
1

Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

Bayou: Managing Update Conflicts
March 9, 2004

This lecture covers conflict resolution; the previous lecture looked at update propagation and ordering.

I. Background

Clients make writes autonomously, and need only contact one server to perform a write
o read-any and write-any (asynchronous replication)
o weak consistency but highly available
o enables large-scale replication
o Anti-entropy as a way to reduce inconsistency over time
o Logical clocks to capture causal ordering
o Goal: eventual consistency -- all servers agree on the committed writes; this implies

some servers must reorder their writes, which means rolling back and then
forward in the correct order

II. Anti-Entropy Revisited

Pair-wise reduction of inconsistency

Autonomous:
o any pair can make progress toward eventual consistency
o disconnected subgroups can agree on their ordering even if they can’t commit.

Apply logical deltas:
o leads to less traffic
o physical deltas can get confused if something is deleted and re-added -- need to know the

process not just outcome
o logical deltas enable automatic resolution and simplify reordering

Also is one way: sender updates the receiver; but you can obviously repeat in the other direction.

Basic algorithm:
o sender gets the CSN, OSN, VV from the receiver
o Normal case: S.OSN < R.CSN < S.CSN

• R is missing some committed updates

• Send all of the missing committed writes (R.CSN + 1 through S.CSN)

2

• Then use version vector to determine missing tentative writes

• Receiver may have some tentative writes than are not committed. This is detected when we walk
through the missing committed writes; instead of sending the write, we just send the commit notifica-
tion. (We can tell that a receiver knows about the write via the version vector.)

• If we receive any writes that are in the past in logical time, then we must roll back and roll forward (at
R only)

o if R.CSN < S.OSN, then receiver is missing updates that we threw out!

• Roll back all tentative writes of S to the time of S.OSN

• Send database to R, and also update R.CSN=R.OSN=S.OSN, R.OVV=S.OVV

• Now merge tentative writes as above (roll forward)

III. Conflicts

Basic problem:
o receiver learns about updates that are in the “past”
o must roll back the database and then roll forward

All tentative writes may conflict with these new past writes (committed or not)
o need to detect conflicts
o ideally, resolve them automatically
o not always possible
o worse: may have had real side effects (e.g. print check) => can’t really allow real

effects until writes commit, which is not a highly available process!!!
o all writes must be undoable, including their side effects
o UI issues: need to visually distinguish tentative writes -- calendar entry should change

color when it commits. keep in mind: Bayou is *not* trying for transparency --
tentative writes should be exposed.

Conflict Detection: dependency checks
o idea: execute a function that confirms a precondition, if the precondition doesn’t hold,

we have a conflict
o example: find overlapping meetings (via an SQL-like query). precondition is that this

set is empty
o detects read-write conflicts, similar to optimistic concurrency control (e.g. atomic

compare and swap); precondition is that read values haven’t changed (Note: this is a
value-based test, which means it can be fooled by the ABA problem!)

o better example: precondition for withdrawal is only that their be enough money, not that
it has the same amount as before!

o key result: reduce the number of conflicts via a very narrow definition of conflict!
o a few problems: need a query language to describe dependencies -- this seem awkward

3

for many applications...

Conflict resolution: Merge Procedures
o written in a high-level interpreted language (but not the same as the dependency check

query language!)

• language is Tcl with some restrictions

• in practice, merge procedures are “typed” and use a template, where each type has a template
that the app fills in with the specifics for this write. Avoids having to rewrite the common
code for one class (type) of writes

o can have embedded data, but must be deterministic
o key idea: merge is not only app specific, but also write specific

• example: alternate times for *this* meeting

o why separate detection and resolution? hope is that detection is lighter weight, and that
conflicts are rare

o
o conflict resolution still fail, but we have reduced the chances.
o no support for unresolved conflicts other than an error log -- so these better be rare.

Claim is that this is outside the scope of Bayou, but I don’t agree...
o conflicts may cascade: e.g. the merge procedure selects an alternate time that causes

conflicts for upcoming writes
o Coda has auto conflict resolution for directory operations; these could have been written

using dependency checks and merge procedures

How many redos?
o depends only on the number of reorderings, not on the conflicts!
o a write must be undone/redone to maintain the global order, even it is already

serializable! (e.g. commutative operations)
o however, writes that are already serializable won’t have a conflict, so they are easy to

redo...

Redo must be deterministic
o idea: start at same state, apply same updates in the same order, then same end state (on

all servers)
o this means dependency checks and merges must return the same result on all servers

• can’t fail due to lack of local resources or local configuration issues!

• solution: fixed resource bound so that failures will occur uniformly on all servers

• this seems somewhat hard in practice (need very consistent configurations)

Stable writes:
o need to know when writes commit

4

• allows progress of real actions

• affects UI

• special API for asking about commit status

o Which server should be the primary?

• really should be different for different namespaces (apps)

• example: calendar primary might be the laptop, while file system primary is probably a centralized
server

o Writes are NOT committed in logical clock order!

• old writes may arrive after a write has committed

• only guarantee is that writes from the same server commit in order

• hope is that merge procedures fix everything up...

IV. Tuple Store

Essentially a SQL database
o in-memory relational database

• relational helps with the query language for dependency checks

• in-memory simplifies implementation issues, but may be a limitation in practice!

• logs are on disk to ensure durability

• also need the stable checkpoint on disk (since we truncate the log)

o need to track two versions: tentative and committed

• each tuple has two extra bits: in tentative view, in committed view

• queries return these bits, which can then be used to filter results

• not that clear what happens on a join or a projection; what “views” does the resulting tuple support?

o during anti-entropy, roll back to earliest newly inserted write (usually a committed write,
since they precede all tentative writes)

