
1

Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

Andrew File System (AFS)
Google File System

February 5, 2004

I. AFS

Goal: large-scale campus wide file system (5000 nodes)
o must be scalable, limit work of core servers
o good performance
o meet FS consistency requirements (?)
o managable system admin (despite scale)

400 users in the “prototype” -- a great reality check (makes the conclusions meaningful)
o most applications work w/o relinking or recompiling

Clients:
o user-level process, Venus, that handles local caching, + FS interposition to catch all

requests
o interaction with servers only on file open/close (implies whole-file caching)
o always check cache copy on open() (in prototype)

Vice (servers):
o Server core is trusted; called “Vice”
o servers have one process per active client
o shared data among processes only via file system (!)
o lock process serializes and manages all lock/unlock requests
o read-only replication of namespace (centralized updates with slow propagation)
o prototype supported about 20 active clients per server, goal was >50

Revised client cache:
o keep data cache on disk, metadata cache in memory
o still whole file caching, changes written back only on close
o directory updates are write through, but cached locally for reads
o instead of check on open(), assume valid unless you get an invalidation callback (server

must invalidate all copies before committing an update)
o allows name translation to be local (since you can now avoid round-trip for each step of

the path)

Revised servers:

2

o move to file IDs for servers rather than pathnames (just like DDS, chunkservers in GFS)
o FIDs are globally unique -- can move files without changing FIDs (within one volume)
o Volumes map FIDs to locations (volume location db replicated on each server)
o moved to threads from processes
o added direct i-node interface to BSD (new API) to avoid have to use filenames on the

servers; new index to map FIDs to i-nodes; some optimization made to Venus on the
client side, which uses a local directory as the cache

Consistency:
o writes are visible locally immediately, but only globally at close()
o however this global write is not visible to others that already have an open copy
o metadata changes are visible immediately and globally
o no implicit locking; it is up to the app to do it right (just as in Unix)

Issues:
o must be able fit a file locally to open it at all (this was later relaxed)
o better semantics than NSF (with its 30 second windows)

Performance:
o defined the “Andrew Benchmark” for file systems, which is still used some
o almost 2x NFS performance, but 50% slower than stand-alone workstation

Management:
o introduced Volumes -- a group of files that form a partial subtree in the namespace
o a volume lives on one server at a time, but may be moved; a server has many volumes
o can move a volume easily: old server will forward requests to the new server until all

servers know the location of the new server (eventual consistency of the volume
location info)

o optimize for read-only files (no callbacks needed)
o backup: make a read-only copy of the whole volume and then move to archive (this

uses copy on write)
o file system hierarchy is orthogonal to volume management; volumes are in a flat name

sapce (volume ids) and are managed independently

II. Google File System

Key background:
o new workload => new filesystem (why?)
o extreme scale: 100 TB over 1000s of disks on >1000 machines
o new API as well

3

Four problems to solve:
o 1) Fault tolerance: this many components ensures regular failures. Must have automatic

recovery.
o 2) huge files (LFS was optimized for small files!) -- but this is because they group files

into large extents (multi GB). This seems weak...
o 3) Most common operation is append, not random writes

• Most files are write once, and read-only after that

• web snapshots, intermediate files in a pipeline, archival files

• implies that streaming is much more important than block caching (and LRU would be a bad choice)

o 4) customize the API to enable optimization and flexibility (more below)

• relaxed consistency model

• atomic append

Operations:
o few million large files, rather than billions of small files
o large streaming reads, random reads
o large streaming writes, very rare random reads
o concurrency for append is critical (files act as a shared queue); also producer/consumer

concurrency
o focus on throughput not latency (lots of parallel operations)

Architecture
o single master, multiple chunkservers, multiple clients
o fixed-size chunks (giant blocks) (how big? 64MB)

• 64-bit ids for each chunk

• clients read/write chunks directly from chunkservers

• chunks are the unit of replication

o master maintains all metadata

• namespace and access control

• map from filenames to chunk ids

• current locations for each chunk

o no caching for chunks (simplifies coherence; very different from xFS)
o metadata is cached at clients (coherence?)

Single master:
o claim: simple, but good enough
o enables good chuck placement (centralized decision)
o scalability is a concern, so never move data through it, only metadata
o clients cache (file name -> chunk id, replica locations), this expires eventually
o large chunk size reduces master RPC interaction and space overhead for metadata

4

o large chunks can become hot spots (but not for target workload)
o all metadata is in memory (limits the size of the filesystem, how much? metadata is 64B

per chunk)

Durability:
o master logs changes to the namespace or to file->chunk mappings, these are reloaded on

recovery

• each log write is 2PC to multiple remote machines that put it on disk before committing

• this is a replicated transactional redo log

• group commit to reduce the overhead

• checkpoint all (log) state periodically, so that we can truncate the log and reduce recovery time; check-
point data is essentially an mmap file to avoid reading/parsing the data

• checkpoint works by switching to new log, and copying snapshot in the background; this means that
some updates in the new log will also be in the checkpoint, so log entries must be idempotent!

• crash during checkpoint, will simply recover using the previous checkpoint (like version vector for lat-
est checkpoint)

o chunk->replicas mapping is not logged, but reread from the chunkservers on recovery
o chunks are essentially two-phase commit to the replicas (just like DDS)

Periodic metadata scan:
o implements GC (how?)
o implements rereplication for chunks without enough replicas (this affects the window of

vulnerability!)
o implements chunk migration for load balancing
o also monitors chunkservers with periodic heartbeat; this must verify checksums to

detect bad replicas (and replace them)

chunk->replica data is fundamentally inconsistent!
o stale data is OK, is will just cause extra traffic to the master.
o Not clear what happens if a chunkserver silently drops a chunk: client will detect, or

perhaps master during a periodic check, and then client to go to another replica (and
should tell the master to update its advice)

Consistency model:
o namespace changes are atomic and serializable (easy since they go through one place)
o replicas: “defined” if it reflects a mutation and “consistent”; “consistent” -> all replicas

have the same value
o concurrent writes will leave region consistent, but not necessarily defined; some updates

may be lost
o a failed write leaves the region inconsistent
o record append: atomic append at least once; GFS decides the actual location
o to ensure definition, GFS must apply writes in the same order at all replicas
o consistency ensured via version numbers (and don’t use replicas with stale versions;

5

they get GC’d)
o client chunk caching may contain stale data! this is OK for append only files, but not

for random writes. A new open() flushes the cache.
o primary replica decides the write order (it has lease for this right from the master)

• lease extensions piggybacked on the heartbeat messages

• master can revoke a lease but only with the replicas agreement; otherwise it has to wait for expiration

• client pushes data out to all replicas using a data flow tree

• after all data received, client notifies the primary to issue the write, which then gets ordered and can
now be executed (fancy 2PC)

• client retries if the write fails

• writes across chunks are not transactional! (“consistent” but not “defined”)

• Append is easier to retry, since there is no risk of modfications to the same “place” that could fail
repeatedly

 Snapshots:
o a lot like AFS
o master revokes leases to ensure a clean snapshot (for those files)
o copy-on-write for metadata, so that snapshot uses old version, updates use new version
o replicas copy the chunk as well; the old copy becomes the snapshot archive

Replcation:
o important to replicate across racks to avoid correlated failures based on the rack
o used to re-replicate and re-balance load

GC:
o relatively easy: master has *all* references
o chunkservers know about all existing chunks; those not ref’d by master are garbage
o deletion is just rename to a magic name, that is later GC in periodic sweep.
o delayed collection is very robust! users make mistakes; eventually consistency also

helped by delay
o delay also batches GC cost and thus reduces the overhead

Master replication:
o hard to make it truly HA
o fast recovery is primary step
o shadow read-only second master also helps
o note that logs are replicated so updates are not lost

