
1

Advanced Topics in Computer Systems, CS262B
Prof. Eric A. Brewer

OceanStore (Pond)
April 8, 2004

I. Background

DHT is just part of the story. A useful application is wide-area reliable storage
o Two classes of nodes: inner ring and everyone else
o Don’t trust any single node or router => byzantine agreement for updates
o sequence of read-only version => never invalidate a cache
o Archive forever all versions
o Reads easy, writes hard: caching works for reads, writes must be serialized (byzantine)

Moore’s Law for disk is non-existent. (What exactly is Moore’s law?)
o ... but it is true that disk capacity is improving at about 100%/year

Global names:
o AGUID: the name of the data object, includes all of its versions, owner’s public key is

part of the name (name changes if the owner changes!)
o VGUID: the name of the root block of the current version
o BGUID: the name of a data block -- just a secure hash of its contents

Basic read: lookup AGUID to get [AGUID, VGUID, timestamp, seq number](signed)
o if happy with timestamp or seq number, then use VGUID to get data

II. Design Issues

Primary replica:
o coordinates and serializes concurrent writes
o potential single point of failure
o solved by BFT

Two-tier solution:
o inner ring manages serialization, archiving, and BFT
o secondaries just serve blocks (DHT from BGUID -> block data)
o multicast tree to spread updates from inner ring out to secondaries (more below)

BFT:
o 3f+1 members of the inner ring must agree on serialization

2

o note that view change not implemented!
o which 3f+1? presumably a deterministic function of the AGUID
o the BFT members, B, set timestamp and version number and VGUID, and sign it ->

“heartbeat”
o you can’t really know that you have the latest version

• best case: send nonce to B and they will include it with the latest heartbeat

• ... but they could do an update before you receive the message

• solution: optimistic concurrency (apply an update if your dependent reads are still valid)

Optimistic concurrency (like Bayou):
o updates have predicates: verify predicate before execution, else retry
o reads can have predicates too (useful for ensuring a multi-object invariants)
o how to do a multi-object transaction?

• just as in DBMS with optimistic concurrency

• 1) read all data and record version numbers

• 2) compute new versions

• 3) 2PC to apply updates (with predicates to verify read versions) at each object

• may fail => retry

• may retry forever => livelock

o the goal of complex writes is to reduce the frequency of retries

• ex: append should always work (even if the data has changed since you read it)

• most changes may not effect the correctness of the write; the predicate should be narrow enough to
increase you chances of success (e.g. CVS)

Who are the members of B and how does it change over time?
o problem with BFT: the f faulty nodes are for the lifetime of the system

• long-lived systems accumulate faulty nodes

• need to change members over time (more than just a view change)

o B as a group is the “primary replica” -- the group needs to sign updates
o Part 1: use symmetric keys among members of B (all pairs), but this doesn’t work for

secondaries (too many of them to have sym keys with each one) [this may not be true]
o Part 2: use public key to sign heartbeats => need a public key for B as a group
o Part 3: use SHA to make blocks self certifying => no interaction with inner ring to

verify a block (only to verify metadata like current version number)
o How to get a public key for B?

• proactive threshold signatures

• idea: break a public key into L private shares, such that any k of the L can sign something with that key
(there is no single private key!)

3

• choose L = 3f+1 and k= f+1, so that we know that we need byzantine agreement to sign something

• “proactive” => can create a new set of L shares whenever we need to (such as when we change mem-
bership), k of the old set still work, as do k of the set, but you can’t mix them!

• Since k>f, if we change sets, there can be at most f using the old set, which is not enough to sign

• key point: after changing the membership, we have new key shares for the new members, but the pub-
lic key remains the same!

• this is not completely implemented in Pond....

Need to have duplicates in the DHT namespace (and they really should be independent)

Can’t really do this directly with Chord: route to the ID and then the replicas are successors

Archiving:
o key idea: erasure code all updates to save storage over time
o reads are very expensive (have to reassemble blocks), but caching works well
o performance suggestion: don’t archive immediately (in the style of AutoRAID)

• ensure that at least a few copies exist (this is *easy* with a dissemination tree)

• if the version is still interesting later, archive it at that time

• this reduces the cost of the update and makes archiving a background task

• open question: do we want *all* versions? probably namespace specific and most often a periodic
snapshot would be fine (which is easy to do in a time-travel system!)

o is the current version faster to read than an old version?

Dissemination tree:
o idea: push out updated heartbeats and VGUID blocks via a multicast tree
o is this a good idea?
o only if you have lots of reads...
o a write-mostly system might prefer non-local reads, but with later versions and thus

more successful updates
o dissemination tree is expensive

Is a public key signature a good idea for blocks?
o very expensive for small updates -- 7x all of the overhead put together
o might be able to use sym keys for small groups of readers (which is very common)

• e-mail has typically one reader

• files that have only user or group access might also prefer sym keys

4

Access control:
o deeply tied into how you would do dissemination and signing!
o probably want some options either at object creation time, or at namespace creation

time
o how are different namespaces handled?

