Chord and Pastry

March 18, 2004

I. Background

Consistent hashing (Karger, Leighton, Lewin, et al.)
o Want to hash key x onto a group of k servers

- with even spread
- and such that you can change k and only move $O(1 / k)$ of the data (optimal)
o One solution: hash x into a uniform one-dimensional space
- map k buckets into the same space
- nearest bucket is the owner of the key (=> even spread)
- new buckets only move nearby items (and vice versa for deleted buckets)
- load can vary by $O(\log n)$
- takes $\mathrm{O}(\log \mathrm{n})$ to find the nearest bucket using binary search

II. Chord

Goals:
o key -> responsible node mapping (under changing set of nodes)
o load balance
o decentralized
o scalable
o available
o flexible naming (use your own hash function into the 1D space)
Uses consistent hashing onto a circular space (e.g. 128-bit integers)
o owner node is the first one clockwise from the hash value of the key
o how many bits? (enough to probabilistically avoid collisions)
o SHA-1 is the hash function

- key idea: make it hard for an attacker to cause collision or uneven load
o virtual nodes are just "over sampling" to reduce the variance of the load
Don't want to have to know all of the bucket locations:
o keep track of nearby buckets plus $\mathrm{O}(\log \mathrm{n})$ fingers (chords) to distant buckets (like a tree)
o new nodes pick a random location, then take over that part of the space
o keys pick a random location and put the data there (users of data must agree on the key)
Scalable key location:
o worst case: just go around the circle from node to node $=\mathrm{O}(\mathrm{n})$ lookup
o add $\log n$ fingers to nodes at rough distance 2^{i} (for the $\log n$ values of i)
$0 \quad$ => $O(\log n)$ storage for fingers, $O(\log n)$ messages to reach a given key
Adding a node:
o three steps:
- initialize fingers and predecessor link for new node
- update fingers/pred that should now point to this node
- move some data from neighbors
o to get the new fingers: you can do $\log n$ searches $=>O\left(\log ^{2} n\right)$ overall
- easier: just copy your neighbors and check it, many entries will be the same
o to update others fingers is harder
- do an $O(\log n)$ search for class of finger to find the first node that could be the $i^{\text {th }}$ finger that points to you. Then check it and walk backward to check its predecessors
- this is $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$
- but in practice may not need to update the fingers that point to you, better to do it lazily

Stabilization:

o idea: lazily update fingers, to simplify concurrent operation. Eventually consistent
o stale fingers cause extra hops, stale successor pointer could cause failures that should work if retried later
o theorem: as long as consistency is reached in less time than it takes to double the network, then lookups are still O(log n) (becuase on average you are only adding about 1 node to each existing interval, which adds 1 hop on average)

Fault tolerance:

o replication: can replicate at successsor node (or at some fixed distance, or rehash)
o keep list of r nearest successors, so you can easily skip over failed nodes
o pick r such that you probabilistic expect at least one of your r sucessors to be alive
Issues:
o partitions?
o malicious attacks (sybil attack?)
0 what base for log?
o can you have constant fingers and $\log \mathrm{n}$ hops? or $\log \mathrm{n}$ fingers and constant hops?
o locality?

III. Pastry

Similar goals + locality
Based on radix-r search: each step (usually) makes progress on digit, thus $\log \mathrm{N}$ steps (base r)
Basic routing:
o Assume k digits in base r
o k rows, r columns
o Each row matches on prefix for the higher rows

- i.e. row 0 has no matches, row 3 matches on the first 3 digit
- the r columns are the r choices for that row, with one being n / a since it matches this node's id
o At lower rows (longer prefixes), their may be empty slots
o Leaf set is a set of nearby nodes (numerically) which you jump to when you get close
o Leaf set makes up for the empty slots near the bottom of the table
- we may be the nearest node if the slot is empty
- probability of empty slot, but not covered by leaf set depends on the size of the leaf set, but varies from 2\% to 0.6\%

Node arrival of node X (join):
o get an ID (such as a hash value)
o start with a physically nearby node, A
o join starting at A using the routing algorithm until you get to node Z (the nearest node for that ID)
o use Z's leaf set to init X
o use A's neighborhood set (since it is physically close)
o simple routing table:

- get the ith row from the $\mathrm{i}^{\text {th }}$ node on the path to Z
- slightly more accurate: copy a row from a node if it is a better version of the row you have; this works if you have more than $\log n$ steps, or less than $\log n$ steps
o send resulting table to path nodes, to fill in their holes
o improvement: looks at the tables of nodes referenced in others' tables
Repairs:
o leaf set: ask other leafs for more options, verify via contact, and add
o routing table: route around at first, then lazily update
- ask other nodes from that row about their entries
- else, try the row below (which also qualify)
o neighborhood:
- first, perioically check liveness
- ask other neighbors for their sets, and check those distances

Locality:
o key idea: early rows contain close nodes, lower nodes are spread far apart
o since with a short prefix there are *many* possible choices, we can choose some that are close
o leaf set nodes are NOT close (spread uniformly over whole internet)
o proof by induction: assume that we have locality and show that we keep it as we add nodes

- X's row $0=$ A's row 0 , which is close by the transitive property
- B's is closer to A than it is to is row 1 partners (since there are less of them!), and therefore its row 1 is a good choice for X as well
o need second stage of join: X looks at entries from all of the nodes in its routing table and their neighborhood sets (the WTF optimization)
Can also find one of the nearest k nodes

