
1

Advanced Topics in Computer Systems, CS262B
Prof Eric A. Brewer

TinyOS
April 27, 2004

I. Sensor Networks Background

Large number of small wireless devices
o CPU + memory + radio + sensors all on one chip
o Moore’s Law applied to make things smaller, not faster

• is this really Moore’s Law?

o going toward “smart dust”

Major issues:
o power: battery, other options? In all cases, need to minimize power usage
o utilization should be low

• enables soft real-time systems

• required for power reasons

• sufficient?

o individual motes can’t know everything

• typically know only local information, e.g. neighbors

• much like P2P systems!

o must deal with failures

• motes fail

• links are very flaky

• questionable power => failures

• need a probabilitic approach

o whole new network stack (not TCP)

• why not TCP?

• not even IP routing (why not?)

• must exploit broadcast (and snooping)

• must think about multiple paths for fault tolerance

• must think about aggregation (limited bandwidth)

• can really optimize across layers!

• communication effectiveness not just based on distance...

o time sync is useful but hard

2

o sensors are noisy

• especially if they are cheap

• Can you get one good sensor out of lots of cheap sensors?

• must be calibrated -- very hard to do well

• sensors drift with time and often temperature

• sensors interfere with each other

o event driven

• underlying system is event driven

• sensors, message arrivals, timers are the sources of events

• relation to Macedon?

II. TinyOS

Component model:
o wire up components
o interface to interface
o events/commands
o wiring can be checked statically
o easy to do interposition, replacement

Static memory allocation -- not fundamental, but seems useful
o some apps do their own
o exchange resources (like buffers)
o prevents overflow, malloc errors
o fits with underutilization model

There is no “OS” per se
o application specific set of components
o some common services (e.g. routing), but easily customized
o no need to virtualize hardware! (or is there?)

Programmed in nesC, which is a C variant that supports components/wiring/interfaces
o also detects many data races (but not all)

III. Single Hop

Based on active messages

small messages only -- need to build up streams, large transfers

3

sometimes the radio is in hardware, sometimes not

sometimes link-layer acks, sometimes not

low-power listening

variety of MAC layers, mostly CSMA, some work in time division

IV. Multi-hop Communication

Tree based
o very common for data collection
o may support aggregation
o uneven power use
o root may be bottleneck
o simple ways to build trees using broadcast

Dessimiation: broadcast or epidemic
o flooding is simple but inefficient
o need reliable broadcast, which is hard
o epidemic seems to work well, but depends on density
o can broadcast first, then fill in epidemically

any-to-any routing (harder)
o hard to do general-purpose routing
o one solution: up and down a tree
o landmark routing: route to landmark and then to destination (less state)
o geographic routing

Need to track viable neighbors
o the set changes over time
o asymmetric links?
o need to know how to choose a subset
o need to know about potential replacement neighbors
o need to cleanly support snooping
o snooping is at odds with turning the radio off...

Also need to deal with fragmentation, retransmission

4

V. Network Services

Power Management
o hard problem -- it is application specific and it touches all parts of the system (like

security or correctness)
o easy part: an interface for turning components on/off
o hard part: when do to so without breaking anything!
o common use: low duty cycle globally synchronous applications (all on or all off)

Time sync
o also hard -- interferes with regular work (kind of like garbage collection does)
o app probably needs to control both the granularity and when the re-sync occurs..
o lots of neat algorithms for this; one based on broadcast to sync receivers with each other

VI. Other Stuff

Absent abstractions: cluster formation, receive queues

cross layer optimization: very important, in part due to application specific OS

not end-to-end (generally) so far...

