribute to the improved
cost-performance. Gordon Bell has attempted to summarize these effects with the rule
of thumb: doubling the volume reduces the unit cost to 90%. For example, over the past
five years the volume of PCs shipped per supercomputer is about 30,000:1. Thus, this
rule predicts a cost advantage of a factor of 5 for the smaller system. Looking at one
comparable component of these systems, we see that in January 1994 the cost per MB
of DRAM memory was $40 for a PC and $600 for the Cray M90 family, a price multi-
plier of 15. The bottom line is that smaller computers offer better cost-performance than
larger computers.

1.

We use the term workstation to refer generically to the computer system designed for
the desktop. High-end personal computers have acquired all of the capabilities that
once distinguished workstations, which include local area networking and a full
function operating system.

Background

A Case for NOW (Networks of Workstations)

3

 of

20

The interesting question is what do these cost-performance trends mean if we need more
processor cycles, memory and/or disk than can be reasonably provided in a small sys-
tem. Must we buy a single computer big enough for the biggest task we

ever

 need to run
and pay a huge premium for the additional capacity? Indeed, there is a market for serv-
ers, mainframes and supercomputers, even though they offer worse cost-performance
than workstations or PCs. Most engineering workstations have a huge amount of mem-
ory and very fast processors, both of which sit idle most of the time. It is clearly attrac-
tive to consider building large computing systems out of small mass-produced
computers, but we must also ensure that we can deliver to a single task far more
resources than fit in one box.

2.2 Lessons from MPPs

Analyses similar to those above led many to speculate in the mid 80s that the “killer
micro” would take over high-performance computing [Brooks]. Today supercomputing
is led by massively parallel processors (MPPs) – machines constructed as a large collec-
tion of workstation-class nodes connected by a dedicated, low latency network. It would
seem that these do exploit the commodity “killer” technologies: a fast microprocessor,
its sophisticated cache, and large inexpensive DRAM. What has limited their success?
Examining the strengths and weaknesses of the MPPs will help us understand the key
constraints under which NOW must achieve its goal.

One key weakness is engineering lag time. With the performance of commodity compo-
nents increasing at a rapid pace, any time between freezing the design and shipping the
system subtracts from performance. As indicated in Table 1, MPP systems tend to lag
one to two years behind workstations built out of comparable parts. At 50% perfor-
mance improvement per year, a two year lag costs more than a factor of two in the bot-
tom-line computational performance.

MPP Node Processor MPP Year
Year of Equivalent
Workstation

T3D 150 MHz Alpha 1993-94 1992-93

Paragon 50 MHz i860 1992-93

≈

 1991

CM-5 32 MHz SS-2 1991-92 1989-90

TABLE 1.

Comparison of MPPs and workstations with the same or comparable microprocessor.

Background

4

 of

 20

A Case for NOW (Networks of Workstations)

The increased engineering effort of a highly integrated system exacerbates the cost-per-
formance disadvantage of low volume. This is not unique to MPP systems; it applies to
multiprocessor servers as well. As an example, Figure 1 shows the university price of a
range of systems all providing 128 40 MHz SuperSPARC processors, 128x32 MB of
memory, 128 GB of disk, 128 screens, and a scalable interconnect. The first three sys-
tems are SPARCstation-10s with one, two or four processors. Next are SparcCenter-
1000 and SparcCenter-2000 servers that can contain up to 8 and 20 processors, respec-
tively, and finally a 128 node MPP, either the Thinking Machines CM-5 or the Meiko
CS-2. The latter systems include a large engineering effort, over and above that of the
commodity parts, which must be borne by a relatively small volume of sales. The price
is a factor of two higher for either the large multiprocessor servers or MPPs compared to
the most cost effective workstation.

These figures indicate the trade-offs in multiprocessor system integration. Repackaging
the chips on the desktop motherboard results in better system density and potentially
reduces parts costs. It may provide access to internal busses for the network connection,
which tends to allow for better communication performance than standard peripheral
points. However, the integration effort adds to product lag time and increases develop-
ment costs. (Our experience is that it also increases the per node cost of maintenance.)
By increasing lag time, it hurts computational performance. Since the final performance
of any task depends on both the communication and computation rates, there is clearly a
limit to the advantages of integration.

A weakness that is often unappreciated is the high cost incurred by MPPs of changing
the operating system and other commodity software. Workstation vendors invest as
much in operating system development as they do in microprocessor design, plus a vast
body of applications depends directly on the operating system interface. Early MPPs

FIGURE 1. Price comparison (at discount) for a range equivalent 128 processor systems.

M
$

0.0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

 128

SS10/1

 64

SS10/2

+ 64 X

 32

SS10/4

+ 96 X

 16

SC1000

+ 128 X

 8

SC2000

+ 128 X

CM-5 +

128X,

switch

XTerm

PROC

ATM

Background

A Case for NOW (Networks of Workstations)

5

 of

20

were forced to provide custom message passing kernels, and applications had to be
modified for each new machine. More recent machines offer a full Unix on each node,
however, repackaging the chips and eliminating typical devices (local disk, serial port,
and Ethernet) has forced a split from the commodity OS development path. This diver-
gence results in less functionality, lower reliability, and further increased lag time.

The final weakness is the niche that the MPPs have ben able to occupy. They are suc-
cessful at delivering very high performance in certain applications domains, where
rewriting the application was tractable, but they have not provided a versatile tool deliv-
ering high throughput on general purpose tasks, such as file service, nor have they pro-
vided fast and predictable interactive performance.

Nevertheless, as a collection of workstation-class computers, the MPPs provide two
main advances we need in a NOW:

communication performance

 and a

global system
view

. Current MPP systems provide a dedicated, high-bandwidth network that scales
with the number of processors. In discussing communication performance it is impor-
tant to distinguish the time spent in the actual network hardware, which we call

latency

,
from that spent in the processor in preparing to send or receive a message, which we call

overhead

[Cul*93]. Network latency can potentially be overlapped with computation,
while overhead is processor cycles that cannot be used for computation.

MPP communication performance derives from several factors. The routing compo-
nents are fast, single-chip switches employing cut-through routing with short wire
delays and wide links. The network interface is close to the processor, typically on the
processor-memory bus, rather than on a standard I/O bus. Even with this high quality
communication hardware, the overhead for conventional message passing on MPP sys-
tems is typically a few thousand processor cycles[vEi*92]. Although this is an order of
magnitude better than typical LAN overheads, it is still substantial. Lean communica-
tion layers, especially Active Messages [vEi*92], have demonstrated that this software
overhead can be reduced by an order of magnitude. For example, on the CM-5, which
provides user-level network access, the processor overhead for sending and handling a
small message is about 50 processor cycles each (25 instructions, 1.7us) while the net-
work latency is less than 130 cycles (4 us) across a 1024 processor machine.

The global system view means that a single parallel program runs on a large collection
of nodes as a single entity, rather than an arbitrary collection of processes. Job control
pertains to the entire collection. Files are uniformly accessible across all the nodes.
Most importantly, the processes are scheduled as a single unit, so the constituents of a
parallel program actually run in parallel.

Although the networking advances in MPPs represents a key breakthrough, our conclu-
sion from the MPP experience it is not enough to exploit commodity components. You
need to exploit the full desktop building block, including the operating system and
applications. The challenge is to make NOW a win for all users – it should deliver at
least the interactive performance of a dedicated workstation while providing the aggre-
gate resources of the network for demanding sequential and parallel programs. This
requires a resource allocation policy that explicitly preserves interactive performance,
while allowing dedicated and unused resources throughout the network to be used by
demanding applications: DRAM for memory-intensive programs, disks for I/O bound
programs, CPUs for parallel programs.

Opportunities for NOW

6

 of

 20

A Case for NOW (Networks of Workstations)

2.3 Why NOW Now?

The idea of using idle resources over a network has been around nearly since computers
became networked, and parallel computing on clusters of workstations is hardly
new[MiLi91,Zho92]. What is new is the convergence of technologies and systems con-
cepts that together make NOWs more attractive than ever before.

•

The “killer” network.

 Switched local area networks allow bandwidth to scale with
the number of processors and low overhead communication protocols have made it
possible to do very fast communication over a LAN. These technologies have been
proven in MPP systems that span several tens of meters. They are emerging in the
LAN arena, with ATM and other recent alternatives, including the Myrinet presented
in this issue.

•

The “killer” workstation.

 Workstations have become extraordinarily powerful. A
top end 1994 workstation is roughly one-third the performance of a Cray C90 pro-
cessor and exceeds C90 capacity in many respects. In addition to processor perfor-
mance, a typical workstation offers large memory and disk capacity. Therefore, the
resources on a desktop are more worthwhile to recruit than ever before. The key to
doing so is the network hardware and software.

•

The I/O bottleneck.

 Processors are getting much faster, but disks are improving
mostly in capacity, not performance. If current trends continue, further increases in
processor performance will yield little improvement for the end-user, since more and
more of the time will be spent waiting for I/O. NOWs offer another alternative. A
huge pool of memory potentially exists on the network; this memory can be
accessed far more quickly than local disk. Furthermore, when I/Os are required, they
can be striped across multiple workstation disks, much as in a RAID. The key
enabling technology is again the network.

It should be clear that the advantage of a NOW is not just for parallel computing.
Rather, it is the opportunity to focus a large collection of resources on a single program:
large memory, large disk, or large processing. We believe it is time to concentrate on
building large systems out of high volume hardware and software components, and to
raise the level at which we do systems research. In taking this research approach, there
is the chance to make future high volume components better suited as a building block
for such large scale systems.

3. Opportunities for NOW

In this section, we discuss some of the advantages a NOW could offer, when imple-
mented on a building-wide scale of hundreds of machines. The discussion is organized
around the pool of resources in a NOW: memory, disks, and processors. In each case,
we ask how a NOW system can be more to the end user than simply a bunch of
machines on a fast network.

Opportunities for NOW

A Case for NOW (Networks of Workstations)

7

 of

20

3.1 Memory

Fast network communication makes it attractive to use the aggregate DRAM of a NOW
as a giant cache for disk. This has not been practical in the past on Ethernet because it
would consume too much of the bandwidth of the shared media and because even on an
idle Ethernet, the time to fetch data across the network is only marginally less than a
local disk access. On emerging switch-based local area networks, ample bandwidth is
available and the remote memory access time is an order of magnitude faster than disk.
Table 2 shows a conservative estimate of the time for an 8 KB access on an DEC AXP
3000/400 on both Ethernet and ATM using standard network drivers; there is even a big-
ger benefit with the low overhead network hardware and software described in Section
4.1 and in [vEi*95]. By using the idle DRAM on a NOW, we can dramatically reduce
the number of disk accesses, mitigating the I/O bottleneck and greatly improving user-
visible performance. There are two applications of this idea: virtual memory and file
caching.

3.1.1 Network RAM

Virtual memory was introduced to run problems much bigger than main memory; the
idea was to automatically migrate data between main memory and slower, cheaper stor-
age, giving the illusion of a large, inexpensive memory. Unfortunately, as the perfor-
mance gap between processor and disk has widened, this illusion has broken down and
today people arrange never to run problems bigger than the physical memory of the
machine. To run a larger program, typically one needs to buy more DRAM or, if no
more will fit, find a bigger (and less cost-effective) computer that can hold more
DRAM. This happens despite the presence of gigabytes of idle DRAM on the network.

Network RAM can fulfill the original promise of virtual memory. With high bandwidth,
low latency networks and system software that can recognize when machines are idle,
we can page effectively across the network. Simulations, such as the one shown in
Figure 2, suggests that programs run 10% to 30% slower using network RAM than if
the program fit entirely in local DRAM; using network RAM is 5 to 10 times faster than
thrashing to disk.

TABLE 2. Time to service a file system cache miss from remote memory or disk
for Ethernet and for 155 MBit/s ATM (assuming 50% of peak ATM
bandwdith).

Ethernet 155 Mbit/s ATM

Remote
Memory

Remote
Disk

Remote
Memory

Remote
Disk

Mem. Copy 250 µs 250 µs 250 µs 250 µs

Net Overhead

Data

400 µs

6250 µs

400 µs

6250 µs

400 µs

800 µs

400 µs

800 µs

Disk -- 14,800 µs -- 14,800 µs

Total 6,900 µs 21,700 µs 1,450 µs 16,250 µs

Opportunities for NOW

8

 of

 20

A Case for NOW (Networks of Workstations)

3.1.2 Cooperative File Caching

Analogously, we can improve file system performance by cooperatively managing the
file caches on each client workstation. Traditionally, network file systems cache files in
local client memory and on client disks to reduce network accesses; they also cache files
in memory at the server to reduce disk accesses. In a building-wide NOW, the aggregate
client memory far outstrips the memory that can be feasibly put at the server. Coopera-
tively managing this large client memory has two benefits. First, a number of files, such
as executables and font files, are used by more than one client; on a cache miss, these
files can be fetched from another client’s memory, instead of going to the server’s disk.
Second, active clients can effectively increase the size of their cache by using the mem-
ory of idle clients.

We have investigated the potential benefits of cooperative caching in file systems by
examining a two day trace of file system activity on a cluster of 42 workstations at Ber-
keley. Table 3 shows the simulated results for a practical implementation of cooperative
caching, including the overhead of coordinating the contents of the various caches.
Assuming each client workstation has 16MB of file cache and the server cache is

FIGURE 2. Estimated execution time as the size of the multigrid problem increases running on
three systems: workstation with 32 MB of DRAM plus disk, one with 128 of DRAM, and
one with 32 MB plus paging to DRAM on other machines on the network.

Problem Size (MB)

T
im

e
(m

in
.)

0

100

200

300

400

500

600

0 50 100 150

Network RAM

All DRAM

32 MB + Disk

Opportunities for NOW

A Case for NOW (Networks of Workstations)

9

 of

20

128MB, cooperative caching reduced disk reads by a factor of 2, improving file read
performance by 80% [Dah*94].

3.2 Redundant Arrays of Workstation Disks

 RAID (Redundant Arrays of Inexpensive Disks) systems deliver higher bandwidth,
capacity, and availability than can be achieved by a single large disk by hooking
together arrays of small disks. However, RAID systems have some drawbacks. The cost
per byte of disk storage is often worse than single disks by a factor of 2, due to the hard-
ware needed to manage the RAID. Further, the RAID must be connected to a host com-
puter, which is often a performance and availability bottleneck. Although RAID systems
use redundant storage to ensure a large MTTF, if the host computer crashes, the RAID
becomes unavailable.

NOWs provide the opportunity to address these issues. Instead of building the RAID in
hardware, we can build it in

software

, writing data redundantly across an array of disks
in each of the workstations on the network. Effectively, the fast network needed for net-
work RAM and cooperative file caching can also be used as the I/O backplane of a
RAID system. By striping across enough disks, each workstation can appear to have
disk bandwidth limited only by the network link bandwidth. Parallel programs can
achieve the aggregate disk bandwidth of the entire cluster. Availability of a software
RAID on a NOW could be

better

than in a hardware RAID system, because there is no
central host to be a single point of failure. If one workstation in the NOW crashes, any
other can take its place in controlling the RAID.

3.3 Parallel Computing

NOWs also provide an opportunity to support high-performance parallel applications
within an everyday computing infrastructure. For many real-world applications, we
need all of: processors capable of high sustained floating-point performance, networks
with bandwidth that scales with the number of processors, parallel file I/O, and low
overhead communication. One example is the AMES/UCLA chemical tracer model
(GATOR) [DeSm94]; it models atmospheric chemistry in the Los Angeles Basin and
has been used for detailed air pollution studies.

A model has been developed of GATOR’s execution time as a function of various input
parameters (grid resolution, number of chemical species) and system parameters (CPU
floating-point performance, number of CPUs, message bandwidth and overhead, file I/O
bandwidth). The predicted wall-clock times for the computation portion of the applica-
tion have been validated to within 30% against measured times on a 16-node Cray C-90,
a 64-node CM-5, and a 9-node DEC Alpha workstation farm.

Cache Miss Rate Read Response Time

Client-server 16% 2.8 ms

Cooperative caching 8% 1.6 ms

TABLE 3.

Impact of cooperative caching: 42 workstations, 16MB/workstation, 128MB/server

Opportunities for NOW

10

 of

 20

A Case for NOW (Networks of Workstations)

Table 4 shows the results of this model for several machine configurations. The trans-
port phase is communication intensive, while the ODE phase is highly parallel. The
computation involves 36 billion floating-point operations; 3.9 GB of input are needed
for the run, and 51 MB of output are produced. We consider a 16-node C-90 (300
MFlops and 10MB/s disk per CPU), a 256-node Paragon (12 MFlops and 2MB/s disk
per node), and a number of hypothetical 256-node RS/6000 NOWs (40 MFlops and
2MB/s disk per node). The baseline NOW system assumes Ethernet, PVM, and a
sequential file system. The performance of this system is dreadful, taking three orders of
magnitude longer than the Paragon or C-90. The performance is limited by sharing a
single Ethernet among a large number of high-performance processors. Upgrading to an
higher bandwidth ATM network dramatically improves performance of the transport
phase, improving overall performance by an order of magnitude. We are still limited by
the bandwidth of the sequential file system (2MB/s). Adding a parallel file system that
can deliver 80% of the aggregate bandwidth of the workstation disks improves overall
performance by yet another order of magnitude. Finally, replacing PVM with a low
overhead, low latency communication system further reduces the execution time by an
order of magnitude, to where performance on the NOW is competitive with the C-90 at
a fraction of the cost. The performance is better than on the Paragon, because the float-
ing-point performance of commercial workstations is much higher than that of a single
node on an MPP. In summary, we need good floating-point performance, scalable net-
work bandwidth, a parallel file system,

and

 low overhead communication to deliver
high performance for this application.

3.4 Workloads of a building-wide system

The measurements above suggest that NOWs can work well as dedicated systems.
There is also an opportunity to use the infrastructure in place for interactive work for
demanding applications. The key question is whether a NOW can run large programs
with the performance as a dedicated large computer and run small programs with the
interactivity of a dedicated workstation. To investigate this combination we simulated
the impact sequential workstation jobs and MPPs jobs may have on one
another[Arp*94].

Machine ODE
Transpor

t Input Total Cost

C-90 (16) 7 4 16 27 $30M

Paragon (256) 12 24 10 46 $10M

RS-6000 (256) 4 23340 4030 27374 $4M

‘‘ + ATM 4 192 2015 2211 $5M

‘‘ + Parallel file system 4 192 10 205 $5M

‘‘ + low overhead msgs 4 8 10 21 $5M

TABLE 4.

Predicted execution time in seconds for GATOR simulation of 12 hours of weather on a
Vector Supercomputer, MPP supercomputer, and 4 hypothetical versions of NOW.

Opportunities for NOW

A Case for NOW (Networks of Workstations)

11

 of

20

We collected traces from a local cluster of 53 DECstation 5000/133s with 64 MB of
memory used by electrical engineering graduate students. Two user-level daemons
logged information every two seconds on CPU, memory, disk, keyboard and mouse
activity. Data was collected for two months, resulting in roughly 3000 workstation-days
of traces. The workstation traces used in our simulations are randomly selected from
different weekday traces, allowing us to simulate a cluster of more than 53 worksta-
tions. For our parallel machine trace, we obtained a month's worth of data on parallel
jobs from a CM-5 at Los Alamos National Laboratories. The trace consists of a mix of
production and development runs on a 32-node system.

We found that even during the daytime hours, more than 60% of workstations are avail-
able 100% of the time. (We consider a machine available if there is no user activity or
active jobs for one minute.) This result is in direct contrast to the popular belief that idle
machines are only available during off hours. Since idle workstations are available, the
question then is how many workstations do you need to run the MPP workload without
interfering with the workstation users. Figure 3 shows that for these traces, the parallel
workload of a 32-node MPP runs only 10% slower when run on 64 workstations that are
running a typical sequential workload as well. This is like getting almost a CM-5 for
free.

3.5 Summary of Opportunities

A NOW system offers more than a collection of workstations on a fast network. It pro-
vides an opportunity to make advances in traditional system functions, such as virtual

FIGURE 3. Slowdown of a 32-node MPP workload from LANL running on a NOW running a
sequential workload as the number of workstations in NOW increases

Workstations for 32-node MPP job

S
lo

w
d

o
w

n

1

1.2

1.4

1.6

1.8

2

44 46 48 50 52 54 56 58 60 62 64 66

The Berkeley NOW Project

12

 of

 20

A Case for NOW (Networks of Workstations)

memory and file systems, as well as parallel computing. A NOW user’s approach to
obtaining higher performance may differ from that which is typical for MPPs. First,
avoid going to disk by using all the DRAM on the network. If the application is still not
fast enough, try using all the disks on the network to speed up the remaining I/O. If it is
still not fast enough, parallelize the computational portion. This layered approach seems
more attractive than the traditional first step required of MPP users: completely re-write
your program before you can see any benefit from the machine.

4. The Berkeley NOW Project

In this section we examine technical challenges inherent in realizing the opportunities of
NOW and outline how these are being addressed in the Berkeley NOW project. Our
approach is guided by a principle of using commercial off-the-shelf systems wherever
possible, in recognition of the rapid advance and tremendous investment in such tech-
nologies. As a research vehicle, there are two additional advantages: the implementation
is quicker if you avoid re-invention and exploiting mostly off-the-shelf technology will
simplify the transfer of new ideas and technology.

4.1 Low overhead communication

Bandwidth is the widely advertised metric of communication performance; however,
network latency and processor overhead can be just as important, despite their low pro-
file in product literature. This is a peculiar oversight because processor overhead is the
dominant factor determining the communication performance of real programs.

Several studies have examined the communication characteristics of parallel programs
and, as in the GATOR example above, many important programs transfer many small
messages and are sensitive to communication overhead. What is perhaps more surpris-
ing is that many conventional LAN applications exhibit similar characteristics. We
obtained a trace of network file system (NFS) traffic over one week from 230 clients of
our departmental file servers. Although file transfers are performed in large blocks, we
found that 95% of the NFS messages are less than 200 bytes, due to queries to the file
system metadata. Moreover, these queries must complete before file data can be
returned to the user, so NFS performance is directly coupled to the round-trip message
time, i.e., the overhead and latency.

On Sun Sparcstation-10s connected by Ethernet we measure 456

µ

s of processor over-
head plus (unloaded) network latency on a single message and a peak bandwidth of 9
Mb/s through TCP/IP. With the same processors and a Synoptics ATM network the

bandwidth increases to 78 Mb/s, but the overhead plus latency also

increases

 to 626

µ

s.

1

If we apply these coefficients to our trace, the eight-fold increase in bandwidth reduces

1.

 Note that these measurements are within 20% of other ATM networks. The network
latency component varies for different switches from about 10

µ

s to 100

µ

s depending
on the specific configuration. The network interface adapter adds as much as 100

µ

s
to the latency, but the largest fraction of the time is the processor overhead resulting
from the system software.

The Berkeley NOW Project

A Case for NOW (Networks of Workstations)

13

 of

20

the data transmission time component by that amount, but the overall improvement is
just 20% because the overhead plus latency component remains large. This example
illustrates that emerging high-bandwidth network technologies will provide a major
advance only if they are accompanied by corresponding reductions in latency and pro-
cessor overhead.

Our target is to perform user-to-user communication of a small message among one
hundred processors in 10

µ

s. This is technologically feasible, but leaves very little room
for compromise. For example, it is equal to the processor overhead plus network latency
on the current CM-5, plus a single serialization delay of an ATM cell. Several aspects of
a NOW make us optimistic in meeting this goal, while others make it quite challenging.
In NOW we will have faster processors, but greater constraints on where the network
connects into the node. We will have somewhat higher link bandwidth, but may have
greater routing delay and less than complete reliability. The nodes support a full Unix
system, with relatively rigid device and scheduling interfaces.

The focus of our work is on the network interface hardware and the interface into the
operating system. To meet our goal, the user must transmit directly into and receive
from the network, without operating system intervention. This means that data and con-
trol access to the network interface must be mapped into the user address space. The
network interface must establish the communication protection domain, which it can do
by inserting a network process ID into each outgoing message and checking each
incoming message. It also needs the ability to deliver data and notification directly into
the user process, at least for the currently running process. If the message is going to
awaken a process, other aspects of the notification process will dominate. We do need to
buffer messages properly in the meantime, however. Furthermore, the network interface
hardware is likely to need to assist in supporting message loss as an infrequent case.

One initial prototype is a cluster of HP9000/735 using an experimental “medusa” FDDI
network interface that connects to the graphics bus and provides substantial storage in
the network interface. As described in a companion paper[Mart94], with user level
Active Messages we are able to obtain a processor overhead of 8

µ

s, including support
of time-out and retry. This also includes almost 3

µ

s of processing that is entirely an
FDDI artifact. The network and adapter latency adds an additional 8

µ

s. We are able to
obtain the full link bandwidth for large transfers and obtain half of the peak bandwidth
on 175 byte messages, compared to 760 bytes for single copy TCP and 1350 for TCP.
Constructing conventional sockets on top of this layer, we see a one-way message time
of about 25

µ

s, nearly an order of magnitude faster than TCP or single-copy TCP on the
same hardware. Our final demonstration system will utilize either a second generation
ATM LAN or a retargeted MPP network, such as the Myrinet[Seit95]. We are currently
evaluating a spectrum of design alternatives for the network interface card, which will
connect either at an emerging high speed external bus, such as PCI, the memory bus, or
the graphics bus, depending on our final choice of workstation platform.

The key difference in this work, as compared to traditional LAN interfaces, is first the
orientation toward low overhead, low latency communication, second, the quality of the
interconnect itself and the simplicity that derives from that, and third, the recognition
that we have some control over all the nodes that attach to the network and can thus
make strong assertions about the endpoints.

The Berkeley NOW Project

14 of 20 A Case for NOW (Networks of Workstations)

4.2 GLUnix: A Global Layer UNIX

The second key challenge is effective management of the pool of resources within a
NOW. The idea of globally managing network resources has been around for a long
time, yet the most widely used commercial systems do not provide this service. This
lack of progress is due in part to two significant impediments: implementing global ser-
vices in the context of existing commercial operating systems and the sociology of glo-
bal resource sharing.

4.2.1 GLUnix structure
Recall that the hardware argument for NOWs is that large scale computer systems
should be built by networking together small, yet complete, mass-produced commercial
systems. The same is true for software. There is a tremendous advantage to leveraging
the hundreds of millions of dollars invested each year in commercial operating system
development, not to mention the billions invested in application development for these
systems. Nevertheless, the typical first step for operating systems research projects is to
throw out the commercial system and start from scratch. This is often conceptually eas-
ier because it avoids cumbersome artifacts of a working body of code, but building a
real working system means re-implementing a huge amount of incidental code (device
drivers, virtual memory management, process dispatching, and so on) that already
works in commercial systems.

Instead, our approach is to provide the global services of a NOW by “gluing together”

local UNIXs running on each workstation on the network1. As much as possible, this
Global Layer UNIX (GLUnix) is built as a layer on top of unmodified commercial
UNIXs. By leveraging the complete workstation, including the local operating system,
we had a working prototype of GLUnix after only three months effort. This layered
approach also better lends itself to tracking advances in the underlying commercial sys-
tem. The challenge, of course, is performance.

The key technology that allows us to layer efficiently on top of existing systems is soft-
ware fault isolation [Wah*93]. Traditionally, operating system kernels (other than on
PC’s) use hardware virtual memory to enforce firewalls between user applications.
Recent work demonstrates that you can efficiently implement the same firewalls in soft-
ware, by modifying the application object code to insert a check before every store and
indirect branch instruction. By applying aggressive compiler optimization techniques,
the overhead of enforcing firewalls in software can be reduced to between 3-7% on sev-
eral of today’s RISC processors. For the same overhead, we can insert a protected vir-
tual operating system layer into any UNIX application entirely at user-level; this layer
catches and translates the application’s system calls, to provide the illusion of a global
operating system. For example, we use software fault isolation to implement completely
transparent process migration and global resource scheduling.

Of course, it is not possible to provide all the global services a user might want with
absolutely no kernel changes. Our goal is to look for the minimal set of changes neces-
sary to make existing commercial systems “NOW-ready”. One example of this is

1. Although we are implementing GLUnix as a layer on top of UNIX, nothing in our approach
depends on UNIX as a building block; we could as easily build GLUnix as a layer on top of
PC operating systems, such as Windows NT or even DOS.

The Berkeley NOW Project

A Case for NOW (Networks of Workstations) 15 of 20

replacing the kernel communication software with a low overhead implementation.
Another is the use of network RAM within the virtual memory system; this can most
easily be implemented by replacing the swap device driver, an operation supported at
the user level by some, but not all, modern UNIX systems. As long as the required
changes are small, it is feasible to get them included in commercial systems; for exam-
ple, despite the lack of a compelling market for parallel programs, several years ago
industry added synchronization operations (such as “test&set”) to processor instruction
sets to make their hardware “parallel-ready”.

4.2.2 GLUnix sociology
 Perhaps the largest roadblock to the success of NOW is the sociology of sharing com-
puting resources. Interactive users look suspiciously at NOW, fearing that demanding
applications will steal resources and hurt their interactive response time. After all, one
of the principal benefits of the move from timesharing to personal computers a decade
ago was the guarantee of a computer to each user. At the same time, supercomputer
users also look suspiciously at NOW, fearing that interactive users will have priority and
demanding applications will only be allowed to run at night. Like anyone else, super-
computer users work during the daytime, and therefore need good response time even
during the daytime [Arp*94]. GLUnix needs to address both of these concerns, along
with being tolerant of individual node failures. We discuss each of these issues in turn.

We guarantee at least the performance of a stand-alone workstation to every active user,
by migrating external processes off an idle machine when the user returns[TLC85].The
key to making this approach practical is to consider not only CPU cycles, but memory
contents as an interactive resource. On current UNIX systems, if a demanding applica-
tion runs on your idle workstation, it will eventually flush out your virtual memory
pages and file cache contents. When you return to the workstation, your response time

will be visibly slowed as your working set is paged back in from disk.1 Instead, we
intend to explicitly save the idle machine’s memory contents before using it, so that we
can return the machine to the exact state it was in before going idle. This is feasible
because of the combination of technologies in NOW; with ATM bandwidth and a paral-
lel file system, 64MB of DRAM can be restored in under 4 seconds. To further reduce
complaints by interactive users, we explicitly limit the number of times per day any
interactive user can be delayed by external processes.

We also need to deliver a large portion of the aggregate capacity of the system to
demanding applications. One issue is that MPP operating systems are typically special-
ized for scheduling parallel applications, whereas NOWs have independent UNIX ker-
nels on each processor. This local scheduling, employed by parallel environments such
as PVM, has the advantage that no system support is required; however, it leads to unac-
ceptable performance for processes that communicate frequently. For example, Figure 4
shows the slowdown with local scheduling, compared to co-scheduling all processes of
a parallel application[Ous82], as the number of competing parallel jobs increases.Two
of the applications send many small messages to random processors and, as long as
enough buffering exists on the destination processor, the sending processor is not signif-

1. In fact, at DEC SRC where a system was in place to use idle machines for distributed com-
piles, people in their offices would tap their keyboards periodically simply to keep their mem-
ory contents from disappearing!

The Berkeley NOW Project

16 of 20 A Case for NOW (Networks of Workstations)

icantly slowed. Column runs slowly even though it communicates infrequently, because
it overflows the buffers on the destination. EM3D suffers from delays encountered at
synchronization points and CONNECT performs very poorly because processor fre-
quently require data from other processors.

Because many parallel programs run as slowly as their slowest process, parallel perfor-
mance can also be compromised if one of the machines running the parallel job is also
being used for interactive computing. Thus, we need to migrate demanding jobs off no
longer idle machine to preserve both interactive and parallel performance. Fortunately,
our measurements, along with those of others, indicate that a large fraction of worksta-
tions are idle, even at the busiest times of the day, so there will usually be a machine to
which the evicted process can migrate. For the same reasons, the ability to quickly move
processes between machines, along with their memory state, is also important for paral-
lel program performance. While one process is being migrated, the rest of the parallel
program is unlikely to be making much progress. The study in Section 3.4 indicates that
by implementing fast process migration and choosing idle machines that are likely to
stay idle, a typical P-processor parallel workload can be overlaid on 2P interactive
workloads without significantly sacrificing the performance of either. An organization
with a more demanding workload would simply have to extend the capacity of its NOW
with additional non-interactive machines.

A final consideration in GLUnix is that the system must continue to operate in the face
of individual node crashes, new resources being added or deleted from the network, and

FIGURE 4. Impact of local scheduling on parallel program performance relative to co-scheduling.

0

20

40

60

80

100

120

140

160

180

1 1.5 2 2.5 3 3.5 4

S
lo

w
do

w
n

Number of Parallel Jobs Running

connect
em3d

column
cholesky

sample

The Berkeley NOW Project

A Case for NOW (Networks of Workstations) 17 of 20

even operating system software upgrades. On today’s multiprocessors, if any CPU fails
(or its operating system software crashes), the entire system must be rebooted. Simi-
larly, the entire multiprocessor must be taken out of service to upgrade its hardware or
software. This situation makes it impractical to use an MPP or large server as the sole
computing infrastructure for a building, since all users would be inconvenienced when-
ever any small thing goes wrong. Our model is that if a workstation fails, it only affects
the programs using that CPU; those programs can be restarted from their last check-
point, while programs running on other CPUs continue unaffected. We are also structur-
ing our software to tolerate “hot swap” upgrades of hardware and software.

Many consider security to be the Achilles’ heel of NOWs. If malicious users can com-
promise the local operating system on any machine in the NOW, they can corrupt any
process or data migrated to that machine. However, many organizations enforce physi-
cal security at the level of the entire building, rather than the individual machine. We
assume that resource sharing within a NOW will only be used within a single adminis-
trative security domain. In addition, a small amount of hardware in the network inter-
face can ensure that the correct operating system is booted on a machine, before
allowing it to connect into the NOW. Where tighter security is required, the collection of
machines can always be removed from the desktop and placed “in the machine room,”
with X-terminals on the desktop. But the same basic problems remain no matter where
the workstations are physically located. Unlike the mainframes of the past, we must
guarantee as good performance as a stand-alone workstation to interactive users by
retaining their cached state, and we must provide effective scheduling of parallel appli-
cations.

4.3 xFS: Serverless Network File Service

Client-server computing has become a popular way of structuring distributed systems.
In most network file systems, a central server machine provides the abstraction of a sin-
gle file system shared among the users logged into a number of client workstations.
Files are stored on disks at the server, accessible to clients via requests made over the
network.

Unfortunately, a central server design has drawbacks in terms of performance, availabil-
ity, and cost. Any centralized resource will become a bottleneck with enough users. In
traditional network file systems, even if clients cache frequently used files, all cache
misses and all modified data are sent to the server, ultimately limiting scalability. Fur-
thermore, the DRAM and disk put at the clients do not directly benefit other users. More
users can be supported if the file system is partitioned among multiple servers, but this
requires the system manager to effectively become part of the file system -- moving
users, volumes and disks between servers to balance load. Similarly, a central server is a
single point of failure, requiring the expense of replicating the server to provide good
availability. Perhaps most importantly, as shown in Figure 1, server machines are
expensive: memory and disks are cheaper in a workstation, even ignoring the cost of
server replication for high availability.

In the NOW project, we are addressing these problems by building a completely server-
less network file system, called xFS. In place of a centralized server (or set of replicated
servers), client workstations cooperate in all aspects of the file system – storing data,
managing metadata, and enforcing protection. The xFS goal is high performance, highly
available network file service that is scalable to an entire enterprise, at low cost.

Conclusion

18 of 20 A Case for NOW (Networks of Workstations)

To achieve this, xFS combines four features not found in other file systems. First, any
piece of the file system data, metadata and control can be dynamically migrated
between clients and between storage levels; this vastly simplifies both load balancing
and failure recovery (any client can take over for any failed client). Second, we use
shared-memory multiprocessor-style cache coherence, specifically a write-back owner-
ship protocol, to maximize locality of control and data. Third, we store file data and
metadata in a software RAID, a much simpler and cheaper approach to high availability
than server replication, at the same time delivering high bandwidth disk I/O to sequen-
tial and parallel applications (see Section 3.2). Finally, we cooperatively manage client
caches as a giant cache for disk, and client disk as a giant cache for robotic tape storage,
to reduce the I/O bottleneck (see Section 3.1.2).

5. Conclusion

Computer system design today is dominated by the dramatic rate of advance in small
desktop systems, because only these systems offer the large volume and efficiency of
production to support a massive on-going investment in architectural innovation. Thus,
large scale systems must exploit the desktop system - hardware and software – as a
building block, rather than compete with it. The key enabling technology for this
“higher order” style of design is a scalable, high bandwidth, low latency network and a
low overhead network interface. Coupled with a global operating system layer, the
speed of the network allows the vast collection of resources on the network – proces-
sors, memories, and disks – to be viewed as shared pool. This view opens up new
approaches to traditional system services, including virtual memory, file caching, and
disk striping, as well opportunities for large scale parallel computing within an everyday
computing infrastructure.

The challenge is to provide the individual user with the fast and predictable response
time of a dedicated workstation while allowing tasks that are too large for the desktop to
recruit resources throughout the network. The raw performance of the network provides
part of the solution, but careful attention must be paid to memory as an interactive
resource and to scheduling assumptions in parallel programs. Examination of typical
usage characteristics of dedicated workstations and of dedicated MPPs indicate that the
two kinds of workloads can be combined in complementary ways, given the ability to
detect idle resources and to migrate processes judiciously and quickly. The latter
depends critically on a fast network and a parallel file system built out of the worksta-
tion disks on that network. By exploiting this confluence of technological advances, we
believe NOWs will be the systems of choice for large scale computing within a decade.

References

[Arp*94] R. Arapaci, A. Dusseau, A. Vahdat, T. Anderson, and D. Patterson, “The
Interaction of Parallel and Sequential Workloads on a Network of Workstations”, sub-
mitted for publication.

[Broo92] E. D. Brooks III, “Massive Parallelism Overcomes Shared-Memory Limi-
tations,” Computers in Physics, Mar 1992, no. 2, pp. 139-45.

Conclusion

A Case for NOW (Networks of Workstations) 19 of 20

[Cul*93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Sub-
ramonian, T. von Eicken, “LogP: Towards a Realistic Model of Parallel Computation,”
Proc. 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, 1993.

[Dah*94] M. Dahlin, R. Wang, T. Anderson, and D. Patterson, “Cooperative Cach-
ing: Using Remote Client Memory to Improve File System Performance,” Proc. of the
First Conference on Operating Systems Design and Implementation, Nov., 1994.

[DeSm94] J. Demmel and S. Smith, “Parallelizing a global atmospheric chemical
tracer model”,Symposium on High Performance Computing and Communications, May
1994.

[Mart94] R. Martin, “HPAM: An Active Message Layer for a Network of HP Work-
sations,” Hot Interconnects II, Aug. 1994.

[MaLi91] M. Mutka and M. Livny, “The Available Capacity of a Privately Oned
Workstation Environment,” Performance Evaluation, 12(4):269-84, Jul 1991.

[PaHe90] D. A. Patterson and J. L/ Hennessy, “Computer Architecture: A Quantita-
tive Approach,” Morgan Kaufmann Pub. Inc., 1990.

[Ous82] J. Ousterhout, “Scheduling techniques for concurrent systems”, Proc. 3rd
International Conference on Distributed Computing Systems, pp. 22-30, Oct. 1982.

[Seit95] C. Seitz, “Myrinet – A Gigabit per second Local-area Network,” this issue.

[TLC85] M. Theimer, K. Landtz, and D. Cheriton, “Preemptable Remote Execution
Facilities for the V System,” in Proc. of the 10th ACM Symposium on Operating Sys-
tem Principles, pp 2-12, Dec 1985.

[vEi*92] T. von Eicken, D. Culler, S. Goldstein and K. Schauser, “Active Messages:
a Mechanism for Integrated Communication and Computation,” Proc. 19th Annual
International Symposium on Computer Architecture, pp. 256-267, May 1992.

[vEi*95] T. von Eicken, A. Basu, and V. Buch, “Low Latency Communication over
ATM Networks using Active Messages,” This issue

[Wah*93] R. Wahbe, S. Lucco, T. Anderson and S. Graham. “Efficient Software-
Based Fault Isolation.” Proc. Fourteenth ACM Symposium on Operating System Princi-
ples, Dec. 1993, pp. 203-216.

[Zho*92] S. Zhou, J. Wang, X. Zheng, and P. Delisle, “Utopia: A Load Sharing
Facility for Large, Heterogenous Distributed Computing Systems,” Technical Report
CSRI-257, University of Toronto, 1992.

Acknowledgments

The NOW team includes Remzi Arpaci, Satoshi Asami, Tony Chan, Mike Dahlin,
Andrea Dusseau, Doug Ghormley, Seth Goldstein, Kim Keeton, Lok Liu, Steve

Conclusion

20 of 20 A Case for NOW (Networks of Workstations)

Lumetta, Ken Lutz, Cedric Krumbein, Alan Mainwaring, Rich Martin, Jeanna Neefe,
Steve Rodrigues, Drew Roselli, Amin Vahdat, Keith Vetter, Randy Wang, Kristin Wright
and Chad Yoshikawa. We are endebted to Terry Lessard-Smith, Bob Miller, and Eric
Fraser for terrific administrative and technical support.

The NOW project has received support from the Advanced Research Projects Agency
(#N00600-93C-2481), the National Science Foundation (CDA-9401156), and the Cali-
fornia Micro program. Tom Anderson and David Culler are supported by NSF Presiden-
tial Faculty Fellowships. The project has received valued support from SUN
Microcomputer Corp., Hewlett-Packard, IBM, Digital Equipment Corp., Intel Corp.,
Thinking Machines, Synoptics, Cisco, Xerox, AT&T , Siemens, Fujitsu, and Exabyte.

