
1

Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

Lessons from Giant-Scale Services
February 19, 2004

Experience paper on how to build and operate very large Internet sites...

Key ideas:
o Load management
o Partitioning vs. Replication, load redirection
o Availability metrics: yield and harvest, MTTR emphasis
o Online evolution
o Graceful degradation
o the DQ principle

Basics:
o Data center: power, AC, networking, no people, minimal cables
o Extreme symmetry simplifies everything
o FRU = “field replaceable unit” equals whole node (worry about subpieces offline)
o management backplane is a good idea for staging, management under duress
o data center contract limits temperature, power, networking variations

Load Management
o key idea: need a highly available name
o DNS: map names to IP addresses

• remap when IP address disappears

• mediocre solution: DNS expiration takes a while, not all browsers obey expiration correctly

o L4 switches

• forward incoming TCP connections to the “up” (IP, port) addresses

• load balance based on number of open connections

• manage the “up” set automatically (by detecting dropped connections/resets)

• (but better to be proactive! why?)

• come in pairs with automatic hot fail-over (avoid single point of failure)

• L7 switches switch based on URLs

o smart clients: clients manages the name mapping and failover directly

• this is the best solution, as it handles disaster recovery well (redirect to new data center)

2

• not built into HTTP, but can do it if the client is an applet or program

Availability Metrics
o focus on MTTR not MTBF -- faster debugging cycle, more stable
o yield = better version of uptime
o harvest reflects potential for incomplete data used for answers
o good designer plans how faults affect MTTR, yield and harvest!

DQ Principle
o claim: data per query * queries/sec == constant
o represents the total data flowing through the system (MB/s like bandwidth)
o only true is system is running near capacity, otherwise you can increase D or Q
o Lots of uses: spec hardware, eval software changes, capacity planning, failover

planning, etc.

Replication vs. Partitioning
o replication typically viewed as “better”: maintains 100% harvest during a fault, but

50% yield (if it was at capacity!)
o ...but partition maintains 100% yield, 50% harvest
o There is no “better” -- just different optimizations
o Load redirection problem: not enough to replicate data, must have replicated capacity

(sufficient DQ points)
o See Table 1 for the overload factors\
o For write-intensive traffic replication costs more than partitioning, but for read mostly

they are essentially the same!
o => partition until you reach a convenient size, and then replicate the whole set. AOL

Caches partition within a rack (used to be 5 machines), and then replicate racks for
capacity

o Can replicate only the important data, and then ensure that lost harvest does not include
the important stuff

o Randomization makes worst case data loss same as the average case.

Graceful Degradation
o large sites on open networks will get overloaded

• Schwab uses managers to handle the overload of phone calls during a market event

o correlated failures, although rare, can reduce capacity and cause overload
o key insight: to handle overload we can either limit Q (admission control), or reduce D

3

(to increase Q) to handle more capacity at some loss in quality
o best answer is ususally a combination! deny the expensive queries and increase

caching and reduce harvest

• cost-based admission control

• priority or value-based AC (for good customers or financially important transactions)

Disaster Tolerance
o key idea: estimate correlated failures due to a disaster, typically one whole data center
o figure out replication/partitioning for that set of failures
o need load redirection to *outside* the data center => can’t use L4 switch (both of them

fail as well); ideally smart clients, else DNS
o plan on overload due to redirected load, and handle via graceful degradation!

Online evolution
o quality: standards go down under fast evolution! also lower for online services (vs

normal software) why?
o staging: extra space to store two versions of the software (or data) makes it easy to

switch back and forth; important to automate “revert”!
o three ways to upgrade

• fast upgrade

• rolling upgrade

• big flip

Moving sites!
o Inktomi moved the data center twice while it was online!
o Many upgrades to hardware, OS, schema, protocols, ...

