
1

Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

Object-Oriented DBMS
February 24, 2004

[based on notes from Joe Hellerstein]

I. Background

Recall our Friend, The Relational Model:
o DB = {relations}
o Relation = {tuples}
o Tuple = {named fields/columns (homogeneous)}

Relational Languages
o SQL @ declarative queries (or QBE, Quel, etc.)
o C/SQL or 4GLs for applications

Other relational goodies
o Views vs. Logical vs. physical schemas (data independence)
o Triggers, authorization, constraints
o Simple algebra & query optimization
o Robust systems w/good performance
o Easily parallelizable

Q: Isn't this heaven?

A1: "A relational database is like a garage that forces you to take your car apart and store the pieces in little
drawers"
A2: E/R world, set-valued attributes, variances among entities, &SQL limitations (expressive power)

OODBMS Goals

1. Shrink the "impedance mismatch" problem for application programmers
o DB vs. PL type systems
o Declarative vs. procedural programming
o Set-at-a-time vs. instance-at-a-time compilation

2. Relax data model limitations
o Atomic values, tuples, sets, arrays, identity

2

o Classes w/methods & encapsulation
o Subtyping/inheritance
o Composite objects (w/sharing)
o Versions/configurations (& long xacts)

3. New language features
o Computationally complex methods (e.g. C++)
o Complex object "queries"
o Integrated DBPL(s) (sometimes)
o General focus tends to be on CAx, GIS, telecomm, cooperative/collaborative work, etc.
o Predates "Object-Relational" systems (but coeval with Postgres)

The OODBMS Manifesto (Atkinson/Bancilhon/DeWitt/Dittrich/Maier/Zdonik, '90)

Thou shalt support:

1. Complex objects (tuples, sets, bags, arrays + constructors & ops)
2. Object identity (equal not the same as identical; sharing & updates. Plutarch's Ship of

Theseus)
3. Encapsulation (ADTs/info hiding/implementation vs. interface)
4. Class/type hierarchies (inheritance, substitution for specialization)
5. Late binding (polymorphism, "virtual" classes in C++ terms)
6. Computational completeness (methods)
7. Extensibility (system & user types are the same)
8. Persistence (orthogonal to type)
9. Secondary storage (large DBs)
10. Concurrency control
11. Recovery
12. Ad hoc query facility (declarative, optimized)

Thou may support:

1. Multiple inheritance
2. Type checking (static vs. dynamic up to you)
3. Distribution (client/server)
4. Long xacts
5. Version management

Wide open:

1. Programming paradigm
2. Type systems details (base + constructors)
3. Type system fanciness (e.g. templates, etc.)

3

II. ObjectStore

One of the more successful vendors, both commercially and design-wise.Took C++ type system & lan-
guage constructs, added databasey featuressuch as:

o Persistence for objects (at allocation)
o Bulk types (via templates)
o Relationships (i.e. OO referential integrity)
o Query expressions (simple, but optimizable)
o Fancy runtime system with DB goodies like CC&R, client/server, indexes,…

Some simple DDL examples to see data model, C++ extensions, "query language", index support.

Still in business (www.odi.com), supporting C++, Java. Started an XML product called Excelon, and now
ExcelonCorp is the "parent" company, ODI the child.

III. Major Research Themes in OODBMSs

Pointers:
o Logical pointers (i.e. disk pointers) require a level of indirection (hash index over the

buffer pool). The level of indirection consumes time and space!
o Physical pointers (i.e. memory pointers) require the level of indirection to be translated.

Pointer swizzling. ObjectStore "fooled" VM to get hardware help in swizzling pointers
while explicitly managing the buffer pool. QuickStore (see White/DeWitt in red book)
goes into the details of whatthis kind of pointer swizzling requires.

o Obviously, there are tradeoffs depending on workload. Also, ObjectStore "loses control"
of pages in VM, so must do page-level locking & physical logging.

Clustering:
o Objects are connected in a graph structure via pointers. Programs navigate this graph.

How should you lay things out on disk to getgood locality? (see Tsangaris/Naughton
SIGMOD '92 for a survey and a graph-partitioning scheme) Lots of rediscovery in file
systems and web settings! Clustering is a classic problem, of course, but the disk
version is treated first in OODBMSs.

Client/Server Caching & Prefetching:
o Typically OODBMSs were to be used in a client/server environment, wherethe client

would operate on a portion of the database (e.g. a piece ofa VLSI diagram.) Would like
to do intelligent client/server caching.

o Need to pay attention to transactions in this environment!
o Page-shipping vs. object-shipping
o Franklin et al. did good work in this area, including an excellent surveywe'll see soon.

Indexing:
o Over class hierarchies
o Over path expressions

4

o Some nice tradeoff papers here, nothing especially surprising.

Query Processing and Optimization:
o Declarative languages (OQL)
o Algebras that include support for complex objects (e.g. Nest/Unnest, othercomplex type

constructors)
o Path expressions
o Extensible optimizer generators (Graefe's work on Exodus, Volcano, Cascades)
o O2 is the only "real" system to explore this, and the basis of much of the research (which

tends to be rather fussy)

Schema Evolution, Bulk Loading:
o How to make this possible and efficient?

Benchmarking:
o Wisconsin's OO7 the de facto benchmark (pretty academic, though!)

IV. Takeaways
o Don't compete with relational (and its evolution) for the storage/query market. It's too

big a task, customers are too conservative in this space. Evolvability outweighs
performance for the bulk of the market. The rest of the market rolls its own solution.
(XML database vendors beware!)

o A bunch of nice research was done in the OODB space. Some of it isrelevant for
ORDBMS (e.g. clustering, indexing, query processing/opt). Some of it is relevant in
other environments as well -- e.g. pointer swizzling is a classic problem, transactional
caching may become important on the web, etc.

o The XML and "semi-structured" research has done little systems work thatdoesn't look
just like OODB or relational work. (We may have a peek later in the semester, or see
CS286)

o A well-educated DB researcher should know about the bag of tricks here.

