Advanced Topics in Computer Systems, CS262B
Prof. Eric A. Brewer

The Case for NOW

January 29, 2004

I. Background

Huge effort in parallel computing throughout early 90’s. It was the “P2P” of its time, with new confer-
ences, lots of top researchers, and lots of funding...

Key goals:

scalability, raw FLOPS (how many CPUSs)

network bandwidth

o O

programming languages (parallel fortran)
shared memory models

o

But some big problems:

0 workstations had much better single CPU performance -- mostly due to 18 month lag in
usage of a particular processor

0 very high engineering cost spread over relatively few machines (sold) => high cost per
CPU for these machines to amortize the R&D

awkward development environments

custom OS was also behind in features/reliability
hard to upgrade

somewhat less reliable than workstations

hard to program even with some language help
various PhDs on all of these topics...

O O O O O o

Only real advantage of the large parallel machine: backplane bandwidth
0 solution: create a cluster network that has similar bandwidth (if not latency)

0 this was eventually fixed by AM work at Berkeley and the U-Net work at Cornell (and
also partially in the VI interface for Windows).

Clusters:

key idea: have to reuse the whole box, not just the CPU

implies: better performance, much better cost, latest OS and tools
challenges: even harder to program, network still not as good

extra challenge: can you make use of idle workstations? (more on this later)
huge amount of aggregate disk 1/0 (and seeks)

O O O O o

software RAID (rather than hardware) -- this took many years to really work



Big Issues:

0 how do you program a cluster?

0 how do you deal with partial failure? (you how potentially have all of the problems of
distributed systems!)

0 how to get a global system view: scheduling, file systems (easy), shared caching,
namespaces?

Killer App?

0 turned out to be web servers, led by Inktomi work in particular

0 Advantages for web servers: incremental scalability, fault tolerance, cost

0 Eventually worked well for traditional science applications as well, but mostly for those

without the need for fine-grain cluster-wide sharing. E.g. rendering works great, but
sparse matrix apps are much harder

Things that didn’t work out as planned:

0

no real use of idle workstations -- there are some counterexamples, mostly in graphics
and simulation (and SETI !). Machine cost is minor compared to other costs and
complexities.

Winner wasn’t workstation vendors: really PC vendors plus Linux (see Beowulf project
for example)

network RAM has never really made it big. Possibly due to security?

not much use of software fault isolation for the GLUnix layer. More a traditional layer
under processes.

security? in practice it is provided by physical security for big clusters (not by software
on users’ desktops)



