Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

Lessons from Giant-Scale Services
February 19, 2004

Experience paper on how to build and operate very large Internet sites...

Key ideas:
0 Load management

0 Partitioning vs. Replication, load redirection
0 Awvailability metrics: yield and harvest, MTTR emphasis
0 Online evolution
0 Graceful degradation
0 the DQ principle
Basics:
0 Data center: power, AC, networking, no people, minimal cables
0 Extreme symmetry simplifies everything
0 FRU = “field replaceable unit” equals whole node (worry about subpieces offline)
0 management backplane is a good idea for staging, management under duress
0 data center contract limits temperature, power, networking variations

Load Management
0 Kkey idea: need a highly available name
0 DNS: map names to IP addresses

¢ remap when IP address disappears

* mediocre solution: DNS expiration takes a while, not all browsers obey expiration correctly
0 L4 switches

¢ forward incoming TCP connections to the “up” (IP, port) addresses

* load balance based on number of open connections

* manage the “up” set automatically (by detecting dropped connections/resets)
¢ (but better to be proactive! why?)

* come in pairs with automatic hot fail-over (avoid single point of failure)

* L7 switches switch based on URLSs
0 smart clients: clients manages the name mapping and failover directly

¢ this is the best solution, as it handles disaster recovery well (redirect to new data center)



* not built into HTTP, but can do it if the client is an applet or program

Availability Metrics

0

0
0
0

focus on MTTR not MTBF -- faster debugging cycle, more stable
yield = better version of uptime

harvest reflects potential for incomplete data used for answers
good designer plans how faults affect MTTR, yield and harvest!

DQ Principle

o O O

claim: data per query * queries/sec == constant
represents the total data flowing through the system (MB/s like bandwidth)
only true is system is running near capacity, otherwise you can increase D or Q

Lots of uses: spec hardware, eval software changes, capacity planning, failover
planning, etc.

Replication vs. Partitioning

0

replication typically viewed as “better”: maintains 100% harvest during a fault, but
50% yield (if it was at capacity!)

...but partition maintains 100% yield, 50% harvest

There is no “better” -- just different optimizations

Load redirection problem: not enough to replicate data, must have replicated capacity
(sufficient DQ points)

See Table 1 for the overload factors\

For write-intensive traffic replication costs more than partitioning, but for read mostly
they are essentially the same!

=> partition until you reach a convenient size, and then replicate the whole set. AOL
Caches partition within a rack (used to be 5 machines), and then replicate racks for
capacity

Can replicate only the important data, and then ensure that lost harvest does not include
the important stuff

Randomization makes worst case data loss same as the average case.

Graceful Degradation

0

large sites on open networks will get overloaded

¢ Schwab uses managers to handle the overload of phone calls during a market event
correlated failures, although rare, can reduce capacity and cause overload

key insight: to handle overload we can either limit Q (admission control), or reduce D



0

(to increase Q) to handle more capacity at some loss in quality

best answer is ususally a combination! deny the expensive queries and increase
caching and reduce harvest

* cost-based admission control

¢ priority or value-based AC (for good customers or financially important transactions)

Disaster Tolerance

0
0
0

0

key idea: estimate correlated failures due to a disaster, typically one whole data center
figure out replication/partitioning for that set of failures

need load redirection to *outside* the data center => can’t use L4 switch (both of them
fail as well); ideally smart clients, else DNS

plan on overload due to redirected load, and handle via graceful degradation!

Online evolution

0 quality: standards go down under fast evolution! also lower for online services (vs
normal software) why?

0 staging: extra space to store two versions of the software (or data) makes it easy to
switch back and forth; important to automate “revert”!

0 three ways to upgrade
¢ fast upgrade
¢ rolling upgrade
* big flip

Moving sites!
0 Inktomi moved the data center twice while it was online!
0 Many upgrades to hardware, OS, schema, protocols, ...



