Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

Querying the Internet with PIER
April 13, 2004

I. Background

Equijoin: join in which the two sides have equal keys

Semijoin: use one relation to prune not-matches from another (like a filter or like selecting the subset of
tuples that has a match in the other relation)

Bloom filter:
0 start with a bit map of 2”n bits, all zero
0 given an object, X, produce k * 2n hash bits (e.g. use k hash functions with 2”n bits)
0 This gives you k indices into the bit map

* Onaread, if all bits are 1, the we have a “hit”, else “miss”

* On awrite, simply mark the k bits = 1 (some may already be 1)
0 Can’t delete an object
0 May have false positives

¢ With good hash functions, storing C objects. Let z = (C*k)/(2"n), then density d=1 - e”(-2)
* Prob(false positive) = d*k

¢ If you know target C, pick n and k such that d = 1/2

¢ To limit false positives to f, k = ceil(-log2(f)) and n = ceil(log2(Ck))

1. Principles

Relaxed consistency

organic scaling

data in situ (“natural habitat™)

standard schemas -- use the schemas implied by widely deployed software

I11. DHT-based Joins

Symmetric hash join (SHJ):
0 build temp table on each relation, and hash into the other side (symmetrically)
0 need to rehash the tables on the join key



0 Rand S are spread about the DHT; each node scans for local matchs (with selection and
projection)

0 matches are sent to Q, which is a temp table, marked with whether the result is from R or
S

¢ all tuples for a given join key thus go to one node, which will build the two tmp tables locally (one for
R and one for S)

* on arrival store into one table and hash into the other to find matches

Fetch Matches:
0 assume S is already hashed on the join key
0 scan R and issue get for each tuple into S
0 apply projection/selection after getting matches then forward

Symmetric Semijoin:
0 idea: don’t want to rehash both tables (lots of bandwidth to move everything around)
0 project both S and R locally to [join key, resourcelD]

0 use SHJ to compute a Q that has only the join keys that match, which is hopefully
smaller than R and S (but need not be)

o0 from Q issues Fetch Matches to actually get the tuples from R and S (using resourcelDs)

Bloom joins:
0 compute a local bloom filter for each of R and S
0 create a new tmp namespace for each, BR and BS (assume j nodes per table)
0 send local tables to BR and BS, where they are OR’d together

* we now have a bloom filter on all of R in BR, and likewise for S in BS

multicast BR to S nodes, and BS to R nodes

on receipt of the filter, rehash only those tuples that pass the filter

use SHJ to complete the join

may have false positives, but they will be culled by the SHJ

O O O o

IV. Results

Need to have lots of computation nodes to keep bandwidth/node reasonable
All queries start with a multicast, Bloom filter needs two (to distribute BR/BS)

Sym semi-join wins (because it avoids moving a lot of tuples that won’t be in the join)

V. Discussion

Aggregation?



Range predicates (vs hashing)
Declarative language?
Quiality of results?

Change in the API?
0 enable local filtering by passing predicates in the get()
0 System R did this to reduce calls into the storage layer



