Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

Chord and Pastry

March 18, 2004

I. Background

Consistent hashing (Karger, Leighton, Lewin, et al.)
0 Want to hash key x onto a group of k servers

¢ with even spread

¢ and such that you can change k and only move O(1/k) of the data (optimal)
0 One solution: hash x into a uniform one-dimensional space

* map k buckets into the same space

* nearest bucket is the owner of the key (=> even spread)

* new buckets only move nearby items (and vice versa for deleted buckets)
¢ load can vary by O(log n)

¢ takes O(log n) to find the nearest bucket using binary search

Il1. Chord

Goals:
key -> responsible node mapping (under changing set of nodes)
load balance
decentralized

o]

0

0

0 scalable
0 available
0

flexible naming (use your own hash function into the 1D space)

Uses consistent hashing onto a circular space (e.g. 128-bit integers)
0 owner node is the first one clockwise from the hash value of the key
0 how many bits? (enough to probabilistically avoid collisions)
0 SHA-1 is the hash function

* key idea: make it hard for an attacker to cause collision or uneven load
0 virtual nodes are just “over sampling” to reduce the variance of the load

Don’t want to have to know all of the bucket locations:

0 keep track of nearby buckets plus O(log n) fingers (chords) to distant buckets (like a
tree)



0 new nodes pick a random location, then take over that part of the space
0 keys pick a random location and put the data there (users of data must agree on the key)

Scalable key location:
0 worst case: just go around the circle from node to node = O(n) lookup
0 add log n fingers to nodes at rough distance 2! (for the log n values of i)
0 => O(log n) storage for fingers, O(log n) messages to reach a given key

Adding a node:
0 three steps:

* initialize fingers and predecessor link for new node
¢ update fingers/pred that should now point to this node
* move some data from neighbors
0 to get the new fingers: you can do log n searches => O(Iog2 n) overall
¢ easier: just copy your neighbors and check it, many entries will be the same
0 to update others fingers is harder
* do an O(log n) search for class of finger to find the first node that could be the ith finger that points to
you. Then check it and walk backward to check its predecessors
* thisis O(log? n)

¢ but in practice may not need to update the fingers that point to you, better to do it lazily

Stabilization:
0 idea: lazily update fingers, to simplify concurrent operation. Eventually consistent

0 stale fingers cause extra hops, stale successor pointer could cause failures that should
work if retried later

0 theorem: as long as consistency is reached in less time than it takes to double the
network, then lookups are still O(log n) (becuase on average you are only adding about
1 node to each existing interval, which adds 1 hop on average)
Fault tolerance:
0 replication: can replicate at successsor node (or at some fixed distance, or rehash)
0 keep list of r nearest successors, so you can easily skip over failed nodes
0 pick r such that you probabilistic expect at least one of your r sucessors to be alive

Issues:
0 partitions?
0 malicious attacks (sybil attack?)
0 what base for log?
0 can you have constant fingers and log n hops? or log n fingers and constant hops?
0 locality?



1. Pastry

Similar goals + locality
Based on radix-r search: each step (usually) makes progress on digit, thus log N steps (base r)

Basic routing:
0 Assume k digits in base r
0 Kk rows, r columns
0 Each row matches on prefix for the higher rows

¢ i.e. row 0 has no matches, row 3 matches on the first 3 digit

¢ the r columns are the r choices for that row, with one being n/a since it matches this node’s id

o

At lower rows (longer prefixes), their may be empty slots
Leaf set is a set of nearby nodes (humerically) which you jump to when you get close
Leaf set makes up for the empty slots near the bottom of the table

o O

* we may be the nearest node if the slot is empty

¢ probability of empty slot, but not covered by leaf set depends on the size of the leaf set, but varies from
2% to 0.6%
Node arrival of node X (join):
0 getan ID (such as a hash value)
0 start with a physically nearby node, A

0 join starting at A using the routing algorithm until you get to node Z (the nearest node
for that I1D)

0 use Z’s leaf set to init X
0 use A’s neighborhood set (since it is physically close)
0 simple routing table:

* get the ith row from the i node on the path to Z

* slightly more accurate: copy a row from a node if it is a better version of the row you have; this works
if you have more than log n steps, or less than log n steps

0 send resulting table to path nodes, to fill in their holes
0 improvement: looks at the tables of nodes referenced in others’ tables

Repairs:
0 leaf set: ask other leafs for more options, verify via contact, and add
0 routing table: route around at first, then lazily update

¢ ask other nodes from that row about their entries

¢ else, try the row below (which also qualify)
0 neighborhood:

¢ first, perioically check liveness

¢ ask other neighbors for their sets, and check those distances



Locality:
0 key idea: early rows contain close nodes, lower nodes are spread far apart

0 since with a short prefix there are *many™* possible choices, we can choose some that are
close

0 leaf set nodes are NOT close (spread uniformly over whole internet)

0 proof by induction: assume that we have locality and show that we keep it as we add
nodes

e X’srow 0= A’srow 0, which is close by the transitive property

¢ B’siscloser to Athan it is to is row 1 partners (since there are less of them!), and therefore its row 1 is
a good choice for X as well

0 need second stage of join: X looks at entries from all of the nodes in its routing table and
their neighborhood sets (the WTF optimization)

Can also find one of the nearest k nodes



