
1

Advanced Topics in Computer Systems, CS262B
Prof. Eric A. Brewer

Transactional Caching
March 2, 2004

 

Goal:
o Enable data caching for OODB (navigational), data shipping
o Why not for relational?
o exploit large aggregate disk/memory provided by clients
o Must maintain ACID semantics
o Caching is only for performance -- not availability!

Semantics:
o One-copy serializability -- equivalent to serializability without any replication
o Must be degree 3 for any client program

• Partitioned clients are unavailable and must abort any active transactions

• But do assume that client side behaves well (at least in the client-side library)

o Server can always get control back by aborting a transaction (but must control the
commit decision)

o Clients are “second class” replicas, just as in Coda. But Coda choose CAP:AP and here
we choose CAP:CP. Server replicas are first class and choose CAP:AC (for both).

Caching vs. Replication:
o Replication is very ensuring availability of data; only first-class replicas count toward

this goal!
o Caching is dynamic replication with no impact on availability (although if you lost all

your replicas you’d probably look in the clients to see if they had a copy)
o Clients copies are never the master copy; they are always soft state

Other kinds of caching:
o Metrics: correctness criteria, granularity, costs, workloads
o Shared-memory multiprocessor caching:

• Limited concurrency -- the set of processes is known in advance

• Serialize actions rather than transactions 

• No need to support durability

• Must have very low overhead -- very fine grain sharing (every load/store)

o Distributed Shared Memory (DSM)



2

• Same as multiprocessor except the granularity is larger (pages), which opens up room for more com-
plex protocols

o Distributed File Systems

• Assumes write sharing is rare (backed up by traces)

• Handles durability, but not isolation

• Can cache pages or whole files (but large grain either way)

Key question: detect stale data or avoid it?
o Stale == older than most recent committed value
o Detection: 

• Check on access, either directly or lazily.

• Lazy checks assume it is OK to process and must abort if wrong

• Checks must complete before commit succeeds

o Avoidance:

• Local copy is always current

• Server must keep track of all copies (uses a directory) 

• Client must handle event arrivals about state changes, which is more complicated than the detection 
case, which is always call-return based (i.e. RPC)

• On commit, all copies must be updated or invalidated (called propagation vs. invalidation in the paper)

Detection taxonomy:
o When is validity (read permission) checked? (update permission is similar)

• Synchronously (pessimistic)

• Async: issue check, but start with current copy; on reply we may have to abort

• Deferred: check right before commit (very optimistic); waste a lot of work if check fails

• Note: in all cases, client retains this permission until at least commit/abort (2PL). Unlike locks, permis-
sion may stay at the client post xact, and is shared by all transactions on that node.

o Change notification hints: notify other of updates, but just a hint

• None

• During the transaction -- try to help others avoid wasting work, but if other xacts use your update then 
may have cascading aborts; instead just invalidate their copy!

• After commit -- similar but now you can updated others’ copies proactively

o Remote update action

• Invalidate, propagate or dynamic. Dynamic generally wins...

Avoidance Taxonomy:
o Write intention declaration: tell others that their copies may become invalid

• sync (pessimistic): on write permission fault (after you get permission)



3

• async: tell them but don’t wait -- they may have to abort or you may have to abort (see remote conflict 
policy below)

• deferred (very optimistic): tell them only at commit -- they are more likely to abort

• Note: no need to do anything for reads -- if you have a copy it’s valid (but you might still get aborted 
depending on optimism)

o Write permission duration

• just this transaction

• until you give it up or the server invalidates (reduces traffic for multiple xact on the same client)

o Remote conflict priority:

• Wait for current readers to finish -- new write blocks until reader xact finishes (active readers serialized 
before writer)

• Preempt: abort active readers (write serializes first and readers start over)

o Remote update action:

• Invalidate, propagate, dynamic: very similar

• Must complete before xact commits -- propagate requires 2PC to install as part of commit, but invali-
date takes one phase since it can’t fail (there’s no voting about it).


