
1

Advanced Topics in Computer Systems, CS262B
Prof. Eric A. Brewer

Cluster-Based Network Services
February 12, 2004

Network Services:
o 24x7 operation
o huge scale (unprecedented)
o personalization
o no distribution problem (vs. products)

Basic Advantages of Clusters:
o Absolute scale (larger systems than any single computer)
o High Availability -- but must tolerate partial failures
o Commodity building blocks => cost, service and support, delivery time, alternate

suppliers, trained employees

Challenges:
o Hard to administer: single system image? ease of global view?
o Partial failure brings new problems: must tolerate failures, can't just reboot
o hard to have shared state (no shared address space)

ACID vs. BASE:
 Idea: focus on HA with looser semantics rather than ACID semantics

o ACID => data unavailable rather than available but inconsistent
o BASE => data available, but could be stale, inconsistent or approximate
o Real systems use BOTH semantics
o Claim: BASE can lead to simpler systems and better performance (hard to prove)

• Performance: caching and avoidance of communication and some locks (e.g. ACID requires strict
locking and communication with replicas for every write and any reads without locks)

• Simpler: soft-state leads to easy recovery and interchangeable components

o BASE fits clusters well do to partial failure and lack of a (natural) shared namespace

TACC Model:
o Restartable Workers

• can run anywhere (even on overflow nodes)

• Worker must handle it's own restart (easy with soft state workers, or workers that interface to an exter-
nal database)

• Load balancing and worker creation/deletion is handled by SNS layer

• Fault tolerance = restart/migrate failed workers

2

o Four kinds of workers:

• Caching: stores post-transform, post-aggregation, and WAN content

• Transformation: one-way conversion of data, including format changes (e.g. MIME type), resolution,
size, quality, color map, language, etc.

• Aggregation: combination of data from multiple sources; e.g. movie info from different theaters, com-
pany info from multiple sites (analogous to a “join” for internet content)

• Customization: support for personalization/localization based on persistent profiles

o Question: is there a data independent “query” language analogous to SQL?
o Starfish fault tolerance:

• idea: any alive piece can regrow (restart) the whole system

• need to track only “aliveness” not remote state (no state mirroring, since all state is soft)

• multicast to regenerate/update state (there is no difference)

• Manager watches front ends and vice versa

Burstiness and Overflow
o Problem: peaks >> average => hard to plan capacity
o General solutions:

• caching absorbs some spikes, especially if it can be more aggressive during overload

• admission control (especially of “hard” queries)

• overflow nodes

o Burstiness is real: a side effect of humans in the loop? or just natural?
o Overflow nodes:

• Idea: exploit nodes that normally have another purpose (such as desktop machines)

• Not really tried in practice so far with few exceptions, e.g. Pratt & Witney run simulations on desktops
at night, but not really an “overflow”

• Similar to another real world phenomenon (apocryphal?): Schwab uses managers to answer customer
calls during an overflow; they are all trained but only work during overflows

