
1

Serverless Network File Systems

Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe,
David A. Patterson, Drew S. Roselli, and Randolph Y. Wang

Computer Science Division
University of California at Berkeley

This work is supported in part by the Advanced Research Projects Agency
(N00600-93-C-2481, F30602-95-C-0014), the National Science Foundation (CDA
0401156), California MICRO, the AT&T Foundation, Digital Equipment Corporation,
Exabyte, Hewlett Packard, IBM, Siemens Corporation, Sun Microsystems, and Xerox
Corporation. Anderson was also supported by a National Science Foundation Presi-
dential Faculty Fellowship, Neefe by a National Science Foundation Graduate Re-
search Fellowship, and Roselli by a Department of Education GAANN fellowship. The
authors can be contacted at {tea, dahlin, neefe, patterson, drew, rywang}@CS.Berke-
ley.EDU.

Copyright © 1995 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or com-
mercial advantage and that new copies bear this notice and the full citation on the first
page. Copyrights for components of this WORK owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specificpermission and/or a fee. Re-
quest Permissions from Publications Dept, ACM Inc.

This work first appeared in the 15th Symposium on Operating Systems Principles,
December, 1995.

Abstract
In this paper, we propose a new paradigm for network file
system design, serverless network file systems. While tradi-
tional network file systems rely on a central server machine,
a serverless system utilizes workstations cooperating as
peers to provide all file system services. Any machine in the
system can store, cache, or control any block of data. Our
approach uses this location independence, in combination
with fast local area networks, to provide better performance
and scalability than traditional file systems. Further, because
any machine in the system can assume the responsibilities
of a failed component, our serverless design also provides
high availability via redundant data storage. To demonstrate
our approach, we have implemented a prototype serverless
network file system called xFS. Preliminary performance
measurements suggest that our architecture achieves its goal
of scalability. For instance, in a 32-node xFS system with 32
active clients, each client receives nearly as much read or
write throughput as it would see if it were the only active
client.

1. Introduction
A serverless network file system distributes storage,

cache, and control over cooperating workstations. This ap-
proach contrasts with traditional file systems such as Net-
ware [Majo94], NFS [Sand85], Andrew [Howa88], and
Sprite [Nels88] where a central server machine provides all
file system services. Such a central server is both a perfor-
mance and reliability bottleneck. A serverless system, on the
other hand, distributes control processing and data storage to
achieve scalable high performance, migrates the responsibil-
ities of failed components to the remaining machines to pro-
vide high availability, and scales gracefully to simplify
system management.

Three factors motivate our work on serverless network
file systems: the opportunity provided by fast switched

LANs, the expanding demands of users, and the fundamental
limitations of central server systems.

The recent introduction of switched local area networks
such as ATM or Myrinet [Bode95] enables serverlessness by
providing aggregate bandwidth that scales with the number
of machines on the network. In contrast, shared media net-
works such as Ethernet or FDDI allow only one client or
server to transmit at a time. In addition, the move towards
low latency network interfaces [vE92, Basu95] enables clos-
er cooperation between machines than has been possible in
the past. The result is that a LAN can be used as an I/O back-
plane, harnessing physically distributed processors, memo-
ry, and disks into a single system.

Next generation networks not only enable serverlessness,
they require it by allowing applications to place increasing
demands on the file system. The I/O demands of traditional
applications have been increasing over time [Bake91]; new
applications enabled by fast networks — such as multime-
dia, process migration, and parallel processing — will fur-
ther pressure file systems to provide increased performance.
For instance, continuous media workloads will increase file
system demands; even a few workstations simultaneously
running video applications would swamp a traditional cen-
tral server [Rash94]. Coordinated Networks of Workstations
(NOWs) allow users to migrate jobs among many machines
and also permit networked workstations to run parallel jobs
[Doug91, Litz92, Ande95]. By increasing the peak process-
ing power available to users, NOWs increase peak demands
on the file system [Cyph93].

Unfortunately, current centralized file system designs
fundamentally limit performance and availability since all
read misses and all disk writes go through the central server.
To address such performance limitations, users resort to
costly schemes to try to scale these fundamentally unscal-
able file systems. Some installations rely on specialized
server machines configured with multiple processors, I/O
channels, and I/O processors. Alas, such machines cost sig-
nificantly more than desktop workstations for a given
amount of computing or I/O capacity. Many installations
also attempt to achieve scalability by distributing a file sys-
tem among multiple servers by partitioning the directory
tree. This approach only moderately improves scalability be-
cause its coarse distribution often results in hot spots when
the partitioning allocates heavily used files and directory
trees to a single server [Wolf89]. It is also expensive, since
it requires the (human) system manager to effectively be-
come part of the file system — moving users, volumes, and
disks among servers to balance load. Finally, AFS [Howa88]
attempts to improve scalability by caching data on client

2

disks. Although this made sense on an Ethernet, on today’s
fast LANs fetching data from local disk can be an order of
magnitude slower than from server memory or remote
striped disk.

Similarly, a central server represents a single point of
failure, requiring server replication [Walk83, Kaza89,
Pope90, Lisk91, Kist92, Birr93] for high availability. Repli-
cation increases the cost and complexity of central servers,
and can also increase latency on writes since the system must
replicate data at multiple servers.

In contrast to central server designs, our objective is to
build a truly distributed network file system — one with no
central bottleneck. We have designed and implemented xFS,
a prototype serverless network file system, to investigate this
goal. xFS illustrates serverless design principles in three
ways. First, xFS dynamically distributes control processing
across the system on a per-file granularity by utilizing a new
serverless management scheme. Second, xFS distributes its
data storage across storage server disks by implementing a
software RAID [Patt88, Chen94] using log-based network
striping similar to Zebra’s [Hart95]. Finally, xFS eliminates
central server caching by taking advantage of cooperative
caching [Leff91, Dahl94b] to harvest portions of client
memory as a large, global file cache.

This paper makes two sets of contributions. First, xFS
synthesizes a number of recent innovations that, taken to-
gether, provide a basis for serverless file system design. xFS
relies on previous work in areas such as scalable cache con-
sistency (DASH [Leno90] and Alewife [Chai91]), disk strip-
ing (RAID and Zebra), log structured file systems (Sprite
LFS [Rose92] and BSD LFS [Selt93]), and cooperative
caching. Second, in addition to borrowing techniques devel-
oped in other projects, we have refined them to work well in
our serverless system. For instance, we have transformed
DASH’s scalable cache consistency approach into a more
general, distributed control system that is also fault tolerant.
We have also improved upon Zebra to eliminate bottlenecks
in its design by using distributed management, parallel
cleaning, and subsets of storage servers called stripe groups.
Finally, we have actually implemented cooperative caching,
building on prior simulation results.

The primary limitation of our serverless approach is that
it is only appropriate in a restricted environment — among
machines that communicate over a fast network and that
trust one another’s kernels to enforce security. However, we
expect such environments to be common in the future. For
instance, NOW systems already provide high speed net-
working and trust to run parallel and distributed jobs. Simi-
larly, xFS could be used within a a group or department
where fast LANs connect machines and where uniform sys-
tem administration and physical building security allow ma-
chines to trust one another. A file system based on serverless
principles would also be appropriate for “scalable server” ar-
chitectures currently being researched [Kubi93, Kusk94].

xFS could also be used in a mixed environment, contain-
ing both “core” trusted machines connected by fast networks
and “fringe” clients that are either connected to the core by a
slower network or that are less trusted [Howa88]. In such an
environment the core machines would act as a traditional —

though scalable, reliable, and cost effective — file server for
the fringe clients. xFS permits clients to use NFS [Sand85]
as one such fringe protocol, allowing the core xFS system to
act as a scalable and reliable NFS server for unmodified
UNIX clients.

We have built a prototype that demonstrates most of
xFS’s key features, including distributed management, net-
work disk striping with parity and multiple groups, and co-
operative caching. As Section 7 details, however, several
pieces of implementation remain to be done; most notably,
we must still implement the cleaner and much of the recov-
ery and dynamic reconfiguration code. We present both sim-
ulation results of the xFS design and a few preliminary
measurements of the prototype. Although the prototype is
largely untuned, it demonstrates remarkable scalability. For
instance, in a 32 node xFS system with 32 clients, each client
receives nearly as much read or write bandwidth as it would
see if it were the only active client.

The rest of this paper discusses these issues in more de-
tail. Section 2 provides an overview of recent research re-
sults exploited in the xFS design. Section 3 explains how
xFS distributes its data, metadata, and control. Section 4 de-
scribes xFS’s distributed log cleaner, Section 5 outlines
xFS’s approach to high availability, and Section 6 addresses
the issue of security and describes how xFS could be used in
a mixed security environment. We describe our prototype in
Section 7, including initial performance measurements.
Section 8 describes related work, and Section 9 summarizes
our conclusions.

2. Background

xFS builds upon several recent and ongoing research ef-
forts to achieve our goal of distributing all aspects of file ser-
vice across the network. xFS’s network disk storage exploits
the high performance and availability of Redundant Arrays
of Inexpensive Disks (RAIDs). We use a Log-structured File
System (LFS) to organize this storage, largely because Zebra
demonstrated how to exploit the synergy between RAID and
LFS to provide high performance, reliable writes to disks
distributed across a network. To distribute control across the
network, xFS draws inspiration from several multiprocessor
cache consistency designs. Finally, since xFS has evolved
from our initial proposal [Wang93], we describe the relation-
ship of the design presented here to previous versions of the
xFS design.

2.1. RAID

xFS exploits RAID-style disk striping to provide high
performance and highly available disk storage. A RAID par-
titions a stripe of data into N-1 data blocks and a parity
block — the exclusive-OR of the corresponding bits of the
data blocks. It stores each data and parity block on a different
disk. The parallelism of a RAID’s multiple disks provides
high bandwidth, while its parity storage provides fault
tolerance — it can reconstruct the contents of a failed disk by
taking the exclusive-OR of the remaining data blocks and the
parity block. xFS uses single parity disk striping to achieve
the same benefits; in the future we plan to cope with multiple

3

workstation or disk failures using multiple parity blocks
[Blau94].

RAIDs suffer from two limitations. First, the overhead of
parity management can hurt performance for small writes; if
the system does not simultaneously overwrite all N-1 blocks
of a stripe, it must first read the old parity and some of the
old data from the disks to compute the new parity. Unfortu-
nately, small writes are common in many environments
[Bake91], and larger caches increase the percentage of
writes in disk workload mixes over time. We expect cooper-
ative caching — using workstation memory as a global
cache — to further this workload trend. A second drawback
of commercially available hardware RAID systems is that
they are significantly more expensive than non-RAID com-
modity disks because the commercial RAIDs add special-
purpose hardware to compute parity.

2.2. LFS
xFS incorporates LFS because it provides high perfor-

mance writes, simple recovery, and a flexible method to lo-
cate file data stored on disk. LFS addresses the RAID small
write problem by buffering writes in memory and then com-
mitting them to disk in large, contiguous, fixed-sized groups
called log segments; it threads these segments on disk to cre-
ate a logical append-only log of file system modifications.
When used with a RAID, each segment of the log spans a
RAID stripe and is committed as a unit to avoid the need to
recompute parity. LFS also simplifies failure recovery be-
cause all recent modifications are located near the end of the
log.

Although log-based storage simplifies writes, it poten-
tially complicates reads because any block could be located
anywhere in the log, depending on when it was written.
LFS’s solution to this problem provides a general mecha-
nism to handle location-independent data storage. LFS uses
per-file inodes, similar to those of the Fast File System (FFS)
[McKu84], to store pointers to the system’s data blocks.
However, where FFS’s inodes reside in fixed locations,
LFS’s inodes move to the end of the log each time they are
modified. When LFS writes a file’s data block, moving it to
the end of the log, it updates the file’s inode to point to the
new location of the data block; it then writes the modified in-
ode to the end of the log as well. LFS locates the mobile in-
odes by adding a level of indirection, called an imap. The
imap contains the current log pointers to the system’s inodes;
LFS stores the imap in memory and periodically checkpoints
it to disk.

These checkpoints form a basis for LFS’s efficient recov-
ery procedure. After a crash, LFS reads the last checkpoint
in the log and then rolls forward, reading the later segments
in the log to find the new location of inodes that were written
since the last checkpoint. When recovery completes, the
imap contains pointers to all of the system’s inodes, and the
inodes contain pointers to all of the data blocks.

Another important aspect of LFS is its log cleaner that
creates free disk space for new log segments using a form of
generational garbage collection. When the system over-
writes a block, it adds the new version of the block to the
newest log segment, creating a “hole” in the segment where

the data used to reside. The cleaner coalesces old, partially
empty segments into a smaller number of full segments to
create contiguous space in which to store new segments.

The overhead associated with log cleaning is the primary
drawback of LFS. Although Rosenblum’s original measure-
ments found relatively low cleaner overheads, even a small
overhead can make the cleaner a bottleneck in a distributed
environment. Further, some workloads, such as transaction
processing, incur larger cleaning overheads [Selt93, Selt95].

2.3. Zebra

Zebra provides a way to combine LFS and RAID so that
both work well in a distributed environment: LFS’s large
writes make writes to the network RAID efficient; its imple-
mentation of a software RAID on commodity hardware
(workstation, disks, and networks) addresses RAID’s cost
disadvantage; and the reliability of both LFS and RAID
make it feasible to distribute data over the network.

LFS’s solution to the small write problem is particularly
important for Zebra’s network striping since reading old data
to recalculate RAID parity would be a network operation for
Zebra. As Figure 1 illustrates, each Zebra client coalesces its
writes into a private per-client log. It commits the log to the
disks using fixed-sized log segments, each made up of sever-
al log fragments that it sends to different storage server disks
over the LAN. Log-based striping allows clients to efficient-
ly calculate parity fragments entirely as a local operation,
and then store them on an additional storage server to pro-
vide high data availability.

Zebra’s log-structured architecture significantly simpli-
fies its failure recovery. Like LFS, Zebra provides efficient
recovery using checkpoint and roll forward. To roll the log
forward, Zebra relies on deltas stored in the log. Each delta
describes a modification to a file system block, including the
ID of the modified block and pointers to the old and new ver-

Figure 1. Log-based striping used by Zebra and xFS. Each
client writes its new file data into a single append-only log and
stripes this log across the storage servers. Clients compute
parity for segments, not for individual files.

Client Memories

1 2 3 . . .

One Client’s Write Log
Log Segment

1 2 3

Log Fragments Parity
Fragment

1 2 3

A B C . . .

One Client’s Write Log
Log Segment

A B C

Log Fragments Parity
Fragment

1

A

2

B

3

C

Network

Storage Server Disks

A B C

4

sions of the block, to allow the system to replay the modifi-
cation during recovery. Deltas greatly simplify recovery by
providing an atomic commit for actions that modify state lo-
cated on multiple machines: each delta encapsulates a set of
changes to file system state that must occur as a unit.

Although Zebra points the way towards serverlessness,
several factors limit Zebra’s scalability. First, a single file
manager tracks where clients store data blocks in the log; the
manager also handles cache consistency operations. Second,
Zebra, like LFS, relies on a single cleaner to create empty
segments. Finally, Zebra stripes each segment to all of the
system’s storage servers. To increase the numbers of storage
servers in a system, Zebra must either reduce the fragment
size (reducing the efficiency of the writes) or increase the
size of the segment (increasing memory demands on the cli-
ents); even if the system were to increase the segment size,
syncs would often force clients to write partial segments to
disk, again reducing write efficiency [Bake92].

2.4. Multiprocessor Cache Consistency

Network file systems resemble multiprocessors in that
both provide a uniform view of storage across the system, re-
quiring both to track where blocks are cached. This informa-
tion allows them to maintain cache consistency by
invalidating stale cached copies. Multiprocessors such as
DASH [Leno90] and Alewife [Chai91] scalably distribute
this task by dividing the system’s physical memory evenly
among processors; each processor manages the cache con-
sistency state for its own physical memory locations.1

Unfortunately, the fixed mapping from physical memory
addresses to consistency managers makes this approach un-
suitable for file systems. Our goal is graceful recovery and
load rebalancing whenever the number of machines in xFS
changes; such reconfiguration occurs when a machine crash-
es or when a new machine joins xFS. As we show in
Section 3.2.4, by directly controlling which machines man-
age which data, we can improve locality and reduce network
communication.

2.5. Previous xFS Work

The design of xFS has evolved considerably since our
original proposal [Wang93, Dahl94a]. The original design
stored all system data in client disk caches and managed
cache consistency using a hierarchy of metadata servers
rooted at a central server. Our new implementation elimi-
nates client disk caching in favor of network striping to take
advantage of high speed, switched LANs. We still believe
that the aggressive caching of the earlier design would work
well under different technology assumptions; in particular,
its efficient use of the network makes it well-suited for both
wireless and wide area network use. Moreover, our new de-
sign eliminates the central management server in favor of a
distributed metadata manager to provide better scalability,
locality, and availability.

1. In the context of scalable multiprocessor consistency, this state is
referred to as a directory. We avoid this terminology to prevent confusion
with file system directories that provide a hierarchical organization of file
names.

We have also previously examined cooperative
caching — using client memory as a global file cache — via
simulation [Dahl94b] and therefore focus only on the issues
raised by integrating cooperative caching with the rest of the
serverless system.

3. Serverless File Service
The RAID, LFS, Zebra, and multiprocessor cache con-

sistency work discussed in the previous section leaves three
basic problems unsolved. First, we need scalable, distributed
metadata and cache consistency management, along with
enough flexibility to dynamically reconfigure responsibili-
ties after failures. Second, the system must provide a scal-
able way to subset storage servers into groups to provide
efficient storage. Finally, a log-based system must provide
scalable log cleaning.

This section describes the xFS design as it relates to the
first two problems. Section 3.1 provides an overview of how
xFS distributes its key data structures. Section 3.2 then pro-
vides examples of how the system as a whole functions for
several important operations. This entire section disregards
several important details necessary to make the design prac-
tical; in particular, we defer discussion of log cleaning, re-
covery from failures, and security until Sections 4 through 6.

3.1. Metadata and Data Distribution
The xFS design philosophy can be summed up with the

phrase, “anything, anywhere.” All data, metadata, and con-
trol can be located anywhere in the system and can be dy-
namically migrated during operation. We exploit this
location independence to improve performance by taking ad-
vantage of all of the system’s resources — CPUs, DRAM,
and disks — to distribute load and increase locality. Further,
we use location independence to provide high availability by
allowing any machine to take over the responsibilities of a
failed component after recovering its state from the redun-
dant log-structured storage system.

In a typical centralized system, the central server has four
main tasks:

1.The server stores all of the system’s data blocks on its
local disks.

2.The server manages disk location metadata that indi-
cates where on disk the system has stored each data
block.

3.The server maintains a central cache of data blocks in its
memory to satisfy some client misses without accessing
its disks.

4.The server manages cache consistency metadata that
lists which clients in the system are caching each block.
It uses this metadata to invalidate stale data in client
caches.2

The xFS system performs the same tasks, but it builds on
the ideas discussed in Section 2 to distribute this work over
all of the machines in system. To provide scalable control of

2. Note that the NFS server does not keep caches consistent. Instead
NFS relies on clients to verify that a block is current before using it. We
rejected that approach because it sometimes allows clients to observe stale
data when a client tries to read what another client recently wrote.

5

disk metadata and cache consistency state, xFS splits man-
agement among metadata managers similar to multiproces-
sor consistency managers. Unlike multiprocessor managers,
xFS managers can dynamically alter the mapping from a file
to its manager. Similarly, to provide scalable disk storage,
xFS uses log-based network striping inspired by Zebra, but
it dynamically clusters disks into stripe groups to allow the
system to scale to large numbers of storage servers. Finally,
xFS replaces the server cache with cooperative caching that
forwards data among client caches under the control of the
managers. In xFS, four types of entities — the clients, stor-
age servers, and managers already mentioned and the clean-
ers discussed in Section 4 — cooperate to provide file
service as Figure 2 illustrates.

The key challenge for xFS is locating data and metadata
in this dynamically changing, completely distributed system.

Storage
Server

Storage
Server

Storage
Server

Client

ManagerCleaner

Storage
Server

Client

ManagerCleaner

Storage
Server

Client

ManagerCleaner

Storage
Server

Client Client

Client

Manager

Client

Cleaner

Client

Manager

Cleaner

Figure 2. Two simple xFS installations. In the first, each
machine acts as a client, storage server, cleaner, and manager,
while in the second each node only performs some of those
roles. The freedom to configure the system is not complete.
Managers and cleaners access storage using the client
interface, so all machines acting as managers or cleaners must
also be clients.

Network

Network

The rest of this subsection examines four key maps used for
this purpose: the manager map, the imap, file directories,
and the stripe group map. The manager map allows clients to
determine which manager to contact for a file, and the imap
allows each manager to locate where its files are stored in the
on-disk log. File directories serve the same purpose in xFS
as in a standard UNIX file system, providing a mapping from
a human readable name to a metadata locator called an index
number. Finally, the stripe group map provides mappings
from segment identifiers embedded in disk log addresses to
the set of physical machines storing the segments. The rest
of this subsection discusses these four data structures before
giving an example of their use in file reads and writes. For
reference, Table 1 provides a summary of these and other
key xFS data structures. Figure 3 in Section 3.2.1 illustrates
how these components work together.

3.1.1. The Manager Map

xFS distributes management responsibilities according
to a globally replicated manager map. A client uses this map-
ping to locate a file’s manager from the file’s index number
by extracting some of the index number’s bits and using
them as an index into the manager map. The map itself is
simply a table that indicates which physical machines man-
age which groups of index numbers at any given time.

This indirection allows xFS to adapt when managers en-
ter or leave the system. Where multiprocessor cache consis-
tency distribution relies on a fixed mapping from physical
addresses to managers, xFS can change the mapping from in-
dex number to manager by changing the manager map. The
map can also act as a coarse-grained load balancing mecha-
nism to split the work of overloaded managers.

To support reconfiguration, the manager map should
have at least an order of magnitude more entries than there
are managers. This rule of thumb allows the system to bal-
ance load by assigning roughly equal portions of the map to
each manager. When a new machine joins the system, xFS
can modify the manager map to assign some of the index
number space to the new manager by having the original

Table 1. Summary of key xFS data structures. This table summarizes the purpose of the key xFS data structures. The location column
indicates where these structures are located in xFS, and the Section column indicates where in this paper the structure is described.

Data Structure Purpose Location Section

Manager Map Maps file’s index number manager. Globally replicated. 3.1.1

Imap Maps file’s index number disk log address of file’s index node. Split among managers. 3.1.2

Index Node Maps file offset disk log address of data block. In on-disk log at storage servers. 3.1.2

Index Number Key used to locate metadata for a file. File directory. 3.1.3

File Directory Maps file’s name file’s index number. In on-disk log at storage servers. 3.1.3

Disk Log Address Key used to locate blocks on storage server disks. Includes a stripe
group identifier, segment ID, and offset within segment.

Index nodes and the imap. 3.1.4

Stripe Group Map Maps disk log address list of storage servers. Globally replicated. 3.1.4

Cache Consistency State Lists clients caching or holding the write token of each block. Split among managers. 3.2.1, 3.2.3

Segment Utilization State Utilization, modification time of segments. Split among clients. 4

S-Files On-disk cleaner state for cleaner communication and recovery. In on-disk log at storage servers. 4

I-File On-disk copy of imap used for recovery. In on-disk log at storage servers. 5

Deltas Log modifications for recovery roll forward. In on-disk log at storage servers. 5

Manager Checkpoints Record manager state for recovery. In on-disk log at storage servers. 5

6

managers send the corresponding part of their manager state
to the new manager. Section 5 describes how the system re-
configures manager maps. Note that the prototype has not
yet implemented this dynamic reconfiguration of manager
maps.

xFS globally replicates the manager map to all of the
managers and all of the clients in the system. This replication
allows managers to know their responsibilities, and it allows
clients to contact the correct manager directly — with the
same number of network hops as a system with a centralized
manager. We feel it is reasonable to distribute the manager
map globally because it is relatively small (even with hun-
dreds of machines, the map would be only tens of kilobytes
in size) and because it changes only to correct a load imbal-
ance or when a machine enters or leaves the system.

The manager of a file controls two sets of information
about it, cache consistency state and disk location metadata.
Together, these structures allow the manager to locate all
copies of the file’s blocks. The manager can thus forward cli-
ent read requests to where the block is stored, and it can in-
validate stale data when clients write a block. For each block,
the cache consistency state lists the clients caching the block
or the client that has write ownership of it. The next subsec-
tion describes the disk metadata.

3.1.2. The Imap
Managers track not only where file blocks are cached,

but also where in the on-disk log they are stored. xFS uses
the LFS imap to encapsulate disk location metadata; each
file’s index number has an entry in the imap that points to
that file’s disk metadata in the log. To make LFS’s imap
scale, xFS distributes the imap among managers according
to the manager map so that managers handle the imap entries
and cache consistency state of the same files.

The disk storage for each file can be thought of as a tree
whose root is the imap entry for the file’s index number and
whose leaves are the data blocks. A file’s imap entry con-
tains the log address of the file’s index node. xFS index
nodes, like those of LFS and FFS, contain the disk addresses
of the file’s data blocks; for large files the index node can
also contain log addresses of indirect blocks that contain
more data block addresses, double indirect blocks that con-
tain addresses of indirect blocks, and so on.

3.1.3. File Directories and Index Numbers
xFS uses the data structures described above to locate a

file’s manager given the file’s index number. To determine
the file’s index number, xFS, like FFS and LFS, uses file di-
rectories that contain mappings from file names to index
numbers. xFS stores directories in regular files, allowing a
client to learn an index number by reading a directory.

In xFS, the index number listed in a directory determines
a file’s manager. When a file is created, we currently choose
its index number so that the file’s manager is on the same
machine as the client that created the file. Section 3.2.4 de-
scribes simulation results of the effectiveness of this policy
in reducing network communication.

In the future, we plan to examine other policies for as-
signing managers. For instance, we plan to investigate mod-

ifying directories to permit xFS to dynamically change a
file’s index number and thus its manager after it has been
created. This capability would allow fine-grained load bal-
ancing on a per-file rather than a per-manager map entry ba-
sis, and it would permit xFS to improve locality by switching
managers when a different machine repeatedly accesses a
file.

Another optimization that we plan to investigate is as-
signing multiple managers to different portions of the same
file to balance load and provide locality for parallel work-
loads.

3.1.4. The Stripe Group Map
Like Zebra, xFS bases its storage subsystem on simple

storage servers to which clients write log fragments. To im-
prove performance and availability when using large num-
bers of storage servers, rather than stripe each segment over
all storage servers in the system, xFS implements stripe
groups as have been proposed for large RAIDs [Chen94].
Each stripe group includes a separate subset of the system’s
storage servers, and clients write each segment across a
stripe group rather than across all of the system’s storage
servers. xFS uses a globally replicated stripe group map to
direct reads and writes to the appropriate storage servers as
the system configuration changes. Like the manager map,
xFS globally replicates the stripe group map because it is
small and seldom changes. The current version of the proto-
type implements reads and writes from multiple stripe
groups, but it does not dynamically modify the group map.

Stripe groups are essential to support large numbers of
storage servers for at least four reasons. First, without stripe
groups, clients would stripe each of their segments over all
of the disks in the system. This organization would require
clients to send small, inefficient fragments to each of the
many storage servers or to buffer enormous amounts of data
per segment so that they could write large fragments to each
storage server. Second, stripe groups match the aggregate
bandwidth of the groups’ disks to the network bandwidth of
a client, using both resources efficiently; while one client
writes at its full network bandwidth to one stripe group, an-
other client can do the same with a different group. Third, by
limiting segment size, stripe groups make cleaning more ef-
ficient. This efficiency arises because when cleaners extract
segments’ live data, they can skip completely empty seg-
ments, but they must read partially full segments in their en-
tirety; large segments linger in the partially-full state longer
than small segments, significantly increasing cleaning costs.
Finally, stripe groups greatly improve availability. Because
each group stores its own parity, the system can survive mul-
tiple server failures if they happen to strike different groups;
in a large system with random failures this is the most likely
case. The cost for this improved availability is a marginal re-
duction in disk storage and effective bandwidth because the
system dedicates one parity server per group rather than one
for the entire system.

The stripe group map provides several pieces of informa-
tion about each group: the group’s ID, the members of the
group, and whether the group is current or obsolete; we de-
scribe the distinction between current and obsolete groups

7

below. When a client writes a segment to a group, it includes
the stripe group’s ID in the segment’s identifier and uses the
map’s list of storage servers to send the data to the correct
machines. Later, when it or another client wants to read that
segment, it uses the identifier and the stripe group map to lo-
cate the storage servers to contact for the data or parity.

xFS distinguishes current and obsolete groups to support
reconfiguration. When a storage server enters or leaves the
system, xFS changes the map so that each active storage
server belongs to exactly one current stripe group. If this re-
configuration changes the membership of a particular group,
xFS does not delete the group’s old map entry. Instead, it
marks that entry as “obsolete.” Clients write only to current
stripe groups, but they may read from either current or obso-
lete stripe groups. By leaving the obsolete entries in the map,
xFS allows clients to read data previously written to the
groups without first transferring the data from obsolete
groups to current groups. Over time, the cleaner will move
data from obsolete groups to current groups [Hart95]; when
the cleaner removes the last block of live data from an obso-
lete group, xFS deletes its entry from the stripe group map.

3.2. System Operation

This section describes how xFS uses the various maps we
described in the previous section. We first describe how
reads, writes, and cache consistency work and then present
simulation results examining the issue of locality in the as-
signment of files to managers.

3.2.1. Reads and Caching

Figure 3 illustrates how xFS reads a block given a file
name and an offset within that file. Although the figure is
complex, the complexity in the architecture is designed to
provide good performance with fast LANs. On today’s fast
LANs, fetching a block out of local memory is much faster
than fetching it from remote memory, which, in turn, is much
faster than fetching it from disk.

To open a file, the client first reads the file’s parent direc-
tory (labeled 1 in the diagram) to determine its index num-
ber. Note that the parent directory is, itself, a data file that
must be read using the procedure described here. As with
FFS, xFS breaks this recursion at the root; the kernel learns
the index number of the root when it mounts the file system.

As the top left path in the figure indicates, the client first
checks its local UNIX block cache for the block (2a); if the
block is present, the request is done. Otherwise it follows the
lower path to fetch the data over the network. xFS first uses
the manager map to locate the correct manager for the index
number (2b) and then sends the request to the manager. If the
manager is not co-located with the client, this message re-
quires a network hop.

The manager then tries to satisfy the request by fetching
the data from some other client’s cache. The manager checks
its cache consistency state (3a), and, if possible, forwards the
request to a client caching the data. That client reads the
block from its UNIX block cache and forwards the data di-
rectly to the client that originated the request. The manager
also adds the new client to its list of clients caching the block.

If no other client can supply the data from DRAM, the
manager routes the read request to disk by first examining
the imap to locate the block’s index node (3b). The manager
may find the index node in its local cache (4a) or it may have
to read the index node from disk. If the manager has to read
the index node from disk, it uses the index node’s disk log
address and the stripe group map (4b) to determine which
storage server to contact. The manager then requests the in-
dex block from the storage server, who then reads the block
from its disk and sends it back to the manager (5). The man-
ager then uses the index node (6) to identify the log address
of the data block. (We have not shown a detail: if the file is
large, the manager may have to read several levels of indirect
blocks to find the data block’s address; the manager follows
the same procedure in reading indirect blocks as in reading
the index node.)

Name,
Directory

Mgr.

Mgr.
Offset

Map

ID

Figure 3. Procedure to read a block. The circled numbers refer to steps described in Section 3.2.1. The network hops are labelled as
“possible” because clients, managers, and storage servers can run on the same machines. For example, xFS tries to co-locate the manager
of a file on the same machine as the client most likely to use the file to avoid some of the network hops. “SS” is an abbreviation for
“Storage Server.”

UNIX
Cache

Data
Block

Offset
Index #

Imap
Client

to
Mgr. Index

Node
Addr.

Stripe
Group
Map

UNIX
Cache

Data
Block

Cache
Consistency

State
Mgr.

to
Client Index #

Offset

Client
to

ClientD
o
n
e

SS
ID

Mgr.
to
SS

Index
Node
Addr.

SS
Disk

Index
Node

offset

Data
Block
Addr.

Stripe
Group
Map

SS
ID

Mgr.
to
SS

Data
Block
Addr.

SS
Disk

Data
Block

SS
to

Mgr.

SS
to

Client

D
o
n
e

D
o
n
e

Index #
Offset

Client
ID

Data or Metadata Block (or Cache)
Globally Replicated Data

Local Portion of Global Data

Possible Network Hop
Access Local Data Structure

UNIX
Cache

1

2a

2b

3a

3b

4a

4b

7

65

8

8

The manager uses the data block’s log address and the
stripe group map (7) to send the request to the storage server
keeping the block. The storage server reads the data from its
disk (8) and sends the data directly to the client that original-
ly asked for it.

One important design decision was to cache index nodes
at managers but not at clients. Although caching index nodes
at clients would allow them to read many blocks from stor-
age servers without sending a request through the manager
for each block, doing so has three significant drawbacks.
First, by reading blocks from disk without first contacting
the manager, clients would lose the opportunity to use coop-
erative caching to avoid disk accesses. Second, although cli-
ents could sometimes read a data block directly, they would
still need to notify the manager of the fact that they now
cache the block so that the manager knows to invalidate the
block if it is modified. Finally, our approach simplifies the
design by eliminating client caching and cache consistency
for index nodes — only the manager handling an index num-
ber directly accesses its index node.

3.2.2. Writes
Clients buffer writes in their local memory until commit-

ted to a stripe group of storage servers. Because xFS uses a
log-based file system, every write changes the disk address
of the modified block. Therefore, after a client commits a
segment to a storage server, the client notifies the modified
blocks’ managers; the managers then update their index
nodes and imaps and periodically log these changes to stable
storage. As with Zebra, xFS does not need to “simultaneous-
ly” commit both index nodes and their data blocks because
the client’s log includes a delta that allows reconstruction of
the manager’s data structures in the event of a client or man-
ager crash. We discuss deltas in more detail in Section 5.2.

As in BSD LFS [Selt93], each manager caches its portion
of the imap in memory, storing it on disk in a special file
called the ifile. The system treats the ifile like any other file
with one exception: the ifile has no index nodes. Instead, the
system locates the blocks of the ifile using manager check-
points described in Section 5.2.

3.2.3. Cache Consistency
xFS utilizes a token-based cache consistency scheme

similar to Sprite [Nels88] and AFS [Howa88] except that
xFS manages consistency on a per-block rather than per-file
basis. Before a client modifies a block, it must acquire write
ownership of that block. The client sends a message to the
block’s manager. The manager then invalidates any other
cached copies of the block, updates its cache consistency in-
formation to indicate the new owner, and replies to the client,
giving permission to write. Once a client owns a block, the
client may write the block repeatedly without having to ask
the manager for ownership each time. The client maintains
write ownership until some other client reads or writes the
data, at which point the manager revokes ownership, forcing
the client to stop writing the block, flush any changes to sta-
ble storage, and forward the data to the new client.

xFS managers use the same state for both cache consis-
tency and cooperative caching. The list of clients caching

each block allows managers to invalidate stale cached copies
in the first case and to forward read requests to clients with
valid cached copies in the second.

3.2.4. Management Distribution Policies
xFS tries to assign files used by a client to a manager co-

located on that machine. This section presents a simulation
study that examines policies for assigning files to managers.
We show that co-locating a file’s management with the cli-
ent that creates that file can significantly improve locality,
reducing the number of network hops needed to satisfy client
requests by over 40% compared to a centralized manager.

The xFS prototype uses a policy we call First Writer.
When a client creates a file, xFS chooses an index number
that assigns the file’s management to the manager co-located
with that client. For comparison, we also simulated a Cen-
tralized policy that uses a single, centralized manager that is
not co-located with any of the clients.

We examined management policies by simulating xFS’s
behavior under a seven day trace of 236 clients’ NFS access-
es to an Auspex file server in the Berkeley Computer Science
Division [Dahl94a]. We warmed the simulated caches
through the first day of the trace and gathered statistics
through the rest. Since we would expect other workloads to
yield different results, evaluating a wider range of workloads
remains important work.

The simulator counts the network messages necessary to
satisfy client requests, assuming that each client has 16 MB
of local cache and that there is a manager co-located with
each client, but that storage servers are always remote.

Two artifacts of the trace affect the simulation. First, be-
cause the trace was gathered by snooping the network, it
does not include reads that resulted in local cache hits. By
omitting requests that resulted in local hits, the trace inflates
the average number of network hops needed to satisfy a read
request. Because we simulate larger caches than those of the
traced system, this factor does not alter the total number of
network requests for each policy [Smit77], which is the rel-
ative metric we use for comparing policies.

The second limitation of the trace is that its finite length
does not allow us to determine a file’s “First Writer” with
certainty for references to files created before the beginning
of the trace. We assign management of these files to random
managers at the start of the trace; if they are later written in
the trace, we reassign their management to the first writer in
the trace. Since write sharing is rare — 96% of all block
overwrites or deletes are by the block’s previous writer —
this heuristic will yield results close to a true “First Writer”
policy.

Figure 4 shows the impact of the policies on locality. The
First Writer policy reduces the total number of network hops
needed to satisfy client requests by 43%. Most of the differ-
ence comes from improving write locality; the algorithm
does little to improve locality for reads, and deletes account
for only a small fraction of the system’s network traffic.

Figure 5 illustrates the average number of network mes-
sages to satisfy a read block request, write block request, or
delete file request. The communication for a read block re-

9

quest includes all of the network hops indicated in Figure 3.
Despite the large number of network hops that can be in-
curred by some requests, the average per request is quite low.
75% of read requests in the trace were satisfied by the local
cache; as noted earlier, the local hit rate would be even high-
er if the trace included local hits in the traced system. An av-
erage local read miss costs 2.9 hops under the First Writer
policy; a local miss normally requires three hops (the client
asks the manager, the manager forwards the request, and the
storage server or client supplies the data), but 12% of the
time it can avoid one hop because the manager is co-located
with the client making the request or the client supplying the
data. Under both the Centralized and First Writer policies, a
read miss will occasionally incur a few additional hops to
read an index node or indirect block from a storage server.

Writes benefit more dramatically from locality. Of the
55% of write requests that required the client to contact the
manager to establish write ownership, the manager was co-
located with the client 90% of the time. When a manager had
to invalidate stale cached data, the cache being invalidated

Figure 4. Comparison of locality as measured by network
traffic for the Centralized and First Writer management
policies.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

Centralized First Writer

Delete Hops
Write Hops
Read Hops

N
et

w
or

k
M

es
sa

ge
s

Management Policy

Figure 5. Average number of network messages needed to
satisfy a read block, write block, or delete file request
under the Centralized and First Writer policies. The Hops
Per Write column does not include a charge for writing the
segment containing block writes to disk because the segment
write is asynchronous to the block write request and because
the large segment amortizes the per block write cost. *Note
that the number of hops per read would be even lower if the
trace included all local hits in the traced system.

0

0.5

1

1.5

2

2.5

3

3.5

4 Centralized First Writer

Hops Per
Read*

Hops Per
Write

Hops Per
Delete

N
et

w
or

k
H

op
s

Pe
r

R
eq

ue
st

was local one-third of the time. Finally, when clients flushed
data to disk, they informed the manager of the data’s new
storage location, a local operation 90% of the time.

Deletes, though rare, also benefit from locality: 68% of
file delete requests went to a local manager, and 89% of the
clients notified to stop caching deleted files were local to the
manager.

4. Cleaning
When an LFS system such as xFS writes data by append-

ing complete segments to its log, it deletes or overwrites
blocks in old segments, leaving “holes” that contain no data.
LFS systems use a log cleaner to coalesce live data from old
segments into a smaller number of new segments, creating
completely empty segments that can be used for future full
segment writes. Since the cleaner must create empty seg-
ments at least as quickly as the system writes new segments,
a single, sequential cleaner would be a bottleneck in a dis-
tributed system such as xFS. The xFS architecture therefore
provides for a distributed cleaner, although we have not
completed implementation of the cleaner in the prototype.

An LFS cleaner, whether centralized or distributed, has
three main tasks. First, the system must keep utilization sta-
tus about old segments — how many “holes” they contain
and how recently these holes appeared — to make wise de-
cisions about which segments to clean [Rose92]. Second, the
system must examine this bookkeeping information to select
segments to clean. Third, the cleaner reads the live blocks
from old log segments and writes those blocks to new seg-
ments.

The rest of this section describes how xFS distributes
cleaning. We first describe how xFS tracks segment utiliza-
tions, then how we identify subsets of segments to examine
and clean, and finally how we coordinate the parallel clean-
ers to keep the file system consistent.

4.1. Distributing Utilization Status
xFS assigns the burden of maintaining each segment’s

utilization status to the client that wrote the segment. This
approach provides parallelism by distributing the bookkeep-
ing, and it provides good locality; because clients seldom
write-share data [Bake91, Kist92, Blaz93] a client’s writes
usually affect only local segments’ utilization status.

We simulated this policy to examine how well it reduced
the overhead of maintaining utilization information. As input
to the simulator, we used the Auspex trace described in
Section 3.2.4, but since caching is not an issue, we gather
statistics for the full seven day trace (rather than using some
of that time to warm caches.)

Figure 6 shows the results of the simulation. The bars
summarize the network communication necessary to moni-
tor segment state under three policies: Centralized Pessimis-
tic, Centralized Optimistic, and Distributed. Under the
Centralized Pessimistic policy, clients notify a centralized,
remote cleaner every time they modify an existing block.
The Centralized Optimistic policy also uses a cleaner that is
remote from the clients, but clients do not have to send mes-
sages when they modify blocks that are still in their local
write buffers. The results for this policy are optimistic be-

10

cause the simulator assumes that blocks survive in clients’
write buffers for 30 seconds or until overwritten, whichever
is sooner; this assumption allows the simulated system to
avoid communication more often than a real system since it
does not account for segments that are written to disk early
due to syncs [Bake92]. (Unfortunately, syncs are not visible
in our Auspex traces.) Finally, under the Distributed policy,
each client tracks the status of blocks that it writes so that it
needs no network messages when modifying a block for
which it was the last writer.

During the seven days of the trace, of the one million
blocks written by clients and then later overwritten or delet-
ed, 33% were modified within 30 seconds by the same client
and therefore required no network communication under the
Centralized Optimistic policy. However, the Distributed
scheme does much better, reducing communication by a fac-
tor of eighteen for this workload compared to even the Cen-
tralized Optimistic policy.

4.2. Distributing Cleaning

Clients store their segment utilization information in s-
files. We implement s-files as normal xFS files to facilitate
recovery and sharing of s-files by different machines in the
system.

Each s-file contains segment utilization information for
segments written by one client to one stripe group: clients
write their s-files into per-client directories, and they write
separate s-files in their directories for segments stored to dif-
ferent stripe groups.

A leader in each stripe group initiates cleaning when the
number of free segments in that group falls below a low wa-

Figure 6. Simulated network communication between
clients and cleaner. Each bar shows the fraction of all blocks
modified or deleted in the trace, based on the time and client
that modified the block. Blocks can be modified by a different
client than originally wrote the data, by the same client within
30 seconds of the previous write, or by the same client after
more than 30 seconds have passed. The Centralized
Pessimistic policy assumes every modification requires
network traffic. The Centralized Optimistic scheme avoids
network communication when the same client modifies a
block it wrote within the previous 30 seconds, while the
Distributed scheme avoids communication whenever a block
is modified by its previous writer.

Modified By
Different

Client0%

20%

40%

60%

80%

100%

C
en

tr
al

iz
ed

C
en

tr
al

iz
ed

D
is

tr
ib

ut
ed

%
 o

f
C

ha
ng

ed
 L

og
 B

lo
ck

s

Pe
ss

im
is

tic

O
pt

im
is

tic

Modified By
Same Client

(< 30s)

Modified By
Same Client

(> 30s)

ter mark or when the group is idle. The group leader decides
which cleaners should clean the stripe group’s segments. It
sends each of those cleaners part of the list of s-files that con-
tain utilization information for the group. By giving each
cleaner a different subset of the s-files, xFS specifies subsets
of segments that can be cleaned in parallel.

A simple policy would be to assign each client to clean
its own segments. An attractive alternative is to assign clean-
ing responsibilities to idle machines. xFS would do this by
assigning s-files from active machines to the cleaners run-
ning on idle ones.

4.3. Coordinating Cleaners
Like BSD LFS and Zebra, xFS uses optimistic concur-

rency control to resolve conflicts between cleaner updates
and normal file system writes. Cleaners do not lock files that
are being cleaned, nor do they invoke cache consistency ac-
tions. Instead, cleaners just copy the blocks from the blocks’
old segments to their new segments, optimistically assuming
that the blocks are not in the process of being updated some-
where else. If there is a conflict because a client is writing a
block as it is cleaned, the manager will ensure that the client
update takes precedence over the cleaner’s update. Although
our algorithm for distributing cleaning responsibilities never
simultaneously asks multiple cleaners to clean the same seg-
ment, the same mechanism could be used to allow less strict
(e.g. probabilistic) divisions of labor by resolving conflicts
between cleaners.

5. Recovery and Reconfiguration
Availability is a key challenge to a distributed system

such as xFS. Because xFS distributes the file system across
many machines, it must be able to continue operation when
some of the machines fail. Fortunately, techniques to provide
highly available file service with potentially unreliable com-
ponents are known. RAID striping allows data stored on disk
to be accessed despite disk failures, and Zebra demonstrated
how to extend LFS recovery to a distributed system. Zebra’s
approach organizes recovery into a hierarchy where lower
levels of recovery are performed first, followed by higher
levels that depend on lower levels, as Figure 7 illustrates.
Under this scheme, recovery proceeds in four steps:

1.Recover log segments stored on disk.
2.Recover managers’ disk imap metadata by reading a

manager checkpoint and the subsequent deltas from the
log.

3.Recover managers’ cache consistency state by querying
clients.

4.Recover cleaners’ state by reading cleaner checkpoints
and rolling forward to update their s-files.

Figure 7. Bottom up recovery in xFS and Zebra rests on the
persistent state stored reliably in the logs.

On-Disk Logs

Manager Imap

Cache Consistency Cleaner

O
rd

er
 o

f
R

ec
ov

er
y D

ependencies

11

xFS leaves these basic techniques in place, modifying them
only to avoid centralized bottlenecks.

These techniques allow xFS to be resilient to uncorrelat-
ed failures — for instance, users kicking power or network
cords out of their sockets. When one xFS machine fails, ac-
cess to unaffected clients, managers, and storage servers can
continue. However, xFS can not continue operation when
multiple machines from a single storage group fail or when
a network partition prevents storage servers from regenerat-
ing segments.

The prototype currently implements only a limited subset
of xFS’s recovery functionality — storage servers recover
their local state after a crash, they automatically reconstruct
data from parity when one storage server in a group fails, and
clients write deltas into their logs to support manager recov-
ery. However, we have not implemented manager check-
point writes, checkpoint recovery reads, or delta reads for
roll forward. The current prototype also fails to recover
cleaner state and cache consistency state, and it does not yet
implement the consensus algorithm needed to dynamically
reconfigure manager maps and stripe group maps. Given the
complexity of the recovery problem and the early state of our
implementation, continued research will be needed to fully
understand scalable recovery.

The rest of this section explores the issues involved in
scaling the basic Zebra recovery model and discusses one
additional aspect of recovery: reaching consensus on manag-
er maps and stripe group maps.

5.1. Persistent State

The storage servers provide the keystone of the system’s
recovery and availability strategy by storing the system’s
persistent state in a redundant log structured file system. We
base the storage servers’ recovery on the Zebra design: after
a crash, a storage server reads a local checkpoint block. This
checkpoint preserves three sets of state: the storage server’s
internal mapping from xFS fragment IDs to the fragments’
physical disk addresses, the storage server’s map of free disk
space, and a list of locations where the storage server was
planning to store the next few fragments to arrive after the
checkpoint.

After reading the checkpoint, the storage server exam-
ines the locations where it might have stored data just before
the crash. It computes a simple checksum to determine if any
of them contain live data, updating its local data structures if
any do. Incomplete fragments that were being written at the
time of the crash will fail this checksum and be discarded.

To help recover the stripe group map after a crash, xFS
includes a field in each fragment that lists its stripe group and
the other storage servers in that group.

Storage server recovery should scale well in xFS because
each storage server can independently recover its local state
and because storage servers’ local checkpoints allow them to
examine only small fractions of their disks to locate incom-
plete fragments.

5.2. Manager Metadata
To recover the managers’ disk location metadata, xFS

managers use the checkpoint and roll forward method devel-
oped in LFS and Zebra, but they split responsibility for roll-
ing forward different components of the logs for scalability.

During normal operation, managers store modified index
nodes and modified blocks of their ifile in their logs using the
standard client interface. The ifile holds the imap containing
pointers to the index nodes in the log, but to locate the ifile
in the log after a crash, managers use checkpoints that they
periodically store in their logs. Like BSD LFS [Selt93],
xFS’s checkpoints consist primarily of lists of pointers to the
ifile’s disk storage locations at the time of the checkpoints.
The checkpoint also lists the segment ID of the last segment
in each client’s log at the time of the checkpoint.

To recover the manager’s state in Zebra, the manager be-
gins by reading its log backwards from the end of the log un-
til it finds the last checkpoint. The manager reads the
checkpoint to get pointers to the ifile blocks as they looked
at the time of the checkpoint. Using those pointers, the man-
ager recovers the imap from the ifiles. To account for more
recent modifications, the manager then reads all of the cli-
ents’ logs, starting at the time of the checkpoint and rolling
forward its checkpoint state using the information in the
logs’ deltas to play back each modification.

To generalize this approach to handle multiple managers,
xFS allows each new manager to recover a separate portion
of the imap state. Three scalability issues arise. First, only
one recovering manager should read each manager’s log.
Second, when replaying deltas, the system should read each
client’s log only once. Third, each machine involved in re-
covery must locate the tail of the logs it is to read.

To assign one manager to read each manager log, xFS
uses the consensus algorithm described in Section 5.5 during
recovery to create an initial manager map that assigns each
manager’s log to one of the new managers. That manager re-
covers the checkpoint from that log, restoring the portion of
the imap formerly handled by the manager that wrote that
log. By assigning each log to a manager, we parallelize re-
covery so that each manager recovers only a subset of the
system’s metadata, and we make this parallel recovery effi-
cient by reading each log once.

xFS takes a similar approach for reading the deltas from
clients’ logs. It assigns a client or a manger to read the log
and replay its deltas. Note that where a manager’s log only
contained information of interest to that manager, each cli-
ent’s log contains deltas that potentially affect all managers.
Thus, the machine reading deltas from a client’s log sends
each delta to the manager that the delta affects. Like Zebra,
managers use version numbers included in the deltas to order
conflicting updates to the same data by different clients.

To enable machines to locate the tails of the logs they are
to recover, each storage server keeps track of the newest seg-
ment that it stores for each client or manager. A machine can
locate the end of the log it is to recover by asking all of the
storage groups and choosing the newest segment.

Even with the parallelism and efficiency provided by
xFS’s approach to manager recovery, future work will be

12

needed to evaluate its scalability. Our design is based on the
observation that, while the procedures described above can
require O(N2) communications steps (where N refers to the
number of clients, managers, or storage servers), each phase
can proceed in parallel across N machines, and the work
done in each phase can be further limited by decreasing the
interval between checkpoints.

For instance, to locate the tails of the systems logs, all
machines involved in recovery must query all storage servers
to locate the newest segment of the log being recovered.
While this requires a total of O(N2) messages (each machine
must ask each storage server group for the newest log seg-
ment stored at that group), each client or manager only needs
to contact N storage server groups, and all of the clients and
managers can proceed in parallel, provided that they take
steps to avoid recovery storms where many machines simul-
taneously contact a single storage server [Bake94]. We plan
use randomization to accomplish this goal.

Recovering the log checkpoint or rolling forward logs
raises similar scaling issues. Although each manager or cli-
ent must potentially contact all of the storage servers to read
the logs, each log can be recovered in parallel. In fact, the ac-
tual number of storage servers contacted for each log will be
controlled by the interval between checkpoints; shortening
this interval reduces how far back in the log the system must
scan and thereby reduces how many storage servers each
manager or client must contact.

5.3. Cache Consistency State
After the managers have recovered and rolled forward

the imap, they must recover the cache consistency state asso-
ciated with the blocks they manage. xFS will use server-driv-
en recovery [Bake94]. The manager contacts all of the
system’s clients, and they send the manager a list of the
blocks that they are caching or for which they have write
ownership from the indicated portion of the index number
space. As with the other manager state, the N to N commu-
nication in this phase is tempered by its N-way parallelism.

5.4. Cleaner State
The xFS cleaners’ state consists of segment utilization

information that resides in the s-files. Since the s-files are
normal xFS files, earlier levels of recovery recover them.
However, because clients buffer their writes to the s-files,
the s-files may not be completely up to date, even after the
lower levels of recovery have rolled forward all of the deltas
in the logs — the s-files may not account for modifications
at about the time of the failure.

Cleaners combat this problem with a checkpoint and roll
forward protocol. Each cleaner periodically flushes its s-files
to disk and writes a cleaner checkpoint to a regular file in its
s-directory. The checkpoint indicates the most recent seg-
ment that each client had written to its log at the time of the
checkpoint. After xFS recovers the s-files and the check-
points, each cleaner rolls forward the utilization state stored
in its s-files by asking each client for a summary of the mod-
ifications since the cleaner checkpoint. Each client responds
with a list of segments controlled by that cleaner that the cli-
ent modified since the time of the cleaner checkpoint. This

list includes a count of how many “holes” that client created
in each modified segment. The cleaner updates its s-files by
decrementing the utilization of each segment by the total
number of “holes” created by clients since the cleaner check-
point.

Clients create these summaries when they scan their logs
during the main xFS roll-forward phase. As a client reads the
deltas from each segment, it tallies the modifications that
writes to that segment made to other segments.

A drawback of this approach is that it can decrement a
segment’s utilization twice for the same modification. For
instance, a cleaner can store an s-file to disk between the
time of a cleaner checkpoint and a crash. In that case, the
cleaner will use client summaries that include modifications
already reflected in the s-files. This mistake will result in the
segment being cleaned too early, but no permanent damage
is done. When the cleaner cleans the segment, it reads the
deltas from that segment, correctly identifies all of the live
blocks, and moves them to a new segment.

5.5. Reconfiguration and Consensus
xFS reconfigures its manager map and stripe group map

when the system recovers from a crash or when machines are
added or removed. Although we have not yet implemented
dynamic reconfiguration of either of these data structures in
the prototype, we plan to do so as follows. When the system
detects a configuration change, it initiates a global consensus
algorithm that elects a leader from among the active ma-
chines and supplies that leader with a list of currently active
nodes. We will adapt the spanning tree algorithm used by
Autonet for reconfiguration for this purpose [Schr91]. The
leader then computes a new manager or stripe group map and
then distributes it to the rest of the nodes.

In the case of incremental configuration changes —
when a machine is added or removed or one or a small num-
ber of machines crash — the system can continue operation
throughout this process. For stripe group map reconfigura-
tion, clients can continue to read from soon to be obsolete
stripe groups using the old map, and if they try to write to a
storage server that has left the system, they will find out
about the missing machine and either rewrite the segment to
a new, undamaged stripe group or simply write the segment
without parity protection. In the case of a manager map
change, access to unaffected managers can continue, but ac-
cesses to portions of the map being reconfigured have to wait
until the management assignments have been transferred.

6. Security
xFS, as described, is appropriate for a restricted

environment — among machines that communicate over a
fast network and that trust one another’s kernels to enforce
security. xFS managers, storage servers, clients, and cleaners
must run on secure machines using the protocols we have de-
scribed so far. However, xFS can support less trusted clients
using different protocols that require no more trust than tra-
ditional client protocols, albeit at some cost to performance.
Our current implementation allows unmodified UNIX cli-
ents to mount a remote xFS partition using the standard NFS
protocol.

13

Like other file systems, xFS trusts the kernel to enforce a
firewall between untrusted user processes and kernel sub-
systems such as xFS. The xFS storage servers, managers,
and clients can then enforce standard file system security se-
mantics. For instance, xFS storage servers only store frag-
ments supplied by authorized clients; xFS managers only
grant read and write tokens to authorized clients; xFS clients
only allow user processes with appropriate credentials and
permissions to access file system data.

We expect this level of trust to exist within in many set-
tings. For instance, xFS could be used within a group or de-
partment’s administrative domain, where all machines are
administered the same way and therefore trust one another.
Similarly, xFS would be appropriate within a NOW where
users already trust remote nodes to run migrated processes
on their behalf. Even in environments that do not trust all
desktop machines, the xFS could still be used within a trust-
ed core of desktop machines and servers, among physically
secure compute servers and file servers in a machine room,
or within one of the parallel server architectures now being
researched [Kubi93, Kusk94]. In these cases, the xFS core
could still provide scalable, reliable, and cost-effective file
service to less trusted fringe clients running more restrictive
protocols. The downside is that the core system can not ex-
ploit the untrusted CPUs, memories, and disks located in the
fringe.

Client trust is a concern for xFS because xFS ties its cli-
ents more intimately to the rest of the system than do tradi-
tional protocols. This close association improves
performance, but it may increase the opportunity for mis-
chievous clients to interfere with the system. In either xFS or
a traditional system, a compromised client can endanger data
accessed by a user on that machine. However, a damaged
xFS client can do wider harm by writing bad logs or by sup-
plying incorrect data via cooperative caching. In the future
we plan to examine techniques to guard against unauthorized
log entries and to use encryption-based techniques to safe-
guard cooperative caching.

Our current prototype allows unmodified UNIX fringe
clients to access xFS core machines using the NFS protocol,
as Figure 8 illustrates. To do this, any xFS client in the core
exports the xFS file system via NFS, and an NFS client em-
ploys the same procedures it would use to mount a standard
NFS partition from the xFS client. The xFS core client then
acts as an NFS server for the NFS client, providing high per-
formance by employing the remaining xFS core machines to

xFS Core

NFS Clients

Figure 8. An xFS core acting as a scalable file server for
unmodified NFS clients.

satisfy any requests not satisfied by its local cache. Multiple
NFS clients can utilize the xFS core as a scalable file server
by having different NFS clients mount the xFS file system
using different xFS clients to avoid bottlenecks. Because
xFS provides single machine sharing semantics, it appears to
the NFS clients that they are mounting the same file system
from the same server. The NFS clients also benefit from
xFS’s high availability since they can mount the file system
using any available xFS client. Of course, a key to good NFS
server performance is to efficiently implement synchronous
writes; our prototype does not yet exploit the non-volatile
RAM optimization found in most commercial NFS servers
[Bake92], so for best performance, NFS clients should
mount these partitions using the “unsafe” option to allow
xFS to buffer writes in memory.

7. xFS Prototype

This section describes the state of the xFS prototype as of
August 1995 and presents preliminary performance results
measured on a 32 node cluster of SPARCStation 10’s and
20’s. Although these results are preliminary and although we
expect future tuning to significantly improve absolute per-
formance, they suggest that xFS has achieved its goal of scal-
ability. For instance, in one of our microbenchmarks
32 clients achieved an aggregate large file write bandwidth
of 13.9 MB/s, close to a linear speedup compared to a single
client’s 0.6 MB/s bandwidth. Our other tests indicated simi-
lar speedups for reads and small file writes.

The rest of this section summarizes the state of the proto-
type, describes our test environment, and presents our re-
sults.

7.1. Prototype Status

The prototype implements most of xFS’s key features,
including distributed management, network disk striping
with single parity and multiple groups, and cooperative
caching. We have not yet completed implementation of a
number of other features. The most glaring deficiency is in
xFS’s crash recovery procedures. Although the system can
automatically reconstruct data when a storage server crashes,
we have not completed implementation of manager state
checkpoint and roll forward. Also, we have not implemented
the consensus algorithms necessary to calculate and distrib-
ute new manager maps and storage group maps; the system
currently reads these mappings from a non-xFS file and can
not change them. We have not implemented code to change
a file’s index number to dynamically assign it a new manager
after it has been created, and we have yet to implement the
cleaner. Finally, xFS is still best characterized as a research
prototype; although the system is becoming more stable over
time, considerable stress testing is needed before real users
will want to entrust their data to it.3

3. The current version of the xFS source tree is available at
http://now.cs.berkeley.edu/Xfs/release/sosp95-snapshot.tar.Z. We make
this code available to provide detailed documentation of our design as of
August 1995, not with the illusion that anyone will be able to download the
code and start running xFS. In the future, we plan to provide more stable
releases of xFS in that directory.

14

The prototype implementation consists of four main
pieces. First, we implemented a small amount of code as a
loadable module for the Solaris kernel. This code provides
xFS’s interface to the Solaris v-node layer and also accesses
the in-memory file cache. We implemented the remaining
three pieces of xFS as daemons outside of the kernel address
space to facilitate debugging. If the xFS kernel code cannot
satisfy a request using the buffer cache, then it sends the re-
quest to the client daemon. The client daemons provide the
rest of xFS’s functionality by accessing the manager dae-
mons and the storage server daemons over the network.

7.2. Test Environment
For our testbed, we used a total of 32 machines: eight

dual-processor SPARCStation 20’s, and 24 single-processor
SPARCStation 10’s. Each of our machines had 64 MB of
physical memory. Uniprocessor 50 MHz SS-20’s and SS-
10’s have SPECInt92 ratings of 74 and 65, and can copy
large blocks of data from memory to memory at 27 MB/s and
20 MB/s, respectively.

For our NFS tests, we use one of the SS-20’s as the NFS
server and the remaining 31 machines as NFS clients. For the
xFS tests, all machines act as storage servers, managers, and
clients unless otherwise noted. For experiments using fewer
than 32 machines, we always include all of the SS-20’s be-
fore starting to use the less powerful SS-10’s.

The xFS storage servers store data on a 256 MB partition
of a 1.1 GB Seagate-ST11200N disk. These disks have an
advertised average seek time of 5.4 ms and rotate at
5,411 RPM. We measured a peak bandwidth to read from the
raw disk device into memory of 2.7 MB/s for these disks. For
all xFS tests, we use a log fragment size of 64 KB, and unless
otherwise noted we use storage server groups of eight ma-
chines — seven for data and one for parity; all xFS tests in-
clude the overhead of parity computation.

The NFS server uses a faster disk than the xFS storage
servers, a 2.1 GB DEC RZ 28-VA with a peak bandwidth of
5 MB/s from the raw partition into memory. The NFS server
also uses a Prestoserve NVRAM card that acts as a buffer for
disk writes [Bake92]. We did not use an NVRAM buffer for
the xFS machines, although xFS’s log buffer provides simi-
lar performance benefits.

A high-speed, switched Myrinet network [Bode95] con-
nects the machines. Although each link of the physical net-
work has a peak 80 MB/s bandwidth, RPC and TCP/IP
protocol overheads place a much lower limit on the through-
put actually achieved [Keet95]. The throughput for fast net-
works such as the Myrinet depends heavily on the version
and patch level of the Solaris operating system used. For our
xFS measurements, we used a kernel that we compiled from
the Solaris 2.4 source release. We measured the TCP
throughput to be 3.2 MB/s for 8 KB packets when using this
source release. For the NFS measurements, we used the bi-
nary release of Solaris 2.4, augmented with the binary patch-
es recommended by Sun as of June 1, 1995. This release
provides better network performance; our TCP test achieved
a throughput of 8.4 MB/s for this setup. Alas, we could not
get sources for the patches, so our xFS measurements are pe-
nalized with a slower effective network than NFS. RPC

overheads further reduce network performance for both sys-
tems.

7.3. Performance Results
This section presents a set of preliminary performance

results for xFS under a set of microbenchmarks designed to
stress file system scalability. We examine read and write
throughput for large files and write performance for small
files.

These performance results are preliminary. As noted
above, several significant pieces of the xFS system remain to
be implemented. Also, the current prototype implementation
suffers from three inefficiencies, all of which we will attack
in the future.

1.xFS is currently implemented as a set of user-level pro-
cesses by redirecting vnode layer calls as in AFS
[Howa88]. We took this approach to simplify debug-
ging, but it hurts performance since each user/kernel
space crossing requires the kernel to schedule the user
level process and copy data to or from the user process’s
address space. To fix this limitation, we are working to
move xFS into the kernel.

2.RPC and TCP/IP overheads severely limit xFS’s net-
work performance. We have begun to port xFS’s com-
munications layer to Active Messages [vE92] to address
this issue.

3.We have done little profiling and tuning. As we do so,
we expect to find and fix inefficiencies.

Despite these limitations, the prototype is sufficient to dem-
onstrate the scalability of the xFS architecture. However,
the absolute performance is much less than we expect for
the well-tuned xFS. As the implementation matures, we
expect one xFS client to significantly outperform one NFS
client by benefitting from the bandwidth of multiple disks
and from cooperative caching. Our eventual performance
goal is for a single xFS client to achieve read and write
bandwidths near that of its maximum network throughput,
and for multiple clients to realize an aggregate bandwidth
approaching the system’s aggregate local disk bandwidth.

7.3.1. Scalability
Figures 9 through 11 illustrate the scalability of xFS’s

performance for large writes, large reads, and small writes.
For each of these tests, as the number of clients increases, so
does xFS’s aggregate performance. In contrast, NFS’s single
server is saturated by just a few clients for each of these tests,
limiting peak throughput.

Figure 9 illustrates the performance of our disk write
throughput test, in which each client writes a large (10 MB),
private file and then invokes sync() to force the data to disk
(some of the data stay in NVRAM in the case of NFS.) A sin-
gle xFS client is limited to 0.6 MB/s, about half of the
1.2 MB/s throughput of a single NFS client; this difference
is largely due to the extra kernel crossings and associated
data copies in the user-level xFS implementation as well as
high network protocol overheads. As we increase the num-
ber of clients, NFS’s throughput does not increase while the
xFS configuration scales up to a peak bandwidth of
13.9 MB/s for 32 clients, and it appears that if we had more

15

clients available for our experiments, they could achieve
even more bandwidth from the 32 xFS storage servers and
managers.

Figure 10 illustrates the performance of xFS and NFS for
large reads from disk. For this test, each machine flushed its
in-memory file cache and then sequentially read a per-client
10 MB file. Again, a single NFS client outperforms a single
xFS client. One NFS client can read at 1.2 MB/s, while the
user-level xFS implementation and network overheads limit
one xFS client to 0.9 MB/s. As is the case for writes, xFS ex-
hibits good scalability; 32 clients achieve a read throughput
of 13.8 MB/s. In contrast, five clients saturate NFS at a peak
throughput of 2.7 MB/s.

Figure 11 illustrates the performance when each client
creates 2,048 files containing 1 KB of data per file. For this
benchmark, not only does xFS scale well, its absolute perfor-
mance is greater than that of NFS, even with one client.
Where one xFS client can create 40 files per second, an NFS
client can create only 22 files per second. In the single client

Figure 9. Aggregate disk write bandwidth. The x axis
indicates the number of clients simultaneously writing private
10 MB files, and the y axis indicates the total throughput
across all of the active clients. xFS used four groups of eight
storage servers and 32 managers. NFS’s peak throughput is
1.5 MB/s with 6 clients; xFS’s is 13.9 MB/s with 32 clients.

0 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

14 MB/s

0 5 10 15 20 25 30 35

xFS

NFS

Clients

A
gg

re
ga

te
 L

ar
ge

-W
ri

te
 B

an
dw

id
th

Figure 10. Aggregate disk read bandwidth. The x axis
indicates the number of clients simultaneously reading private
10 MB files and the y axis indicates the total throughput across
all active clients. xFS used four groups of eight storage servers
and 32 managers. NFS’s peak throughput is 2.7 MB/s with 5
clients; xFS’s is 13.8 MB/s with 32 clients.

0 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

14 MB/s

0 5 10 15 20 25 30 35

NFS

xFS

A
gg

re
ga

te
 L

ar
ge

-R
ea

d
B

an
dw

id
th

Clients

case for this benchmark, the benefits of xFS’s log-based
striping for both network and disk efficiency outweigh the
limitations of our current implementation. xFS also demon-
strates good scalability for this benchmark. 32 xFS clients
were able to generate a total of 1,122 files per second, while
NFS’s peak rate was 86 files per second with five clients.

7.3.2. Storage Server Scalability
In the above measurements, we used a 32-node xFS sys-

tem where all machines acted as clients, managers, and stor-
age servers and found that both bandwidth and small write
performance scaled well. This section examines the impact
of different storage server organizations on that scalability.
Figure 12 shows the large write performance as we vary the
number of storage servers and also as we change the stripe
group size.

Figure 11. Aggregate small write performance. The x axis
indicates the number of clients, each simultaneously creating
2,048 1 KB files. The y axis is the average aggregate number
of file creates per second during the benchmark run. xFS used
four groups of eight storage servers and 32 managers. NFS
achieves its peak throughput of 86 files per second with five
clients, while xFS scales up to 1,122 files per second with 32
clients.

0 files/s

200 files/s

400 files/s

600 files/s

800 files/s

1000 files/s

1200 files/s

0 5 10 15 20 25 30 35

xFS

NFS

Clients

Sm
al

l F
ile

 C
re

at
es

 p
er

 S
ec

on
d

Figure 12. Large write throughput as a function of the
number of storage servers in the system. The x axis
indicates the total number of storage servers in the system and
the y axis indicates the aggregate bandwidth when 32 clients
each write a 10 MB file to disk. The 8 SS’s line indicates
performance for stripe groups of eight storage servers (the
default), and the 4 SS’s shows performance for groups of four
storage servers.

0 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

14 MB/s

0 5 10 15 20 25 30 35

xFS (8 SS’s per Group)

xFS (4 SS’s per Group)

Storage Servers

A
gg

re
ga

te
 L

ar
ge

-W
ri

te
 B

an
dw

id
th

16

Increasing the number of storage servers improves per-
formance by spreading the system’s requests across more
CPUs and disks. The increase in bandwidth falls short of lin-
ear with the number of storage servers, however, because cli-
ent overheads are also a significant limitation on system
bandwidth.

Reducing the stripe group size from eight storage servers
to four reduces the system’s aggregate bandwidth by 8% to
22% for the different measurements. We attribute most of
this difference to the increased overhead of parity. Reducing
the stripe group size from eight to four reduces the fraction
of fragments that store data as opposed to parity. The addi-
tional overhead reduces the available disk bandwidth by
16% for the system using groups of four servers.

7.3.3. Manager Scalability
Figure 13 shows the importance of distributing manage-

ment among multiple managers to achieve both parallelism
and locality. It varies the number of managers handling
metadata for 31 clients running the small write benchmark.4

This graph indicates that a single manager is a significant
bottleneck for this benchmark. Increasing the system from
one manager to two increases throughput by over 80%, and
a system with four managers more than doubles throughput
compared to a single manager system.

Continuing to increase the number of managers in the
system continues to improve performance under xFS’s First
Writer policy. This policy assigns files to managers running
on the same machine as the clients that create the files;
Section 3.2.4 described this policy in more detail. The sys-
tem with 31 managers can create 45% more files per second

4. Due to a hardware failure, we ran this experiment with three groups
of eight storage servers and 31 clients.

Figure 13. Small write performance as a function of the
number of managers in the system and manager locality
policy. The x axis indicates the number of managers. The y
axis is the average aggregate number of file creates per second
by 31 clients, each simultaneously creating 2,048 small (1 KB)
files. The two lines show the performance using the First
Writer policy that co-locates a file’s manager with the client
that creates the file, and a Nonlocal policy that assigns
management to some other machine. Because of a hardware
failure, we ran this experiment with three groups of eight
storage servers and 31 clients. The maximum point on the x-
axis is 31 managers.

0 files/s

200 files/s

400 files/s

600 files/s

800 files/s

1000 files/s

1200 files/s

0 5 10 15 20 25 30 35

First Writer Policy

Nonlocal Manager

Managers

Sm
al

l F
ile

 C
re

at
es

 p
er

 S
ec

on
d

24 Storage Servers
31 Clients

than the system with four managers under this policy. This
improvement comes not from load distribution but from lo-
cality; when a larger fraction of the clients also host manag-
ers, the algorithm is able to successfully co-locate managers
with the clients accessing a file more often.

The Nonlocal Manager line illustrates what would hap-
pen without locality. For this line, we altered the system’s
management assignment policy to avoid assigning files cre-
ated by a client to the local manager. When the system has
four managers, throughput peaks for this algorithm because
the managers are no longer a significant bottleneck for this
benchmark.

7.4. Limitations of these Measurements
Although these measurements suggest that the xFS archi-

tecture has significant potential, a great deal of future work
remains to fully evaluate our design. First, the workloads ex-
amined here are microbenchmarks that provide significant
parallelism and spread the load relatively evenly among
xFS’s components. Real workloads will include hot spots
that may limit the scalability of xFS or may require xFS to
rely more heavily on its capacity to reconfigure responsibil-
ities to avoid loaded machines.

A second limitation of these measurements is that we
compare against NFS. Our reasons for doing so were
practical — NFS is a well known system, so it is easy for us
to compare to and provides a good frame of reference — but
its limitations with respect to scalability are well known
[Howa88]. Further, since many NFS installations have at-
tacked NFS’s limitations by buying multiprocessor servers,
it will be interesting to compare xFS running on worksta-
tions to NFS running on more powerful server machines than
were available to us.

8. Related Work
Section 2 discussed a number of projects that provide an

important basis for xFS. This section describes several other
efforts to build decentralized file systems.

Several file systems, such as CFS [Pier89], Bridge
[Dibb89], and Vesta [Corb93], distribute data over multiple
storage servers to support parallel workloads; however, they
lack mechanisms to provide availability across component
failures.

Other parallel systems have implemented redundant data
storage intended for restricted workloads consisting entirely
of large files, where per-file striping is appropriate and
where large file accesses reduce stress on their centralized
manager architectures. For instance, Swift [Cabrera91b] and
SFS [LoVe93] provide redundant distributed data storage for
parallel environments, and Tiger [Rash94] services multime-
dia workloads.

TickerTAIP [Cao93], SNS [Lee95], and AutoRAID
[Wilk95] implement RAID-derived storage systems. These
systems could provide services similar to xFS’s storage serv-
ers, but they would require serverless management to pro-
vide a scalable and highly available file system interface to
augment their simpler disk block interfaces. In contrast with
the log-based striping approach taken by Zebra and xFS,
TickerTAIP’s RAID level 5 [Patt88] architecture makes cal-

17

culating parity for small writes expensive when disks are dis-
tributed over the network. SNS combats this problem by
using a RAID level 1 (mirrored) architecture, but this ap-
proach approximately doubles the space overhead for storing
redundant data. AutoRAID addresses this dilemma by stor-
ing data that is actively being written to a RAID level 1 and
migrating inactive data to a RAID level 5.

9. Conclusions
Serverless file systems distribute file system server re-

sponsibilities across large numbers of cooperating machines.
This approach eliminates the central server bottleneck inher-
ent in today’s file system designs to provide improved per-
formance, scalability, and availability. Further, serverless
systems are cost effective because their scalable architecture
eliminates the specialized server hardware and convoluted
system administration necessary to achieve scalability under
current file systems. The xFS prototype demonstrates the vi-
ability of building such scalable systems, and its initial per-
formance results illustrate the potential of this approach.

Acknowledgments
We owe several members of the Berkeley Communica-

tions Abstraction Layer group — David Culler, Lok Liu, and
Rich Martin — a large debt for helping us to get the 32-node
Myrinet network up. We also made extensive use of a mod-
ified version of Mendel Rosenblum’s LFS cleaner simulator.
Eric Anderson and John Hartman also provided helpful com-
ments on an earlier draft of this paper. Finally, we would like
to thank the program committee — particularly John Ouster-
hout, our shepherd — as well as the other anonymous refer-
ees for their comments on initial drafts of this paper. These
comments greatly improved both the technical content and
presentation of this work.

References
[Ande95] T. Anderson, D. Culler, D. Patterson, and the

NOW team. A Case for NOW (Networks of Workstations). IEEE
Micro, pages 54–64, February 1995.

[Bake91] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and
J. Ousterhout. Measurements of a Distributed File System. In
Proc. of the 13th Symp. on Operating Systems Principles, pages
198–212, October 1991.

[Bake92] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and
M. Seltzer. Non-Volatile Memory for Fast, Reliable File Systems.
In ASPLOS-V, pages 10–22, September 1992.

[Bake94] M. Baker. Fast Crash Recovery in Distributed File Sys-
tems. PhD thesis, University of California at Berkeley, 1994.

[Basu95] A. Basu, V. Buch, W. Vogels, and T. von Eicken. U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing. In Proc. of the 15th Symp. on Operating Systems
Principles, December 1995.

[Birr93] A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart.
The Echo Distributed File System. Technical Report 111, Digital
Equipment Corp. Systems Research Center, September 1993.

[Blau94] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An Optimal Scheme for Tolerating Double Disk Failures in RAID
Architectures. In Proc. of the 21st Symp. on Computer Architec-
ture, pages 245–254, April 1994.

[Blaz93] M. Blaze. Caching in Large-Scale Distributed File Sys-
tems. PhD thesis, Princeton University, January 1993.

[Bode95] N. Boden, D. Cohen, R. Felderman, A. Kulawik,
C. Seitz, J. Seizovic, and W. Su. Myrinet – A Gigabit-per-Second
Local-Area Network. IEEE Micro, pages 29–36, February 1995.

[Cao93] P. Cao, S. Lim, S. Venkataraman, and J. Wilkes. The
TickerTAIP Parallel RAID Architecture. In Proc. of the 20th
Symp. on Computer Architecture, pages 52–63, May 1993.

[Chai91] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS
Directories: A Scalable Cache Coherence Scheme. In ASPLOS-IV
Proceedings, pages 224–234, April 1991.

[Chen94] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson.
RAID: High-Performance, Reliable Secondary Storage. ACM
Computing Surveys, 26(2):145–188, June 1994.

[Corb93] P. Corbett, S. Baylor, and D. Feitelson. Overview of the
Vesta Parallel File System. Computer Architecture News,
21(5):7–14, December 1993.

[Cyph93] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina.
Architectural Requirements of Parallel Scientific Applications
with Explicit Communication. In Proc. of the 20th International
Symposium on Computer Architecture, pages 2–13, May 1993.

[Dahl94a] M. Dahlin, C. Mather, R. Wang, T. Anderson, and
D. Patterson. A Quantitative Analysis of Cache Policies for Scal-
able Network File Systems. In Proc. of 1994 SIGMETRICS, pages
150–160, May 1994.

[Dahl94b] M. Dahlin, R. Wang, T. Anderson, and D. Patterson.
Cooperative Caching: Using Remote Client Memory to Improve
File System Performance. In Proc. of the First Symp. on Operat-
ing Systems Design and Implementation, pages 267–280, Novem-
ber 1994.

[Dibb89] P. Dibble and M. Scott. Beyond Striping: The Bridge
Multiprocessor File System. Computer Architechture News,
17(5):32–39, September 1989.

[Doug91] F. Douglis and J. Ousterhout. Transparent Process Mi-
gration: Design Alternatives and the Sprite Implementation. Soft-
ware: Practice and Experience, 21(7), July 1991.

[Hart95] J. Hartman and J. Ousterhout. The Zebra Striped Network
File System. ACM Trans. on Computer Systems, August 1995.

[Howa88] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File System. ACM Trans. on Computer
Systems, 6(1):51–81, February 1988.

[Kaza89] M. Kazar. Ubik: Replicated Servers Made Easy. In Proc.
of the Second Workshop on Workstation Operating Systems, pag-
es 60–67, September 1989.

[Keet95] K. Keeton, T. Anderson, and D. Patterson. LogP Quanti-
fied: The Case for Low-Overhead Local Area Networks. In Proc.
1995 Hot Interconnects, August 1995.

[Kist92] J. Kistler and M. Satyanarayanan. Disconnected Opera-
tion in the Coda File System. ACM Trans. on Computer Systems,
10(1):3–25, February 1992.

[Kubi93] J. Kubiatowicz and A. Agarwal. Anatomy of a Message
in the Alewife Multiprocessor. In Proc. of the 7th Internat. Conf.
on Supercomputing, July 1993.

[Kusk94] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
Stanford FLASH Multiprocessor. In Proc. of the 21st Internat.
Symp. on Computer Architecture, pages 302–313, April 1994.

[Lee95] E. Lee. Highly-Available, Scalable Network Storage. In
Proc. of COMPCON 95, 1995.

[Leff91] A. Leff, P. Yu, and J. Wolf. Policies for Efficient Memory
Utilization in a Remote Caching Architecture. In Proc. of the First

18

Internat. Conf. on Parallel and Distributed Information Systems,
pages 198–207, December 1991.

[Leno90] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The Directory-Based Cache Coherence Protocol for
the DASH Multiprocessor. In Proc. of the 17th Internat. Symp. on
Computer Architecture, pages 148–159, May 1990.

[Lisk91] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira, and M. Williams. Replication in the Harp File System.
In Proc. of the 13th Symp. on Operating Systems Principles, pages
226–238, October 1991.

[Litz92] M. Litzkow and M. Solomon. Supporting Checkpointing
and Process Migration Outside the UNIX Kernel. In Proc. of the
Winter 1992 USENIX, pages 283–290, January 1992.

[LoVe93] S. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim,
E. Milne, and R. Wheeler. sfs: A Parallel File System for the CM-
5. In Proc. of the Summer 1993 Usenix, pages 291–305, 1993.

[Majo94] D. Major, G. Minshall, and K. Powell. An Overview of
the NetWare Operating System. In Proc. of the 1994 Winter US-
ENIX, pages 355–72, January 1994.

[McKu84] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A Fast
File System for UNIX. ACM Trans. on Computer Systems,
2(3):181–197, August 1984.

[Nels88] M. Nelson, B. Welch, and J. Ousterhout. Caching in the
Sprite Network File System. ACM Trans. on Computer Systems,
6(1), February 1988.

[Patt88] D. Patterson, G. Gibson, and R. Katz. A Case for Redun-
dant Arrays of Inexpensive Disks (RAID). In Internat. Conf. on
Management of Data, pages 109–116, June 1988.

[Pier89] P. Pierce. A Concurrent File System for a Highly Parallel
Mass Storage Subsystem. In Proc. of the Fourth Conf. on Hyper-
cubes, Concurrent Computers, and Applications, pages 155–160,
1989.

[Pope90] G. Popek, R. Guy, T. Page, and J. Heidemann. Replica-
tion in the Ficus Distributed File System. In Proc. of the Work-
shop on the Management of Replicated Data, pages 5–10,
November 1990.

[Rash94] R. Rashid. Microsoft’s Tiger Media Server. In The First
Networks of Workstations Workshop Record, October 1994.

[Rose92] M. Rosenblum and J. Ousterhout. The Design and Imple-
mentation of a Log-Structured File System. ACM Trans. on Com-
puter Systems, 10(1):26–52, February 1992.

[Sand85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and Implementation of the Sun Network Filesys-
tem. In Proc. of the Summer 1985 USENIX, pages 119–130, June
1985.

[Schr91] M. Schroeder, A. Birrell, M. Burrows, H. Murray,
R. Needham, T. Rodeheffer, E. Satterthwaite, and C. Thacker.
Autonet: A High-Speed, Self-Configuring Local Area Network
Using Point-to-Point Links. IEEE Journal on Selected Areas in
Communication, 9(8):1318–1335, October 1991.

[Selt93] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. An
Implementation of a Log-Structured File System for UNIX. In
Proc. of the 1993 Winter USENIX, pages 307–326, January 1993.

[Selt95] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File System Logging Versus
Clustering: A Performance Comparison. In Proc. of the 1995
Winter USENIX, January 1995.

[Smit77] A. Smith. Two Methods for the Efficient Analysis of
Memory Address Trace Data. IEEE Trans. on Software Engineer-
ing, SE-3(1):94–101, January 1977.

[vE92] T. von Eicken, D. Culler, S. Goldstein, and K. E. Schauser.

Active Messages: A Mechanism for Integrated Communication
and Computation. In Proc. of 1992 ASPLOS, pages 256–266, May
1992.

[Walk83] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS distributed operating system. In Proc. of the 5th
Symp. on Operating Systems Principles, pages 49–69, October
1983.

[Wang93] R. Wang and T. Anderson. xFS: A Wide Area Mass
Storage File System. In Fourth Workshop on Workstation Oper-
ating Systems, pages 71–78, October 1993.

[Wilk95] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The
HP AutoRAID Hierarchical Storage System. In Proc. of the 15th
Symp. on Operating Systems Principles, December 1995.

[Wolf89] J. Wolf. The Placement Optimization Problem: A Practi-
cal Solution to the Disk File Assignment Problem. In Proc. of
1989 SIGMETRICS, pages 1–10, May 1989.

