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bjectStore is an object-oriented database management system 
(OODBMS) that provides a tightly integrated language 
interface to the traditional DBMS features of persistent 

storage, transaction management (concurrency control and recovery), 
distributed data access, and associative queries. ObjectStore was designed 
to provide a unified programmatic interface to both persistently 
allocated data (i.e., data that lives beyond the execution of an applica- 
tion program) and transiently allocated data (i.e., data that does not 
survive beyond an application's execution), with object-access speed for 
persistent data usually equal to that of an in-memory dereference of a 
pointer to transient d a t a . ~ - _ -  . . . . . . . . .  - . . . . . . . . . . . . . . . . .  - . . . . . . .  - . . . . . . . . .  - 

These goals were derived from 
the requirements of  ObjectStore's 
target applications, which are typi- 
cally data-intensive programs that 
perform complex manipulations on 
large databases of  objects with intri- 
cate structure, e.g., CAD, CAE, 
CAP, CASE, and geographic infor- 
mation systems (GIS). This struc- 
tural complexity is generally real- 
ized by inter-object references, e.g., 
pointers from one object to an- 
other. Objects are located, possibly 
with the intent to update them, by 
traversing these references and by 
associative queries. 

We selected C + + as the primary 
language through which Ob- 
jectStore is accessed because it is 
becoming a very popular language 
among the developers of  Ob- 
jectStore's target applications. Ob- 
jectStore can also be used from C 
programs--providing access from 
C is easy because the data model o f  
C is a subset of  that of  C+ +. Use of  
ObjectStore from other program- 
ming languages is discussed later. 

The  key to ObjectStore's integra- 
tion with C+ + is that persistence is 
not part of  the type of  an object. 
Objects of  any C + +  data type 
whatsoever can be allocated tran- 
siently (on the ordinary heap) or  
persistently (in a database), from 
built-in types such as integers and 
character strings, to arbitrary user- 
defined structures (which may con- 

tain pointers, use C + +  virtual 
functions and multiple inheritance, 
etc). In particular, there is no need 
to inherit from a special "persistent 
object" base class. Different objects 
of  the same type may be persistent 
or  transient within the same pro- 
gram. 

There  are several motivations for 
our  goal of  making ObjectStore 
closely integrated with the pro- 
gramming language. These in- 
clude: 

Ease of learning: It was intention- 
ally designed so that a C+ + user 
would only have to learn a little bit 
more in order  to try out Ob- 
jectStore and start to use it effec- 
tively. After that, a user can learn 
more, and take advantage of  more 
of  the capabilities the database of- 
fers. In particular, there is no need 
to learn a new type system or a new 
way to define objects. The  declara- 
tive and procedural parts of  the 
language are used for both kinds of  
objects. By providing a gradual 
learning path and making it easy 
for users to get started, we hope to 
make ObjectStore accessible to a 
wider range of  developers, and 
help ease the transition into the use 
of  object-oriented database tech- 
nology. 

No translation code: We wanted to 
save the programmer  from having 

to write code that translates be- 
tween the disk-resident representa- 
tion of  data, and the representation 
used during execution. For exam- 
ple, to store a C+ + object into a re- 
lational database, the programmer  
must construct a mapping between 
the two, and write code that picks 
fields out o f  tuples and copies them 
into data members o f  objects. (This 
is part of  the problem that has been 
called the "impedance mismatch" 
between a programming language 
and a database access language [2, 
13].) With ObjectStore, no translat- 
ing and no copying is needed. Per- 
sistent data is just like ordinary 
heap-allocated (transient) data: 
once a pointer is obtained to it, the 
user can just use it in the ordinary 
way. ObjectStore automatically 
takes care of  locking, and keeps 
track of  what has been modified. 

Expressive power: We wanted the 
interface to persistently allocated 
objects to support all o f  the power 
of  the host programming language. 
This contrasts with the traditional 
data manipulation capabilities o f  
languages such as SQL, which are 
much less powerful than a general- 
purpose programming language. 

Reusability: We wanted to promote 
reusability of  code, by allowing the 
same code to operate on either per- 
sistent or transient data, and to 
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allow libraries that were developed 
for manipulating transient data to 
work on persistent data without 
change. For example, if a program- 
mer has a library routine that takes 
an array of  floating-point numbers 
and computes the fast Fourier 
transforra, he or she can pass it an 
ObjectStore persistent array, and it 
will work. Usually, if a library does 
not need to do any persistent allo- 
cation o f  its own, the library can be 
applied to persistent data without 
even being recompiled. 

Conversion: Many programmers 
who are interested in using object- 
oriented DBMSs would like to add 
persistence to existing applications 
that deal with transient objects, 
rather than build new applications 
from scratch. We wanted to make it 
as easy as possible to convert an ex- 
isting application to use persistent 
objects throughout.  In particular, 
this means that basic data opera- 
tions such as dereferencing point- 
ers and getting and setting data 
members should be syntactically the 
same for persistent and transient 
objects, and that variables should 
not have 1:o have their type declara- 
tions changed when persistent ob- 
jects are used. 

Type checking: We wanted the 
compile-time type-checking of  
C+ + to apply to persistent data as 
well as transient data, with the en- 
tire application using a single type 
system. The  compiler's type check- 
ing applies to objects in the data- 
base. For example, a variable refer- 
ring to an object o f  class employee 
would have type 'employee *'. Such 
a variable could refer to a persistent 
employee or a transient employee, 
at different times during program 
execution. A function that takes a 
reference to an employee as an ar- 
gument  can therefore operate on a 
persistent or a transient employee. 

The  second goal o f  ObjectStore 
is to provide a very high perfor- 
mance for the kinds o f  applications 
to which ObjectStore is targetted. 
From the point o f  view of  perfor- 

mance, the target applications are 
very different from traditional 
database applications such as pay- 
roll programs and on-line transac- 
tion processing systems, in several 
ways, as we found from interview- 
ing developers of  such applications. 

Temporal  locality: When many 
users access a shared database, very 
often the next user of  a data item 
will be the same as the previous 
user. In other words, while concur- 
rent access must be allowed and 
must work correctly, many data 
items will be used 'mostly' by one 
user over a short span of  time. 

Spatial locality: Often an applica- 
tion will use only a portion of  a 
database, and that portion will be 
(or can be arranged to be) in a small 
section of  the database that is con- 
tiguous, or mostly so. 

Fine interleaving: Applications 
often interleave small database op- 
erations (i.e., go from one object to 
a reference object) with small 
amounts of  computation. That  is, 
there are many very small database 
operations rather than relatively 
few large ones. I f  every database 
operation required a significant 
per-operation overhead cost (such 
as the cost of  sending a network 
message), overhead costs would 
become prohibitive. 

Developers told us that it is im- 
perative that ordinary data manip- 
ulation be as fast as possible. For 
example, an ECAD circuit simula- 
tion is CPU-intensive, traversing a 
network of  objects representing a 
circuit, carrying out computations 
on the way. These simulations are 
quite expensive. Any approach to 
data management  that penalizes 
the running time of  such an appli- 
cation is impractical. This means 
that one critical operation must be 
as fast as possible: the operation of  
obtaining data from an object, 
given a pointer or  reference to the 
object. This operation might be 
called 'fetching an object'; more 
precisely, it is dereferencing a 
pointer. ObjectStore is designed to 

make the speed of  dereferencing of  
pointers to persistent objects be as 
close as possible to that of  transient 
objects, namely the speed of  a sin- 
gle load instruction. 

ObjectStore also has some of  the 
same performance goals as ordi- 
nary relational DBMSs, and it gen- 
erally accomplishes these using 
familiar techniques such as indexes, 
query optimization, log-based re- 
covery, and so on. The  implemen- 
tation section explains how we ap- 
proached all of  these performance 
goals, focusing on the aspects of  
ObjectStore that differ from con- 
ventional techniques. 

Another  goal of  ObjectStore is to 
provide several features that are 
missing from C + +  and from most 
DBMSs: a collection facility (sets, 
lists, and so on), a way to express 
bidirectional relationships, and 
support for groupware based on 
versioned data. 

Application Interface 
In addition to the data definition 
and manipulation facilities pro- 
vided by the host languages, C and 
C + + ,  ObjectStore provides sup- 
port for accessing persistent data 
inside transactions, a library of  col- 
lection types, bidirectional relation- 
ships, an optimizing query facility, 
and a version facility to support  col- 
laborative work. Tools supporting 
database schema design, database 
browsing, database administration, 
and application compilation and 
debugging, are also provided. 

There  are three programming 
interfaces supported, a C library 
interface, a C + +  library interface, 
and an extended C+ + which pro- 
vides a tighter language integration 
to the query and relationship facili- 
ties. This interface is accessible only 
through ObjectStore's C + +  com- 
piler, while the two library inter- 
faces are accessible through other 
third-party C or  C + +  compilers, 
thus providing maximum portabil- 
ity. All of  the features and perfor- 
mance benefits of  the ObjectStore 
architecture are realized in all of  
the interfaces. 
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Accessing Persistent Data 
A simple C+ + program which uses 
the extended C+ + interface to the 
system is presented in Figure 1. 
This program opens an existing 

:ili~!:!iii!i i:!!:iiiiiii: 
:ili!!i!i!i!! #Lrxcludo (obJ ectstore/obj ect~tore H~! 
iiiii;ii!!~ #include (r~Co~ds H) 
iiiii~ill ~iiiiii 

database, creates a new persistent { 
object of class employee, adds the 
new employee to an existing de- / / D e ~ e  a e, ~ "  olnt" into ~ e  
partment, and sets the salary of the // H e  of ~ e  "~o ~ . d e p  n t "  
employee to 1,000. The keyword 
pers is tent  specifies a storage class, d~t.~b~e *db; 
saying that this variable resides in p e r s t ~ n t ( d b )  ~department* englnee dep nt; 
the specified database. Persistent 
variables associate names with per- / /Open  ~ e  ch~t~b~e. 
sistent objects, providing the start- db ~ ~ e : : ~  ( " / c o ~  ecords"); 
ing point from which navigations or 

queries begin. The db argument to / /S t a r t  a ~ a o t ~ o n  so ~ a t  t~e dat, abaso 
the new operator specifies that the / l o a n  be ~ s s e d .  
employee object being created t a ' ~ a o t t o n : : b e ~ ( ) ;  
should be allocated in database db. 

It should be noted that the ma- / /The  nex t  ~ e e  s~atements c r e a ~  and  m a 
nipulation of data looks just like an / / p e r s i s t e n t  obJeog represent!rig a person  named  Fred, 
ordinary C + +  program, even loyeo . e m p  ~ (~b) empl0yoe ( " ~ d " ) ;  
though the objects are persistent, e > loyoo (emp);  
They also compile into the same o m p ~ > s a l ~ =  1 ~ 0 ;  
machine instructions: the update of  
the salary field just uses a simple //CO ~; all o h ~ e S  ~ ~ ~ e .  
store instruction. ObjectStore auto- ~t,lon::c ~); 
matically sets read and write locks, } 
and automatically keeps track of 
what has been modified, helping to 
protect the integrity of the database 
against the possibility of program- 
mer error. Access to persistent data 
is guaranteed to be transaction- 
consistent (i.e., all-or-none update 
semantics), and recoverable in the 
event of system failure. 

It should be noted that in Fig- 
ure 1 the variable engineering_ 
depar tment  is not explicitly initial- 
ized. This is because it is a persis- 
tent variable, which refers to an 
object stored in the "/compax~/ 
recorch~" database. The object is 
looked up by name, 'en- 
gineering_department', in the data- 
base, and the program variable is 
initialized to refer to the named 
object in the database. (It would 
have been an error if there had 
been no such object in the data- 
base.) The persistent keyword in 
the ObjectStore extended C+ + in- 
ferface simply provides a short- 
hand for looking up an object in the 
database by name, and binding a 

Manipulating persistent data 

/* file records.H */ 

class employee 
{ 
public: 

char* ilaIne; 
int  salary; 

}; 
class depar tment  
{ 
public: 

os_Set(employee*> employees, 

void add_employee (employee *e) 
{ employees->insert (e); } 

int  works_here (employee *e) 
{ r e tu rn  employees-->contains  (e); } 

Using COlleCtions 

i j  jli/i 

!ii!!iiii!!iiiiii!i!i!i ili!iii!iiiiiiiii iiii!!i!i iiiiiiiii i!!i   i i   
iii!iii~ili~iiiiiiiii!~iiii!iiiiiiiiiiiiiiiii!!i!iii!iiii~i!i!iii!~i!~ 
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local program variable to the per- 
sistent database object. 

Collections 
ObjectStore provides a collection 
facility in 1:he form of  an object class 
library. Collections are abstract 
structures which resemble arrays in 
traditional programming lan- 
guages, or  tables in relational 
DBMSs. Unlike arrays or tables, 
however, ObjectStore collections 
provide a variety of  behaviors, in- 
cluding ordered collections (lists), 
and collections with or  without 
duplicates (bags or sets). 

Performance tuning often in- 
volves replacing simple data struc- 

tures, such as lists, with more effi- 
cient but more complex structures 
such as b-trees or  hash tables. This 
aspect of  application development 
is also handled by the collection li- 
brary. Users may optionally de- 
scribe intended usage by estimating 
frequencies of  various operations, 
(e.g., iteration, insertion, and re- 
moval), and the collection library 
will transparently select an appro- 
priate representation. Further- 
more, a policy can be associated with 
the collection, dictating how the 
representation should change in 
response to changes in the collec- 
tion's cardinality. These perfor- 
mance-tuning facilities reduce the 

developer's involvement from cod- 
ing data structures to describing 
access patterns. 

Figure 2 shows the user-written 
include file re0ords.H, used in this 
example. Note that the class de- 
partment  declares a data member  
of  type os_Set(employee*) .os_Set 
is a (parameterized) collection class, 
found in the ObjectStore collection 
class library. I f  d is a department,  
then d->add_ .employee(e)  simply 
adds e into d's set of  employees. 
d - ->wor lm_here (e )  returns true if 
e is contained in d's set of  employ- 
ees, false otherwise. 

ObjectStore includes a looping 
construct to iterate over sets. For 
example, the code in Figure 3 gives 

. . . . .  . . . . . . . .  . . . . .  a 10% raise to each employee in 
depar tment  d. In the loop, e is 
bound to each element o f  d - > e m -  
ploy0es in turn. 

Iteration over a collection 

/* file records .H , /  

class  employee  
( 
pub]to: 

skring name; 
~t salary;  
dep~ent* dept 

t n v e ~ l e _ m e m b e r  d~m-~lanent: :em91oyeee; 

class department 

publlc- 
os~et(employee*) employees 

Lnve~e_membex. eml)loyeetzde]pt; 

void  azid_.employ0e (employee  *e) 
( employoos-->tnsex~ (e); } 

void works_here  (employee  *e) 
{ employees - ->con ta lns  ( e )  ; } 

}; 

Using relationships 

The Relationship Facility 
Complex objects such as parts hier- 
archies, designs, documents,  and 
multimedia information can be 
modeled using ObjectStore's rela- 
tionship facility. Relationships can 
be thought  of  as a pair o f  inverse 
pointers, so that if one object points 
to another, the second object has an 
inverse pointer back to the first. 
Relationships maintain the integrity 
o f  these pointers. For example, if 
one participant in a relationship is 
deleted, then the pointer to that 
object, f rom the other participant, 
is set to null. One-to-one, one-to- 
many, and many-to-many relation- 
ships are supported. 

To continue the example in Fig- 
ure 3, we could create a relation- 
ship between employees and de- 
partments, as in Figure 4. The  dept  
data member  o f  employee and the 
employees  data member  o f  de- 
pa-m, m 0 n t  are declared to be in- 
verses o f  one another. Because one 
data member  is a single pointer and 
the other is a set, the relationship is 
one-to-many. Whenever an em- 
ployee is inserted into a depart- 
ment's set of  employees, the em- 
ployee is automatically updated to 
refer to the depar tment  (and vice- 

S4 October 1991/Vol.34, No.IO/COMMUNIC&TIONS OF THE ACM 



versa). Similarly, when an employee 
is deleted from a depar tment ' s  set 
of  employees, the pointer  from the 
employee to the depa r tmen t  is set 
to null, guarantee ing referential  
integrity. 

Syntactically, relationships are 
accessed jus t  like data members  in 
C + + ,  but updat ing  the value of  a 
relationship causes the inverse rela- 
t ionship to be upda ted  as well, so 
that the two sides are always consis- 
tent with one another.  This means 
that after  d - - > a d d _ e m p l o y e e ( e )  in 
the code example given in Figure 1, 
o's dep t  would be eng inee r ing_  
d e p a r t m e n t ,  even though this field 
was not explicitly set by the appli- 
cation. This update  of  e would oc- 
cur as a result of  inserting e into 
d - - > e m p l o y e e s ,  because of  the in-  
v e r s o _ m e m b e r  declarations. Simi- 
larly, if o - - > d e p t  is set to another  
depar tment ,  d2, then e is removed 
from d - - > e m p l o y e e s ,  and inserted 
to d2 - ->employees .  In general ,  
maintenance actions can involve 
simply unsett ing the inverse, or  ac- 
tually delet ing the object on the in- 
verse, at the schema-definer 's  dis- 
cretion. The  latter behavior is 
useful for delet ing hierarchies of  
objects, so that, for example,  delet- 
ing an assembly would cause all of  
its subassemblies to be deleted,  
along with their  subassemblies, re- 
cursively. 

Associative Ouerles 
In relational DBMSs, queries are 
expressed in a special language, 
usually SQL. SQL has its own vari- 
ables and expressions, which differ  
in syntax and semantics from the 
variables and expressions in the 
host language. Bindings between 
variables in the two languages must 
be established explicitly. Ob- 
jectStore queries are more closely 
integrated with the host language. 
A query is simply an expression 
that operates on one or  more col- 
lections and produces a collection 
or  a reference to an object. 

Selection predicates, which ap- 
pear  within query expressions, are 
also expressions, ei ther C + +  ex- 

pressions or  queries. Cont inuing 
the previous example,  suppose that 
~]1 employees  is a set of  employee 
objects: 

os_Set(employee*) a l l_employees;  

The  following statement uses a 
query against a l L e m p l o y e e s  to 
find employees earning over 
$100,000, and assign the result to 
overpa id_employees :  

os_Set(employee*)& 
overpa id_employees  = 
a l L e m p l o y e e s  
[: s a l a r y  > =  100,000 :]; 

[: :] is ObjectStore syntax for 
queries. The  contained expression 
is a selection predicate,  that is (con- 
ceptually) appl ied to each element  
of  A.11 employees  in turn. (In fact, 
the query will be optimized if an 
index on salary is present.  This is 
discussed later.) 

Any collection, even one result- 
ing from an expression, can be que- 
ried. For  example,  this query finds 
overpaid employees of  depa r tmen t  
d: 

d - - > e m p l o y e e s  
[: s a l a r y  > =  100000 :] 

Query  expressions can also be 
nested, to form more complex que- 
ries. The  following query locates 
employees who work in the same 
depar tmen t  as Fred:  

a l l_employees  
[: d e p t - - > e m p l o y e e s  
[: n a m e  = = 'Fred '  : ] : ]; 

Each member  of  all  employees  has 
a depar tment ,  dept,  which has an 
embedded  set of  employees. The  
nested query is true for depar t -  
ments having at least one employee 
whose name is Fred. 

All of  these examples make use 
of  the language extensions available 
only through the ObjectStore C+ + 
compiler;  the [: :] syntax, for exam- 
ple, is a language extension. The  
same queries can be expressed via 
the l ibrary interface. The  previous 
query would be restated in the 
C+ + library interface as: 

os_Set(employee*)> 
& work_with__fred = 
a l L e m p l o y e e s - - > q u e r y (  
'employee* ' ,  
"dept--  > e m p l o y e e s  
[: n a m e  = =  \ ' F r e d ' \  :]"); 

The  first a rgument  to query, 
employee*,  indicates the type of  
the collection elements. The  second 
a rgument  is simply the string rep- 
resenting the query expression. It is 
also possible to use the library inter- 
face to store precompiled and opti- 
mized queries in the database for 
later execution. 

In its cur rent  form, the Ob- 
jectStore query language can ex- 
press 'semijoins' but  not full joins; 
i.e., the result of  a query is a subset 
of  the collection being queried.  

Versions 
ObjectStore provides facilities for 
multiple users to share data in a 
cooperative fashion (sometimes re- 
fer red  to as groupware).  With these 
facilities, a user can check out  a ver- 
sion of  an object or  group of  ob- 
jects, make changes (perhaps en- 
tailing a long series o f  individual 
update  transactions), and then 
check changes back in to the main 
development  project so that they 
are visible to o ther  members  of  the 
cooperat ing team. In the interim, 
o ther  users can continue to use the 
previous versions, and therefore  
are not impeded  by concurrency 
conflicts on their  shared data, re- 
gardless of  the dura t ion of  the edit- 
ing sessions involved. These  ex- 
tended edit ing sessions on private, 
checked-out  versions are often re- 
fer red  to as long transactions. The  
design was influenced by [3, 6, 9, 
]0]. 

If  o ther  users want to make con- 
current  parallel  changes, they can 
check out  alternative versions of  the 
same object or  groups of  objects, 
and work on their  versions in pri- 
vate. Again, the result is that there 
are no concurrency conflicts, even 
though the users are opera t ing  on 
(different versions of) the same 
objects. Alternative versions can 
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later be merged back together to 
reconcile differences resulting 
from this parallel development. 
This merging operation is a diffi- 
cult prob]Lem and is left to the user 
to implement on an application- 
specific basis [8]. In support  of  this, 
ObjectStore allows simultaneous 
access to both versions of  an object 
during the merge. 

Users can control exactly which 
versions I:o use, for each object or  
group of  objects o f  interest, by set- 
ting up private workspaces that 
specify the desired version. This 
might be the most recent version, 
or a particular previous version 
(such as the previous release), or 
even a version on an alternative 
branch. Users can also use 
workspaces to selectively share their 
work in progress. Workspaces can 
inherit fi'om other workspaces, so 
that one designer could specify that 
his or her workspace should by de- 
fault inherit "whatever is in the 
team's shared workspace"; he or 
she could, then add individual new 
versions as changes are made, over- 
riding thiis default. 

For example, a team of  designers 
working on a CPU design might set 
up a workspace in which all of  their 
new versions are created. Only 
when their CPU design is com- 
pleted would the finished version(s) 
be checked in to the corporate 
workspace, making them available 
to, say, the manufacturing group. 
Within the design team's work- 
space, there might be multiple 
subworkspaces, which are used by 
subgroups o f  the design team or 
individual team members. Just  as 
the entire group makes its work 
available to manufacturing by 
checking in a completed version to 
the corporate workspace, individ- 
ual designers or  teams of  designers 
can make their work-in-progress 
available to one another by check- 
ing their intermediate versions in to 
their shared workspaces. This is il- 
lustrated in Figure 5. 

Just  as the persistence of  an ob- 
ject is independent  of  type, the ver- 
sioning oJF an object is independent 

of  type. This means that instances 
of  any type may be versioned, and 
that versioned and nonversioned 
instances can be operated on by the 
same user code. This makes it easy 
to take an existing piece of  code, 
which has no notion ofvers ioning--  
for example, a circuit-design simu- 
l a t o r - a n d  use it on versioned data. 
The simulator does not have to be 
rewritten, because operating on a 
particular version of  a circuit de- 
sign is identical to operating on a 
nonversioned design. 

Programs using versioned data 
need not distinguish among 
versioned, persistent, and transient 
data in accordance with Ob- 
jectStore's design principles. 

Architecture and 
Implementation 

Storage System and Memory- 
Mapped Architecture 
One fundamental  operation of  a 
database programming language is 
dereferencing: finding and using a 
target object that is referred to by a 
source object. ObjectStore's inter- 
face goals state that this must work 
just as in ordinary C+ +, to provide 
transparent integration with the 
language and to make dereferenc- 

ing as fast as possible. This means 
that ordinary pointers f rom the 
host language must be able to serve 
as references from one persistent 
object to another. 

ObjectStore's performance goals 
demand that once the target object 
has been retrieved from the data- 
base, subsequent references should 
be just as fast as dereferencing an 
ordinary pointer in the language. 
This means that dereferencing a 
pointer to a persistent target must 
compile exactly the same as 
dereferencing a pointer to a tran- 
sient target, (i.e., as a single 'load' 
instruction), without any extra in- 
structions to check whether the tar- 
get object has been retrieved from 
the database yet. This creates a di- 
lemma, since it is possible that the 
target object really has not yet been 
retrieved from the database. 

Fortunately, these design goals 
are analogous to those of  virtual 
memory systems, which support  
uniform memory references to 
data, whether that data is located in 
primary or secondary memory. 
ObjectStore takes advantage o f  the 
CPU's virtual memory hardware, 
and the operating system's inter- 
faces that allow ordinary software 
to utilize that hardware. The  virtual 
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memory system allows ObjectStore 
to set the protect ion for any page o f  
virtual memory to no access, read 
only, or  read/write. When  an Ob- 
jectStore application dereferences  a 
pointer  whose target  has not  been 
retr ieved into the client (i.e., a page 
set to no access), the hardware  de- 
tects an access violation, and the 
opera t ing  system reflects this back 
to ObjectStore, as a memory  fault. 
ObjectStore retrieves the page from 
the server and places it in the cli- 
ent's cache. I t  then calls the operat-  
ing system to set the protection of  
the page to allow accesses to suc- 
ceed (i.e., read only). Finally, it re- 
turns from the memory fault, 
which causes the dereference to 
restart. This time, it succeeds. Sub- 
sequent reads to the same target  
object, or  to o ther  addresses on the 
same page, will run in a single in- 
struction, without causing a fault. 
Writes to the target  page will result 
in faults that cause the page access 
mode and lock to be upgraded  to 
read-write. All virtual memory 
mapping  and address space manip-  
ulation in the application is handled  
by the opera t ing  system unde r  the 
direction o f  ObjectStore, using nor- 
mal system calls. 

The  ObjectStore server provides 
the long-term reposi tory for persis- 
tent data. Databases can be stored 
ei ther  of  two ways: within files pro- 
vided by the operat ing system's file 
system, or  within parti t ions of  disks, 
using ObjectStore's own file system. 
The  latter provides higher  perfor-  
mance, by keeping databases as 
contiguous as possible even as they 
gradually grow, and by avoiding 
various opera t ing  system over- 
heads. The  server and the client 
communicate via local area network 
when they are running  on different  
hosts, and by faster facilities such as 
shared memory,  and local sockets 
when they are runn ing  on the same 
host. 

The  server stores and retrieves 
pages of  data in response to re- 
quests from clients. The  server has 
no knowledge of  the contents of  a 
page. It simply passes pages to and 

from the client, and stores them on 
disk. T h e  server is also responsible 
for concurrency control and  recov- 
ery, using techniques similar to 
those used in conventional DBMSs. 
It provides two-phase locking with 
a read/write lock for each page. 
Recovery is based on a log, using 
the write-ahead log protocol. 
Transactions involving more  than 
one server are coordinated using 
the two-phase commit protocol. 
The  server also provides backup to 
long-term storage media such as 
tapes, allowing full dumps  as well as 
continuous archive logging. 

Since the server has no knowl- 
edge of  the contents of  the page, 
much of  the query and DBMS pro- 
cessing is done on the client side of  
the network. This contrasts with 
tradit ional  relational DBMS sys- 
tems in which the server is largely 
responsible for handl ing all query 
processing, optimization, and for- 
matting. Al though such off ioading 
of  work from the server is not ideal 
for all applications, this architec- 
ture does not preclude having the 
server handle  more of  the work. 

ObjectStore maintains a client 
cache, a pool of  database pages that 
have recently been used, in the vir- 
tual memory  of  the client host. 
When the application signals a 
memory  fault, ObjectStore deter-  
mines whether  the page being ac- 
cessed is in the client cache. I f  not, 
it asks the ObjectStore server to 
transmit  the page to the client, and 
puts the page into the client cache. 
Then,  the page of  the client cache is 
mapped  into virtual address  space, 
so that the application can access it. 
Finally, the faulting instruction is 
restarted,  and the application con- 
tinues. 

Many applications tend to refer-  
ence large numbers  of  small ob- 
jects, but  networks are, in general,  
more efficient for bulk data. To 
compensate  for this, whole pages o f  
data are brought  from the server to 
the client and  placed in the cache 
and mapped  into virtual memory.  
Objects are stored on the server in 
the same format  in which they are 

seen by the language in virtual 
memory.  This  avoids potential  per- 
object overhead such as calling a 
dynamic memory  allocator, creat- 
ing entries in object tables, or  refor-  
matt ing the nonpoin te r  elements o f  
the object. 

When  a transaction finishes, all 
pages are removed from the ad- 
dress space and modif ied pages are 
written back to the server (the client 
waits for an acknowledgment  from 
the server that the pages have been 
safely written to disk). However,  
the pages remain  in the client 
cache, so that if the  next transaction 
uses those pages, it will not  have to 
communicate  with the server to re- 
trieve them; they will a l ready be 
present  in the cache. This improves 
per formance  when several succes- 
sive transactions use many of  the 
same pages. Typical ObjectStore 
applications interleave computat ion 
very tightly with database access, 
doing some computat ion,  then 
dereferencing a pointer  and read-  
ing or  changing a few values, then 
doing some more  computat ion,  etc. 
I f  it were necessary to communicate 
with a remote  server for each of  
these simple database operations,  
the cost o f  the network and sched- 
uler  overhead would be enormous.  
By making the data directly avail- 
able to the application and allowing 
ord inary  instructions to manipulate  
the data, such applications pe r fo rm 
faster. 

Since a page can reside in the cli- 
ent cache without being locked, 
some other  client might  modify the 
page, invalidating the cached copy. 
The  mechanism for making sure 
that transactions always see valid 
copies of  pages is called 'cache co- 
herence' .  A copy of  a page in a cli- 
ent  cache is marked  either as shared 
or exclusive mode. The  server keeps 
track of  which pages are in the 
caches of  which clients, and with 
which modes. When a client re- 
quests a page from the server and 
the server notices that the page is in 
the cache of  some other  client (the 
holding client), the server will check 
to see if  the modes conflict. I f  they 
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do, the ,~erver sends a message to 
the holding client, asking it to re- 
move the page from its cache. This 
is called a callback message, since it 
goes in t]~e opposi te  direction from 
the usual request: the server is 
making a request  of  the client. 

When  the holding client receives 
the callback, it checks to see if the 
page is locked, and if not, agrees to 
immediately relinquish the page, 
and removes the copy of  the page 
from its cache. I f  the page is locked, 
the client replies negatively to the 
server, and the server forces the 
request ing client to wait until the 
holder  is, finished with the transac- 
tion. When  the holding client com- 
mits or  aborts, it then removes the 
copy of  the page from its cache, and 
the server can allow the original cli- 
ent  to proceed.  The  use of  callback 
messages was inspired by the An- 
drew File System [11]. Related 
cache coherency algori thms are dis- 
cussed in [4]. 

In  an ideal computer  architec- 
ture with unlimited virtual address  
space, every object in every data- 
base could have a unique address,  
and virtual addresses could serve as 
unchanging object identifiers. 
Modern  computers  have virtual 
address  spaces that are very large, 
but  not unlimited.  Single databases 
can exceed the size of  the virtual 
address space. Also, two indepen-  
dent  databases might  each use the 
same address  for their  own objects. 
This is 1Lhe fundamenta l  problem 
that must be solved by any virtual 
memory.-mapping approach  to a 
DBMS. 

ObjectStore solves this problem 
by dynamically assigning port ions 
of  address  space to cor respond to 
port ions of  the databases used by 

the application. It maintains a vir- 
tual address  map that shows which 
database and which object within 
the database is represented  by any 
address.  As the application refer-  
ences more databases and more  
objects, addit ional  address  space is 
assigned, and the new objects are 
mapped  into these new addresses. 
At the end of  each transaction the 
virtual address  map is reset, and 
when the next  transaction starts, 
new assignments are made.  

This solution does not place any 
limits on the size of  a database. Nat- 
urally, each transaction is limited to 
accessing no more data than can fit 
into the virtual address  space. In  
practice, this limit is rarely reached,  
since modern  computers  have very 
large virtual address spaces, and 
transactions are generally short  
enough that they do not  access 
nearly as much data as can fit. An 
opera t ion  large enough to ap- 
proach this limit would be divided 
into several transactions, and 
checked out  into a workspace to 
provide isolation f rom other  users. 

When  a page is mapped  into vir- 
tual memory,  the correspondence  
of  objects and virtual addresses may 
have changed.  The  value o f  each 
pointer  stored in the page must be 
updated ,  to follow the new virtual 
address of  the object. This is called 
relocation of  the pointers. When  
possible, ObjectStore arranges  to 
assign the address  space so that 
pointers  as s tored on the server 
happen  to be the same as the values 
they ought  to have in virtual mem- 
ory. In  this case, relocation is not  
needed,  which improves perfor-  
mance. But sometimes relocation 
cannot be avoided. For  example,  
when the database size exceeds the 

size of  the available address  space, 
relocation is required.  

ObjectStore maintains an auxil- 
iary data structure called the tag 
table that  keeps track o f  the loca- 
tion and type of  every object in the 
database. When  a page is mapped  
into virtual address  space and 
pointer  relocation is needed,  Ob- 
jectStore consults the tag table to 
f ind out  what objects reside on the 
page, and  then uses the database 
schema to learn which locations 
within each object contain pointers.  
I t  then adjusts the value of  the 
pointer  to account for the new as- 
signments of  data  to the virtual 
address  space. To minimize space 
overhead while keeping access fast, 
the tag table is heavily compressed,  
and is indexed.  Each tag table entry 
contains a 16-bit type code, which 
indexes into a type table s tored in 
the database's  schema. The  type 
table entry indicates which words of  
the type contain pointers.  Tag table 
pages are  brought  into the client 
cache as needed,  and  managed  in 
the cache like ord inary  database 
pages. 

Applications can improve per- 
formance by exercising control  
over the placement  o f  objects 
within a database. By clustering 
together  objects that are frequently 
referenced together,  locality is in- 
creased, the client cache is used 
more  efficiently, and fewer pages 
need to be t ransfer red  in o rde r  to 
access the objects. ObjectStore di- 
vides a database into areas called 
segments,  and whenever  an appli-  
cation creates a new persistent ob- 
ject,  it can specify the segment  in 
which that object should be created. 
Applications can create as many 
segments as are needed.  Segments 
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may be transferred from server to 
client either en masse, or one page 
at a time, depending on the setting 
of  an application-controlled per- 
segment flag. 

Objects can cross page bounda- 
ries, and can be much larger than a 
page. Image data, for example, can 
be stored in very large arrays that 
span many pages. I f  an application 
needs to access only a small portion 
of  such a huge object, it can use 
page-granularity transfer, to trans- 
fer only the pages of  the object that 
are actually used. Conversely, many 
small objects can reside on a single 
page. Since locking granularity is 
on a per-page basis, the advantages 
of  clustering are also realized in 
decreased locking overhead. 

ObjectStore depends on the op- 
erating system to control the map- 
ping and protection of  pages, and 
to allow access violations to be han- 
dled by software. The  most stan- 
dard versions of  Unix, such as 
SVR4, OSF/I, Berkeley bsd 4.3, 
and SunOS all provide these facili- 
ties. For other versions of  Unix, 
ObjectStore includes a device 
driver that must be linked with the 
kernel when ObjectStore is in- 
stalled. ObjectStore never modifies 
the Unix kernel itself. Future ver- 
sions of  these operating systems are 
expected to provide these memory 
manipulation facilities. ObjectStore 
currently runs on Sun 3 and 
SPARC, under  SunOS, IBM RS/ 
6000, under  AIX, DEC DS3100, 
under  Ultrix, HP series 300, 400, 
and 700, under  HP/UX. By the end 
of  1991, ObjectStore should also be 
running on DEC under  VMS, and 
SGI. Most other popular kernel- 
based operating systems, including 
VMS and OS/2, provide the facili- 

ties that ObjectStore needs. Ob- 
jectStore is also available on Micro- 
soft Windows 3.0. Windows does 
not have a protected kernel like 
Unix, so ObjectStore controls vir- 
tual memory directly. 

Collections 
In designing the collection facility, 
an important design goal was that 
performance must be comparable 
to that of  hand-coded data struc- 
tures, across a wide range of  appli- 
cations and cardinality. Often, ob- 
jects have embedded collections. 
For example, a Person object might 
contain a set of  children. In these 
cases, cardinalities are usually 
small, often 0 or 1, and only occa- 
sionally above 5-10.  Collections are 
also used to store all objects of  some 
type, e.g., all employees, and such 
collections can be arbitrarily large. 
Furthermore,  access patterns differ 
greatly among applications, and 
even over time within a single ap- 
plication. Clearly, a single repre- 
sentation type will be inadequate 
when performance is a concern, so 
multiple representations of  collec- 
tions must be supported. However, 
it is not desirable for the user to 
have to deal with these representa- 
tions directly. The  user should be 
able to work through an interface 
that reflects behavior, not repre- 
sentation. 

The  ObjectStore collection facili- 
ties are arranged into two class hi- 
erarchies: one for collections, and 
another for cursors. The  base o f  
the collection hierarchy is os_collec- 
tion, which is actually the base for 
two hierarchies. One of  these con- 
tains os_set, os_bag, and os_list. 
These provide familiar combina- 
tions of  behavior. Other  combina- 

tions _an be obtained by specifying 
combinations of  behavior for an 
os_collection, (e.g., a list without 
duplicates, or  a set that raises an 
exception upon insertion of  a du- 
plicate, instead of  silently ignoring 
it). 

The other hierarchy under  os_ 
collection provides for various rep- 
resentations of  collections. Each 
representation supports the entire 
os_collection interface, but with dif- 
ferent performance characteristics. 
These classes are available for di- 
rect use, but it should never be nec- 
essary to work with representations 
directly. Instead, a representation is 
normally selected automatically, 
based on user-supplied estimates of  
access patterns (i.e., how frequently 
various operations will be carried 
OUt) .  

Operations on collections appear 
as methods, (or member functions, to 
use the C + +  terminology). As is 
typical o f  object-oriented lan- 
guages, there is a run-time function 
dispatch, to locate the appropriate 
implementation of  each function, 
based on the collection's behavior 
and representation. When a collec- 
tion modifies itself to employ a dif- 
ferent representation, it actually 
modifies its own (representation) 
type description, so function dis- 
patches will continue to work cor- 
rectly. 

Queries 
Syntactically, queries are treated as 
ordinary expressions in an ex- 
tended C + + .  However, query 
expressions are handled quite dif- 
ferently from other kinds of  ex- 
pressions. The obvious implemen- 
tation strategy--iterate and check 
the predicate--would provide very 
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poor performance for large collec- 
tions. In relational DBMSs, indexes 
can be supplied to permit more ef- 
ficient implementations. A query 
optimizer examines a variety of  
strategies and chooses the least ex- 
pensive. ObjectStore also uses in- 
dexes anti a query optimizer. The  
indexes :are more complex than 
indexes in a relational DBMS, since 
they may index paths through ob- 
jects and collections, not just fields 
directly contained in objects. The  
query optimization and index 
maintenance ideas presented here 
were inspired by [14]. Similar ideas 
on indexing and paths appear in 
[12, 15, 16]. 

Optimization techniques devel- 
oped for relational DBMSs do not 
seem we]ll-suited for ObjectStore. 
In a relational DBMS, relations are 
always identified by name. As a re- 
sult, information about the relation, 
e.g., the .available indexes, is avail- 
able when the query is optimized, 
and a single strategy can be gener- 
ated. In ObjectStore, collections are 
often not known by name. They 
may be pointed at (e.g., by a pointer 

variable or call-by-reference pa- 
rameter), or result from the evalua- 
tion of  an expression. This means 
that multiple strategies must be 
generated, with the final selection 
left until the moment  the collection 
being queried is known, and the 
query is to be run. 

Relational database schemas are 
heavily n o r m a l i z e d i t h e r e  are no 
such things as embedded sets or  
pointers. As a result, queries in- 
volve multiple tables whose con- 
tents are related to one another by 
~join terms', i.e., expressions involv- 
ing rows from a pair of  tables (e.g., 
the depar tment  identifier column 
in the Employee table and the iden- 
tifier column in the Department 
table). Consequently, optimizers 
spend most of  their time figuring 
out the best way to evaluate queries 
with multiple join terms. In Ob- 
jectStore, queries tend to be over a 
small number  of  top-level (i.e., 
nonembedded) collections, usually 
one. Selection predicates involve 
paths through objects and embed- 
ded collections. These paths ex- 
press the same sort o f  connections 
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that join terms expressed in rela- 
tional queries. Since the path is 
materialized in the database, with 
inter-object references and embed- 
ded collections, join optimization is 
less of  a problem. 

In  ObjectStore, a parse tree rep- 
resenting the query is constructed 
at compile-time. Information con- 
cerning paths that appear  in the 
query is propagated up the tree to 
the nodes representing queries. 
During code generation, a pair of  
functions is generated for each 
node in the query's parse tree. One 
is used to implement a scan-based 
strategy (visit each element and 
check the predicate), and the other 
implements an index-based strat- 
egy. Functions corresponding to 
query nodes also contain code to 
examine the collection being que- 
ried, (e.g., what indexes are pres- 
ent? what is the cardinality?) and 
make final choices about strategy. 
This approach allows for flexibility 
at run time, yet still carries out 
much expensive work (analysis of  
the query) at compile time. 

I f  ObjectStore's C+ + compiler is 
used, then query parsing and opti- 
mization occurs during compile 
time. Queries expressed using the 
library interface are actually parsed 
and optimized at run time. The  
same run-time library supporting 
query execution is used in both 
cases. 

As noted earlier, paths can be 
viewed as precomputed joins. In 
ObjectStore, indexes can be created 
on paths. As a result, the join opti- 
mization problem faced by rela- 
tional DBMS optimizers is replaced 
by a much simpler index selection 
problem. Analysis of  the query in- 
dicates which indexes could be rele- 
vant. For example, this query finds 
employees who earn over $100,000 
and work in the same department  
as Fred. 

employees[ :  sa la ry  > 100000 && 
dept - ->employees[ :  
n a m e  = = 'Fred'  : ] : ] 

There  are two paths h e r e - - o n e  
on salary, and another starting at 
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an employee - -pas s ing  th rough  the 
depa r tmen t  of  the employee,  the 
set o f  employees of  that depar t -  
ment,  and the name of  each such 
employee. An index for each path 
ei ther exists or  it does n o t - - t h e  
choice can be made quickly at run  
time. The re  is no need to reason 
about strategies based on the pres- 
ence or  absence of  an index for 
each step of  each path, as in a rela- 
tional optimizer.  

This is not to say that queries 
over paths avoid all query process- 
ing problems due  to the presence of  
joins. In  general,  a comparison of  a 
path to a constant (e.g., dept--> 
n a m e  = =  'Research ' ) ,  involves 
index selection only. Join  optimiza- 
tion problems occur when two 
paths are compared,  as in this 
query (not based on any object 
classes described previously): 

p ro jec t s [ :  
eng inee r s [ :  
p ro j_ ld  = = w o r k s _ o n  && 
n a m e  -- = 'Fred '  : ] : ] 

This query find projects involv- 
ing Fred. The re  is no stored con- 
nection between projects and engi- 
neers. They are matched up by 
compar ing the p roJAd o f  a Pro jec t  
and the works_on field of  an Engi- 
neer. ObjectStore would evaluate 
this jo in  using iteration over p ro j -  
ects,  and an index lookup on engi-  
nee r s ,  (assuming the index is avail- 
able). An index on engineers '  
names could also be used. 

While this query is a valid Ob- 
jectStore query, it is an unusual  
one, and it reflects an unusual  Ob- 
jectStore schema. Normally,  the 
connection between projects and 
engineers would be represented  by 
inter-object references,  i.e., the jo in  
would be p recomputed  and stored 
in the part icipating objects. This is 
just i f ied by analysis of  programs in 
our  application domains.  True  
joins, as in the earl ier  query, are 
quite rare. For this reason we have 
not yet implemented  jo in  optimiza- 
tion. It is unusual  to have queries 
involving multiple ' top-level'  coilec- 
tions, (e.g., class extents) whose ele- 

ments are  related by compar ing  at- 
tributes. I t  is more  common to have 
queries over a single top-level col- 
lection, with nested queries on 
embedded  collections (i.e., queries 
over paths that may go through col- 
lections). The  ObjectStore query 
optimizer  reflects this. 

While jo in  optimization is less o f  
a problem, compared  to a relational 
DBMS, index maintenance is much 
more difficult. In a relational 
DBMS, updates  affecting indexes 
are expressed in SQL. In Ob- 
jectStore,  where the integration 
between the DBMS and the host 
language is much tighter,  updates  
are ord inary  expressions that have 
certain side effects. For  example:  

Person*  p; 

p - - > a g e  = p - - > a g e  + 1; 

The  assignment statement up- 
dates the age of  person p. I f  
p - > a g e  happens  to be the key to 
some index, then that index must 
be updated.  It is not practical to 
check if  index maintenance is re- 
quired for every statement that 
modifies an object. The  perfor-  
mance consequences would be dis- 
astrous. Instead, ObjectStore re- 
quires the declaration of  data 
members  that could potentially be 
used as index keys. Index  mainte- 
nance checks are pe r fo rmed  for 
these data  members  only. Example:  

c lass  P e r s o n  
{ 

i n t  age tmde~ble! 
i n t  he igh t ;  

}; 

The  declaration of  age as index-  
able  indicates that updates  o f  age 
need to be checked for index main- 
tenance. Updates  of  h e i g h t  do not 
have to be checked. The  indexab le  
declarat ion does not affect type. As 
a result, most changes in in- 
dexability (adding or  removing a 
declarat ion of  indexab le  to an ex- 
isting data member  do not affect 

the schema of  the database. (But 
recompilat ion would always be re- 
quired.) 

Index  maintenance is fur ther  
complicated by the presence of  in- 
dexes on paths. For example,  con- 
sider an index on children's  names 
for a set of  people.  Such an index is 
useful for queries such as "Find 
people who have a child named 
Fred."  Index  updates  are required 
when a person is added  to the col- 
lection, a person in the collection 
has a child, or  when one o f  this per-  
son's chi ldren changes his or  her  
name. 

Indexes on paths could be single- 
step, with an access method (e.g., 
hash table) used to represent  each 
step o f  the path, or  there  could be 
one structure recording the associa- 
tion for the entire path. These al- 
ternatives have been discussed in 
[14]. ObjectStore uses a series of  
single-step indexes. When  an in- 
dexable data member  is updated,  
all affected access methods are 
updated.  Then,  all access methods 
downstream in affected index paths 
are upda ted  too. Similarly, an up- 
date to a collection triggers updates  
that may affect all access methods 
of  all indexes o f  the collection. 

Applications 
The  per formance  and productivity 
benefits of  ObjectStore have been 
demonst ra ted  in a number  of  Ob- 
jectStore applications. 

Performance Benefits 
The  Cattell Benchmark  [5] was de- 
signed to reflect the access pat terns 
of  engineer ing (e.g., CASE and 
CAD) applications. The  benchmark  
consists of  several tests, but  only the 
traverse test results are shown here  
since it best illustrates the perfor-  
mance benefits of  ObjectStore's 
architecture. The  test traverses a 
graph o f  objects similar to one that 
might  be found in a typical engi- 
neer ing application (e.g., a 
schema). The  graph  in Figure 6 
shows that the warm and cold cache 
traversal results when the client and 
server are on different  machines 
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(i.e., the remote case). 
A cold[ cache is an empty cache, 

as would exist when a client starts 
accessing part o f  the database for 
the first time in recent history. A 
warm cache is the same cache after 
a number  o f  iterations have been 
run. I f  the next iteration accesses 
the same part of  the database, the 
cache is said to be warm. The  dif- 
ference between cold and warm 
cache times demonstrates that both 
the client cache and the virtual 
memory-mapping architecture 
have a significant performance 
benefit. 

Cold cache times are dominated 
by the time required to get data 
f rom the disk o f  the server into the 
client's address space. Warm times 
reflect processing speed of  data 
that is already present at the client 
and mapped into memory. We be- 
lieve this to be the most important  
performance concern for our  tar- 
get application areas. 

ProductlvlW Benefits 
The productivity benefits are dem- 
onstratecl by the experiences of  
Lucid, Inc., which is developing an 
extensible C + +  programming en- 
vironment named Cadillac [7]. The  
environment has been under  devel- 
opment  since 1989 and will be re- 
leased as a product. The  system is 
being implemented in C+ +. 

Before ObjectStore was available, 
the dew.qopers of  Cadillac used a 
C + +  object class which, when in- 
herited, provided persistence. 
Classes that might have persistent 
instances had to inherit f rom this 
class. For each such class, methods 
(i.e., functions) for storing and re- 
trieving the object from the data- 
base had to be defined. A reference 
to an object resulted in a retrieval 
from the database, if the object had 
not already been retrieved. While 
reads were transparent in that no 
special functions had to be called by 
the class user, writes had to be ex- 
plicitly specified as function calls-- 
a process that was prone to error. 
This mechanism was supported by 
a conventional Index Sequential 

Access Method (ISAM)-based file 
system. 

Porting Cadillac to ObjectStore 
took one developer one week. The  
modifications were limited to three 
source files out o f  several dozen 
and involved, for the most part, dis- 
abling the persistence mechanism 
that had been in use. The  simplicity 
of  the port  was due in large part to 
the architecture of  ObjectStore, 
which treats persistence as a storage 
class rather than as an aspect of  
type. The  conversion would have 
been much more difficult if func- 
tions that manipulated objects had 
to be modified to distinguish be- 
tween persistent and transient ob- 
jects. 

In order  to speed the porting 
process, the developers chose to al- 
locate all objects in the database, 
even those that did not need to be 
persistent. Once fine-grained tun- 
ing commenced,  however, objects 
and values that could be allocated 
transiently were allocated on the 
transient heap. Transaction bound- 
aries were also added to shorten 
transactions, minimizing commit 
time and reducing concurrent  con- 
flicts. 

The  performance of  Cadillac 
improved considerably following 
the installation of  ObjectStore. 
Compilation from within the Cadil- 
lac environment ran three to five 
times faster with ObjectStore than 
with the original ISAM-based per- 
sistence mechanism. Compilation is 
a write-intensive operation, split 
into two transactions, one for each 
pass of  the compiler. Read-inten- 
sive operations showed even more 
improvement, running 10 times 
faster using ObjectStore. 

Work in Progress 
Object Design, Inc. was founded in 
August 1988, and version 1.0 o f  
ObjectStore was released in Octo- 
ber 1990. Version 1.1, described 
here, was released in March 1991 
and was the result of  approximately 
30 person-years of  effort. 

We are extending this work in a 
number  o f  ways. New features 

under  development include: 

• Schema evolution: When a type 
definition changes, instances o f  
the type, stored in the database, 
need to be modified to reflect the 
change. 

• Support for heterogenous archi- 
tectures: Some applications re- 
quire access to a database from 
multiple architectures with vary- 
ing memory layouts (e.g., differ- 
ent byte orderings and floating- 
point representations). 

• Communicat ion  with ex is t ing  
databases: Many applications 
require the ability to access exist- 
ing, nonobject-oriented databases 
(e.g., SQL and IMS databases). 
To retain the productivity bene- 
fits o f  ObjectStore, it is necessary 
to provide transparent access to 
these databases, i.e., through the 
existing ObjectStore interface. 

C o n c l u s i o n s  

ObjectStore was designed for use in 
applications that perform complex 
manipulations on large databases o f  
objects with intricate structure. 
Developers of  these applications 
require high productivity through 
ease of  use, expressive power, a 
reusable code base, and tight inte- 
gration with the host environment. 
However, even more important  is 
the need for high performance. 
Speed cannot be sacrificed to obtain 
these benefits. 

The  key to meeting these re- 
quirements is the virtual memory- 
mapping architecture. Because of  
this architecture, ObjectStore users 
deal with a single type system. This 
permits tight integration with the 
host environment,  ease of  use, and 
the reuse o f  existing libraries. 
Other approaches to persistence 
taken by other object-oriented 
DBMSs require transient and per- 
sistent objects to be typed differ- 
ently. As a result, conversion be- 
tween transient and persistent 
representations are required, or 
software that had been developed 
to deal with transient objects must 
be modified or  duplicated to ac- 
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commoda te  persis tent  objects. In  a 
relat ional  DBMS, all persis tent  data  
is accessed within the scope of  the 
SQL language  with its own inde-  
p e n d e n t  type system. 

T h e  virtual  m e m o r y - m a p p i n g  
archi tecture  also leads to high per-  
formance.  References  to t rans ien t  
and  persis tent  objects are hand led  
by the same mach ine  code se- 
quences.  O the r  architectures re- 
qui re  references  to potential ly per- 
sistent objects to be hand led  in 
software, an d  this is necessarily 
slower. 

ObjectStore 's  collection, relat ion- 
ship, a n d  query  facilities provide 
suppor t  for conceptual  mode l ing  
constructs  such as muh iva lued  at- 
tr ibutes,  and  many- to -many  rela- 
t ionships can be t ranslated directly 
into declarative ObjectStore con- 
structs. [ ]  
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