
1

Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

MACEDON
April 20, 2004

I. Background

Distributed systems:
o old model: RPC and/or distributed objects
o new model: cooperating finite-state machines
o claim: overlay networks, DHTs, etc. can be built using an FSM framework

II. Finite-State Machines

State machine for each node
o big states: joining, leaving, init, etc.
o state variables, e.g. neighbor list, timers
o atomic transitions: read/write locks

• control packets = write

• data packets = read only

Three kind of transitions:
o API calls: before_state(s) API <api_name> [locking read;] { <actions> }
o message reception: before_state(s) recv|forward <message_name> { <actions> }
o timer events: before_state(s) timer <timer_name> [locking read;] { <actions> }

Actions: work done on a transition
o actions occur on transitions (not in states)
o therefore locking on transitions is typically sufficient
o examples:

• schedule timer (e.g. timeout)

• transmit message

• change state

• modify state variables

Note that FSM is hard to check statically, uses dynamically linked handlers

2

III. Auxiliary Support

Basic API:
o init
o forward: route message to next hop
o deliver: arrival at last hop (?)
o notify: upcall about network changes (or lower layers in general)
o groups: create/join/leave
o route/multicast/anycast

Libraries:
o SHA and crypto functions, e.g. MD5, public keys
o basic data structures: hash tables, Bloom filters
o locks
o tracing/logging support
o neighbor lists (e.g. pick a random neighbor)

IV. Code generation

Generates C++ for PlanetLab or ModelNet or NS

input code size is very small (big win): 100-600 lines of FSM code

V. Validation

very important: need to know that generated code is comparable with the real version

Validation done on ModelNet (rather than PlanetLab)

Decent validation for NICE and Chord (app-level multicast and DHT respectively)

Pastry results: Macedon has better performance than FreePastry (probably due to Java)
o implies there is no real performance penalty for the higher-level of abstraction

Also used to explore parameter settings for SplitStream

