
Hidden Markov Model Cryptanalysis

Chris Karlof and David Wagner

Department of Computer Science,
University of California at Berkeley, Berkeley CA 94720, USA,

{ckarlof,daw}@cs.berkeley.edu

Abstract. We present HMM attacks, a new type of cryptanalysis based on mod-
eling randomized side channel countermeasures as Hidden Markov Models (HMM’s).
We also introduce Input Driven Hidden Markov Models (IDHMM’s), a general-
ization of HMM’s that provides a powerful and unified cryptanalytic framework
for analyzing countermeasures whose operational behavior can be modeled by
a probabilistic finite state machine. IDHMM’s generalize previous cryptanaly-
ses of randomized side channel countermeasures, and they also often yield better
results. We present efficient algorithms for key recovery using IDHMM’s. Our
methods can take advantage of multiple traces of the side channel and are in-
herently robust to noisy measurements. Lastly, we apply IDHMM’s to analyze
two randomized exponentiation algorithms proposed by Oswald and Aigner. We
completely recover the secret key using as few as ten traces of the side channel.

1 Introduction

Randomized countermeasures [1–8] for side channel attacks [8–10] are a promising,
inexpensive alternative to hardware based countermeasures. In order to gain strong as-
surance in randomized schemes, we need some way to analyze their security properties,
and ideally, we would like general-purpose techniques. To this end, we present HMM
attacks, a new type of cryptanalysis based on modeling countermeasures as Hidden
Markov Models (HMM’s) [11]. We also introduce Input Driven Hidden Markov Mod-
els (IDHMM’s), a generalization of HMM’s. IDHMM’s are particularly well suited for
analyzing any randomized countermeasure whose internal operation can be modeled by
a probabilistic finite state machine.

Hidden Markov Models (HMM’s) [11] are a well-studied model for finite-state
stochastic processes. An execution of an HMM consists of a sequence of hidden, un-
observed states and a corresponding sequence of related, observable outputs. HMM’s
are memoryless: given the current state, the conditional probability distribution for the
next state is independent of all previous states. The main problem of interest in HMM’s
is the inference problem, to infer the values of the hidden, unobserved states given only
the sequence of observable outputs. The Viterbi algorithm [12] is an efficient dynamic
programming algorithm for solving this problem.

At first glance, HMM’s seem perfect for analyzing randomized countermeasures
which can be modeled by a probabilistic finite state machine: the hidden states of
the HMM represent the internal states of the countermeasures and the observable out-
puts represent observations of the side channel. However, HMM’s have deficiencies

Table 1. Summary of attacks on OA1 and OA2, two randomized side channel countermea-
sures proposed by Oswald and Aigner. Note that our new attacks are the first to work even with
a noisy side channel.

Relevant Observation Number of traces needed
Attack countermeasure error (pe) to recover the secret key Workfactor

Okeya-Sakurai [13] OA1 0 292 minimal
C.D. Walter [14] OA1, OA2 0 2–10 minimal

HMM attacks (new) OA1, OA2 0 10 minimal
HMM attacks (new) OA1, OA2 0 5 238

HMM attacks (new) OA1, OA2 0.1 10 238

HMM attacks (new) OA1, OA2 0.25 50–500 238

which prevent them from being directly applicable. Firstly, HMM’s do not model in-
puts. HMM’s model processes as a sequence of states. However, the internal operation
of a randomized countermeasure is likely to be dependent on both the current internal
state as well as an input: the secret key. IDHMM’s extend HMM’s to handle inputs so
we can accurately model randomized keyed countermeasures. Secondly, standard in-
ference techniques like Viterbi’s algorithm cannot leverage multiple output traces of an
HMM. However, the ability to handle multiple output traces will make our key recovery
attacks more powerful. To address this, we present an efficient approximate inference
algorithm for IDHMM’s that handles multiple output traces.

To demonstrate how HMM attacks can be used in practice, we show how to break
two randomized exponentiation algorithms proposed by Oswald and Aigner [2]. Pre-
viously known attacks [13, 14] against these algorithms assume the ability to perfectly
distinguish between elliptic curve point additions and doublings in the side channel. We
present more powerful attacks which are robust to noise. A summary of our attacks in
comparison to previous work is shown in Table 1.

2 Modeling Randomized Side Channel Countermeasures as
Probabilistic Finite State Machines

Many authors have proposed randomization as a way to limit the security risks from
information leaked over side channels [1–8, 15]. However, the security afforded by ran-
domization in this setting is not clear. Side channel attacks are typically successful be-
cause of the high correlation between the information leaked over the side channel and
the internal state of the device, most notably a secret key used in various cryptographic
operations. The hope behind randomized countermeasures is that the side channel in-
formation will become randomized as well, thus making it harder to analyze. An ideal
randomized countermeasure would completely disassociate the side channel informa-
tion from the internal state of the device, or more formally, for any set of measurements
of the side channel, the likelihood of an adversary guessing any information about the
internal state of the device would be the same as if the adversary had observed no side
channel information at all. Some examples of randomized countermeasures include ran-
domized exponentiation algorithms [1–4], random window methods [5, 6], randomized

Input: k, M Output: k × M

Q = M

P = 0
for i = 1 to N

if (ki == 1) then P = P + Q

Q = 2Q

return P

(a) The Binary Algorithm for
ECC scalar multiplication.

Input: k, M Output: k × M

Q = M

P = 0
for i = 1 to N

R = P

b = rand bit()
if (ki == 0) then

if (b == 1) then
R = R + Q // result is discarded

else
P = P + Q

Q = 2Q

return P

(b) A randomized variant of the Binary
Algorithm for ECC multiplication.

Fig. 1. Introducing randomness into the Binary Algorithm for ECC scalar multiplication.

instruction execution [7], randomized timing shifts [8], randomized blinding of the se-
cret key [15], and randomized projective coordinates [15].

We introduce a new cryptanalytic technique based on Hidden Markov Models to an-
alyze such randomized countermeasures. To help give the intuition behind our analysis,
we first give a simple example of a fabricated countermeasure that uses randomization,
show how to model its operation using a probabilistic finite state machine, and then
motivate the use of Hidden Markov Models to analyze its security.

2.1 A Simple Randomized Countermeasure

Consider the randomized variant of the standard binary algorithm for doing scalar mul-
tiplications over elliptic curves shown in Figure 1(b). Assume k = kNkN−1 . . . k2k1 is
the N bit secret key and M and P are points on the elliptic curve.

The major difference between the algorithm in Figure 1(b) and the standard Binary
Algorithm is as follows: in each iteration, if the next key bit is 0, then with probability
1/2 our algorithm will execute a discarded spurious addition, but if the next key bit
is 1, it behaves the same as the standard Binary Algorithm. This randomized variant
of the Binary Algorithm is completely artificial and by no means secure. It was created
solely to demonstrate how randomness might be used in the construction of side channel
countermeasures and will serve as a running example to illustrate our techniques.

Now, assume that it is possible for an adversary observing the side channel to dis-
tinguish between elliptic curve point additions and elliptic curve point doublings in a
single scalar multiplication. Then the adversary’s observation of a single scalar mul-
tiplication can be represented as a sequence (y1, y2, . . . , yN), yi ∈ {D, AD}, where
D represents an elliptic curve point doubling and A represents an elliptic curve point
addition. Each yi represents the operations observed during the processing of a single
bit of the key. We refer to such a sequence as a trace.

Note there is no longer a one-to-one correspondence between each possible trace
and each possible key. Rather, each given sequence of observable operations is consis-

0: 0.5

0: 0.5

0: 0.5 0: 0.5

1: 1

0: 0.5 1: 1

0: 0.5

1: 1

D AD

ADs1

s0 s2

Fig. 2. A probabilistic finite state machine that models the operation of the randomized
exponentiation algorithm in Figure 1(b).

tent with several possible keys. For example, if the trace from a scalar multiplication
using the algorithm in Figure 1(b) is (AD, AD, D), then there are four possible keys
consistent with this trace: namely, 011, 001, 010, or 000.

2.2 Probabilistic Finite State Machines

Although there are clearly many ad-hoc ways to break the algorithm in Figure 1(b), its
primary purpose is to illustrate the development of a general technique for analyzing
randomized countermeasures. Several weaknesses have been discovered in some exist-
ing randomized countermeasures [13, 14, 16], but the analysis techniques used are often
specific to the particular countermeasure, and it is not obvious how to generalize them
to a framework applicable to a larger class of algorithms. The primary benefit of a gen-
eral analytical framework is that it enables the analysis of a large class of randomized
countermeasures while minimizing the overhead needed to analyze any one particular
algorithm. Although such a framework by itself may not in general be able to prove
the security of every conceivable countermeasure, it can help quickly determine if a
countermeasure is insecure, potentially saving a cryptanalyst many hours of work.

A key component for a general analytical framework is a good operational model of
the countermeasures. A simple model applicable to many randomized countermeasures
is a probabilistic finite state machine. The resulting finite state model for our running
example can be easily constructed from its algorithmic description and is shown in
Figure 2. Each state corresponds to a full iteration of the loop in Figure 1(b) (i.e, the
processing of one key bit in its entirety) and is labeled with the operations (D or AD)
that may be observed when that state is visited. Each edge is annotated with a bit from
the key and a probability. In general, one of the states would be designated as initial,
but in this example any state can serve as the initial state. The model of execution is
simple: given the current state qi and the next bit of the key ki+1, the next state qi+1 is
determined probabilistically according to the probabilities on those outgoing edges of
qi that are annotated with ki+1.

While the edges capture the control structure of the algorithm, the states abstract
away the details of the calculation. However, the label on each state indicates the observ-
able information that leaks through the side channel when the process enters the state.
In this example, the observations are what type of operations (elliptic curve point addi-
tions and/or doublings) are executed while in a particular state. Note however, since the
state machine is randomized, some particular traces could arise from several different
paths through the machine. For example, the trace (AD, AD, D) could arise from any
of the following paths through the state machine in Figure 2: s2s2s0, s2s1s0, s1s2s0,
or s1s1s0.

More formally, we define a probabilistic finite state machine to be a sextuple

M = (S, I, δ, O, s0, µ)

where

S is a finite set of internal states,

I is a finite set of input symbols,

δ : S × S × I → [0, 1] is a function called the transition function,

O is a finite set of symbols that represent operations observable over the side channel,

s0 ∈ S is the initial state,

µ : S → O is a function associating an observable operation with every state,

and the following condition is satisfied:

∀si ∈ S, ∀b ∈ I,
∑

sj∈S

δ(si, sj , b) = 1 .

In our setting, the set of input symbols is I = {0, 1}, representing the bits of a secret
key.

For a key k = kNkN−1 . . . k2k1, define an execution q of M = (S, δ, O, s0, µ)
on k to be a sequence q = (q0, q1, . . . , qN−1, qN), where q0 = s0 and qi ∈ S, such
that for 0 ≤ i < n, δ(qi, qi+1, ki+1) > 0. Define a trace y of an execution q to
be a sequence y = (y1, y2, . . . , yN), where yi = µ(qi), ∀i 6= 0. In the case of our
example, an execution corresponds to the sequence of internal states traversed during a
scalar multiplication of the secret key k, and the trace of that execution represents the
sequence of observable elliptic curve point additions and doublings.

2.3 The Key Recovery Problem for Probabilistic Finite State Machines

Since one of the primary goals of side channel attacks is to recover the secret key stored
within a target device, we wish to solve the following problem:

KEY RECOVERY PROBLEM FOR PROBABILISTIC FINITE STATE MACHINES

Let M be a probabilistic finite state machine. Generate a random N bit key k and
an execution q of M on k. Let y be the trace of q. The Key Recovery Problem for
probabilistic finite state machines is to find k given M and y.

One approach to solving the Key Recovery Problem for probabilistic finite state
machines is the following: 1) Given a trace y and machine M , try to infer the execution
q it resulted from, and then 2) infer k from q. Step 2 becomes easy if we restrict M to
be faithful. A probabilistic finite state state machine M = (S, δ, O, s0, µ) is said to be
faithful if it satisfies the following property:

∀si, sj ∈ S, if δ(si, sj , 0) > 0, then δ(si, sj , 1) = 0 .

For faithful machines, there is a one-to-one correspondence between an execution q
and the key k used in that execution. This is because for every pair of consecutive states
si, sj in an execution, there is no ambiguity in what bit annotated the corresponding
directed edge that was taken from si to sj . Note that this condition does not limit the
expressiveness of our framework by restricting M in any significant way. If for a ma-
chine M there exists si, sj such that δM (si, sj , 0) > 0 and δM (si, sj , 1) > 0, then an
observationally equivalent machine M ′ can be constructed that is identical to M ex-
cept state sj is replaced by two states sj1 , sj2 such that δM ′(si, sj1 , 0) = δM (si, sj , 0),
δM ′(si, sj1 , 1) = 0, δM ′(si, sj2 , 0) = 0, and δM ′(si, sj2 , 1) = δM (si, sj , 1). Thus,
without loss of generality, we will only consider probabilistic finite state machines that
are faithful.

2.4 The State Inference Problem for Probabilistic Finite State Machines

We define the State Inference Problem for probabilistic finite state machines as follows:

STATE INFERENCE PROBLEM FOR PROBABILISTIC FINITE STATE MACHINES

Let M be a probabilistic finite state machine. Generate a random N bit key k and
an execution q of M on k. Let y be the trace of q. The State Inference Problem for
probabilistic finite state machines is to find q given M and y.

Because of the one-to-one correspondence between q and the key k used in that
execution, solving the State Inference Problem for M and y is equivalent to solving the
Key Recovery Problem for M and y1.

One way an adversary might try to solve the State Inference Problem for M =
(S, I, δ, O, s0, µ) and y of length N is to treat the unknown execution q as a random
variable Q with sample space SN+1 and use maximum likelihood decoding. A simple
implementation of maximum likelihood decoding involves two steps:

Input: trace y, machine M
1. Calculate Pr[Q = s|y], for each s ∈ SN+1.
2. Output q = argmax

s∈SN+1

Pr[Q = s|y].

The adversary’s output is the most likely execution q for the given trace y, which then
yields the most likely key k.

1 Although we have formulated both problems in a way that implies deterministic solutions,
randomized algorithms with significant success probability are acceptable as well.

A naive implementation of step 1 will have a running time exponential in the length
of the trace. However, we will see how to transform a probabilistic finite state machine
into a Hidden Markov Model, in which there is an equivalent State Inference Prob-
lem with a polynomial running time solution. In addition to having efficient inference
algorithms, we will see that Hidden Markov Models have other advantages as well.

In this section, we introduced probabilistic finite state machines, an intuitive tech-
nique for modeling the operation of randomized countermeasures, and we demonstrated
the use of the model with an artificial yet instructive example. In the remainder of this
paper, we will show how Hidden Markov Models not only provide a sound, well-studied
framework, but also how they can be extended into even more powerful and flexible
cryptanalytical tools for analyzing randomized countermeasures.

3 Assumptions

Before formally describing our analytical framework for randomized countermeasures
using Hidden Markov Models, we will make our assumptions more precise. Our analy-
sis depends on the following assumptions:

– We have collected a set of L traces from the side channel, corresponding to L
executions of the countermeasure, all using the same secret key.

– Each trace of the side channel can be uniquely written as (y1, y2, . . . , yN) where
each yi is an element of some finite observation set O. In the example presented in
Section 2, O = {D, AD}.

– The operations in O can be probabilistically distinguished from each other.
– Each observation yi from O can be associated with the processing of a single key

bit position, and vice versa.

If the attacker is lucky, the side channel reveals exactly which action from O has
been taken, and thus the observation traces (y1, y2, . . . , yN) are free of errors. This is
the model some previous work has used, and it does simplify analysis. However, this
assumption may not always be realistic.

In the more general case, observations may only yield partial information on the
actual trace, hence our measurements may contain errors. As we will see in Section 4,
our techniques are still applicable in this setting. When there are only two different types
of observations, a simple model of this behavior is that each observation has probability
1 − pe of being correct and probability pe of being mischaracterized. This setting may
be more realistic in practice, particularly for devices that try to make all operations look
alike.

4 Input Driven Hidden Markov Models as a Model for
Randomized Side Channel Countermeasures

In Section 2, we outlined an approach for analyzing randomized countermeasures which
infers the most likely secret key from the sequence of observable operations. However,
this approach is not only intractable, but has other deficiencies as well. Four main chal-
lenges remain:

....
Q3 QN−1 QNQ2Q1

YN−1 YNY3Y2Y1

Fig. 3. An execution of a Hidden Markov Model, represented in a probabilistic graphical
model. This figure depicts one execution of the HMM. Each node represents a random variable,
and the directed edges indicate conditional dependencies. A shaded node indicates the corre-
sponding variable is observed (i.e. outputs we can observe), while unshaded nodes are unobserved
(i.e. what we wish to recover).

1. Efficient inference algorithms are needed. A naive implementation of maximum
likelihood decoding for a single trace has running time exponential in the length of
the trace. In order to be useful, inference algorithms must scale better.

2. Side channel measurements may be noisy. As we mentioned in Section 3, our
measurements of the side channel may be noisy and contain errors. It is desirable
to have techniques that tolerate noise.

3. We need a model that handles inputs. Hidden Markov Models will serve as a
starting point for our techniques, but HMM’s only have outputs and do not model
inputs. In order to accurately model the secret key, we need a framework that mod-
els processes with both inputs and outputs.

4. One trace is typically not enough. For any reasonable countermeasure, the set
of possible keys consistent with a single trace will be large. Hence, attacks that
examine only a single trace are unlikely to be successful. However, by gathering
multiple traces that result from use of the same key, we may be able to narrow the
list of likely candidates. Thus, it is desirable to have techniques that can analyze
an arbitrary number of traces. This will make our analysis both more general and
more powerful.

First, we will show how Hidden Markov Models can be used to solve problems
1 and 2. Then, we introduce an extension to HMM’s, Input Driven Hidden Markov
Models, that address problems 3 and 4.

4.1 Hidden Markov Models

Hidden Markov Models (HMM’s) [11] are a well-studied method for modeling finite-
state stochastic processes. The word “hidden” indicates that the states of the process
are not directly observable. Instead, related to each state is an output which is observ-
able. One of the main problems of interest for Hidden Markov Models is the inference
problem: to infer the most likely sequence of values for the hidden states given only the
observations. Since there exist efficient algorithms for solving the inference problem in
HMM’s, this motivates trying to model randomized countermeasures as HMM’s in a

way so that the key recovery problem for a randomized countermeasure becomes the
inference problem in an HMM.

HMM’s induce two sequences of finite random variables: the hidden states, Q1,
Q2, . . ., QN , and the observations2, Y1, Y2, . . . , YN . Like regular Markov Models, the
value of the next state is dependent only on the current state and not any previous states.
That is, the distribution of Qn is conditionally independent of Q1, Q2, . . . , Qn−2 given
Qn−1. In addition, it is assumed that the distribution of Yn is conditionally independent
of everything else given Qn.

HMM’s are parameterized by the local conditional distributions Pr[Qn|Qn−1] and
Pr[Yn|Qn], both of which are assumed to be independent of n. If S = {s1, s2, . . . , sM},
the conditional distribution Pr[Qn|Qn−1] is parameterized by a M ×M transition ma-
trix A, where Aij = Pr[Qn = sj |Qn−1 = si]. Since in our setting the sample space
of the observations Yn is a finite observation set O = {o1, o2, . . . , oJ}, the condi-
tional distribution Pr[Yn|Qn] is parameterized by a M × J output matrix B, where
Bij = Pr[Yn = oj |Qn = si].

In summary, for our setting, a Hidden Markov Model is defined by the quintuple

H = (S, O, A, B, s0)

where

S is a finite set of internal states,

O is a finite set of symbols that represent operations observable over the side channel,

A is a |S| × |S| matrix where Aij = Pr[Qn = sj |Qn−1 = si],

B is a |S| × |O| matrix where Bij = Pr[Yn = oj |Qn = si],

s0 ∈ S is the initial state.

We refer to a realization q1, q2, . . . , qN of the random variables Q1, Q2, . . . , QN

as an execution of the HMM, and to a realization y1, y2, . . . , yN of the random vari-
ables Y1, Y2, . . . , YN as a trace of the HMM. Recall that traces are observable whereas
executions are generally not.

Hidden Markov Models have a graphical representation as the probabilistic graphi-
cal model [11] shown in Figure 3. Probabilistic graphical models are a graphical repre-
sentation of a set of random variables where each node represents a random variable and
the directed edges indicate conditional dependencies. A shaded node indicates the cor-
responding variable is observed, while unshaded nodes are unobserved. In the case of
HMM’s, the shaded nodes correspond to the observations Yn, and the unshaded nodes
correspond to the hidden, unobserved states Qn.

Consider a probabilistic finite state machine with no inputs, i.e., with no keys. That
is, for M = (S, δ, O, so, µ), the transition function is given by δ : S×S → [0, 1] rather
than δ : S × S × I → [0, 1]. If we wish to infer the most likely execution for M given
a trace y of length N , we can construct a Hidden Markov Model H = (S, O, A, B, s0)
where the unknown states in the execution can be modeled by the random variables
Q1, Q2, . . . , QN and the corresponding observations are realizations of Y1, Y2, . . . , YN .

2 HMM’s can handle real-valued observations as well.

The transition matrix A can be easily constructed from δ, and the output matrix B is
completely deterministic, i.e., each row of B has one 1 and (|O| − 1) 0’s.

Solving the State Inference Problem for M and y reduces to solving a similar state
inference problem for H and y. The State Inference Problem for a Hidden Markov
Model H given a trace y = (y1, y2, . . . , yn) is as follows:

STATE INFERENCE PROBLEM FOR HIDDEN MARKOV MODELS

Let H be Hidden Markov Model. Generate an execution q of H and let y be a
trace of q. The State Inference Problem for Hidden Markov Models is find q given
H and y.

The standard approach for finding q in the State Inference Problem for HMM’s is
maximum likelihood decoding. However, as we have seen before, naive implementa-
tions for finding

q = argmax
s∈SN

Pr[Q = s|Y = y]

will have running time exponential in N . However, the Viterbi algorithm [12] is a well-
known dynamic programming solution to the State Inference Problem for HMM’s with
running time O(|S|2 · N). This addresses the first challenge, the need for efficient in-
ference algorithms.

HMM’s can also address the second problem of noisy side channel measurements.
This can be handled by proper parameterization of the distribution Pr[Yn|Qn]. For ex-
ample, in the toy example presented in section 2, for perfect observations, Pr[Yn =
AD|Qn = s2] = 1. Noisy observations can be modeled by assuming observations
are only probabilistically correct, e.g., Pr[Yn = AD|Qn = s2] = 0.7 and Pr[Yn =
D|Qn = s2] = 0.3.

4.2 Input Driven Hidden Markov Models

HMM’s are not completely adequate for modeling most countermeasures. In most coun-
termeasures, the next state depends not only on the current state, but also on the next bit
of the key. In the context of HMM’s, we would like the key to serve as a sort of input
to the HMM. However, HMM’s unfortunately do not have inputs. Therefore, we extend
the notion of HMM’s to include the possibility of inputs by introducing Input Driven
Hidden Markov Models (IDHMM’s).

IDHMM’s extend HMM’s in two fundamental ways. First, the unknown input is
treated as a random variable K = (K1, K2, . . . , KN) such that Kn is input to the
underlying HMM at step n. The local conditional distribution are updated to reflect
this, i.e., we replace Pr[Qn|Qn−1] with Pr[Qn|Qn−1, Kn]. Second, since one of the
motivations behind developing IDHMM’s was to analyze multiple traces, we need
to add additional random variables to model additional execution/trace pairs. Thus,
Y 1, Y 2, . . . , Y L will represent a list of L traces, where Y l = (Y l

1 , Y l
2 , . . . , Y l

N). Also,
Q1, Q2, . . . , QL will represent the corresponding L sequences of hidden states, where
Ql = (Ql

1, Q
l
2, . . . , Q

l
N). IDHMM’s assume the same input is used in every execu-

tion, which corresponds exactly to the assumption that the same key is used in every
execution of the countermeasure.

....
Q3 QN−1 QNQ2Q1

YN−1 YNY3Y2Y1

K2 KNK1 K3 KN−1

Fig. 4. Input Driven Hidden Markov Models. This figure depicts one execution of an IDHMM
on input K1, K2, . . . , KN .

The graphical model shown in Figure 4 represents a single execution of an IDHMM.
The input was applied a single time to a produce a single output trace. Figure 5 shows
a graphical model representing L traces from L executions of an IDHMM in which the
same input is applied in each execution, for some L > 1.

An Input Driven Hidden Markov Model is defined by the septuple

H = (S, I, O, A, B, C, s0)

where

S is a finite set of internal states,

I is a finite set of input symbols,

O is a finite set of symbols that represent operations observable over the side channel,

A is a |S| × |I | × |S| matrix where Aijk = Pr[Ql
n = sk|Q

l
n−1 = si, Kn = kj],

B is a |S| × |O| matrix where Bij = Pr[Y l
n = oj |Q

l
n = si],

C is a N × |I | matrix representing the prior distributions for (K1, K2, . . . , KN),

where Cjk = Pr[Kj = ik],

s0 ∈ S is the initial state.

Since in our setting the input is a binary key chosen uniformly at random, the set of input
symbols is I = {0, 1} and the prior distributions are Pr[Kn = 0] = Pr[Kn = 1] = 0.5.

Our final goal is the inference problem for IDHMM’s: we want to infer the input key
K rather than the sequences of hidden states Q. We define the Key Inference Problem
for Input Driven Hidden Markov Model as follows:

KEY INFERENCE PROBLEM FOR INPUT DRIVEN HIDDEN MARKOV MODELS

Let H be an Input Driven Hidden Markov Model. Generate a N bit random input
key k and L executions q = (q1, q2, . . . , qL) of H on k. Let y = (y1, y2, . . . , yL)
be the corresponding L traces. The Key Inference Problem for Input Driven Hid-
den Markov Models is to find k given H and y.

....

. .
 .

.

....

....

Q1
3 Q1

N−1 Q1
NQ1

2Q1
1

Y 1
N−1Y 1

3Y 1
2Y 1

1

K2 KNK1 K3 KN−1

Q2
3 Q2

N−1 Q2
NQ2

2Q2
1

Y 2
N−1 Y 2

NY 2
3Y 2

2Y 2
1

QL
3 QL

N−1 QL
NQL

2QL
1

Y L
N−1 Y L

NY L
3Y L

2Y L
1

Y 1
N

Fig. 5. Modeling Multiple Executions of an Input Driven Hidden Markov Model. This figure
depicts L executions of an IDHMM on input K1, K2, . . . , KN .

Ideally, we would like to compute

k = argmax
k∈{0,1}N

Pr[K = k|Y = (y1, y2, . . . , yL)] . (*)

However, we do not know how to compute this efficiently. Therefore, we introduce an
approximation: we infer the posterior probabilities for each bit of the key separately,
and then we use the most likely value of each bit to infer the entire key. This amounts
to computing

k = (kN , kN−1, . . . , k2, k1), where kn = argmax
b∈{0,1}

Pr[Kn = b|Y = (y1, y2, . . . , yL)] .

However, even this was too hard for us. Our first attempts at an algorithm to calcu-
late Pr[Kn|y] using dynamic programming in a manner similar to that in the inference
algorithm for HMM’s encountered a significant problem: the resulting algorithm had
running time exponential in L, the number of traces. Since our goal is to scale with the
number of traces, this is unacceptable.

SINGLETRACEINFERENCE(H,D, y′):
Input: An IDHMM H , a distribution D, assumed Pr[K = k] = D(k), and a trace

y′ = (y′

1, y
′

2, . . . , y
′

N)
Output: A distribution D′, where D′(k) = Pr[K = k|Y ′ = y′], using D as our priors on K

1) Use a modified version of the Viterbi algorithm to compute D′(k) := Pr[K = k|Y ′ = y′],
assuming D(k) = Pr[K = k]. Refer to the full version of this paper [17] for details.

MULTITRACEINFERENCE(H,y):
Input: An IDHMM H and a set y = (y1, y2, . . . , yL) of L traces
Output: DL, an approximation to the distribution Pr[K = k|Y = y]

1) Let D0 := the uniform distribution on {0, 1}N .
2) for i := 1, 2, . . . , L do

Di := SINGLETRACEINFERENCE(H, Di−1, y
i)

3) Output DL.

INFER(H,y):
Input: An IDHMM H and a set y = (y1, y2, . . . , yL) of L traces
Output: k, a guess at the key

1) Let Pr[Ki|Y = y] be as given by MULTITRACEINFERENCE(H,y).
2) for i := 1, 2, . . . , N do

if Pr[Ki = 1|Y = y] > 0.5 then ki := 1 else ki := 0
3) Output kguess = kNkN−1 . . . k2k1.

Fig. 6. An approximate inference algorithm using belief propagation. Given a set of traces
y = (y1, y2, . . . , yL) of an Input Driven Hidden Markov Model H , we compute a guess kguess =
INFER(H,y) at the key.

To deal with these challenges, we introduce a new technique based on belief propa-
gation. The key idea is to separate L executions of an IDHMM on the same input into L
executions of an IDHMM where there are no assumptions about the input used in each
execution. In terms of the graphical models, this corresponds to transforming Figure 5
into L copies of Figure 4. We can derive an efficient exact inference algorithm for a
single execution of an IDHMM with running time O(|S|2 · N). By applying this exact
inference algorithm separately to each of the L executions, we obtain an algorithm with
final running time of O(|S|2 · N · L).

The problem with this approach is that we are not taking advantage of the fact
that the executions all use the same key. Using L traces as input, this approach will
output L separate inferences of the key, each derived independently of the others. We
can link them by using belief propagation: instead of using the uniform distribution as
our prior Pr[Kn] for each key bit in the L analyses, we use the posterior distribution
Pr[Kn|y

l] calculated from analysis of the l-th trace as the prior distributions Pr[Kn]
while analyzing the l+1-st trace. Hence, we propagate any biases on the key bits learned
from the l-th trace to the analysis of the l+1-st trace. A detailed description of our belief
propagation algorithm for inferring the secret key from L traces of an IDHMM is shown
in Figure 6. Although the output of this algorithm is only an approximation to what we
ideally want in (*), we have found that it works well in practice.

5 Application to Randomized Addition-Subtraction Chains

Oswald and Aigner have proposed two randomized exponentiation algorithms [2] for
scalar multiplication in ECC implementations. These algorithms are based on the ran-
domization of addition-subtraction chains. For example, instead of the usual binary
decomposition 15P = 8P + 4P + 2P + 1, 15P can alternatively be calculated as as

15P = 16P − P = 2(2(2(2(P)))) − P.

More generally, a series of more than two 1’s in the binary representation of k can be
replaced by a block of 0’s and a −1, i.e., 01a 7→ 10a−11̄ where 1̄ represents −1. A
second transformation noted by Oswald and Aigner treats isolated 0’s inside a block of
1’s, i.e., 01a01b 7→ 10a1̄0b−11̄.

Both of these transformations can be modeled by deterministic finite state machines.
Oswald and Aigner construct two randomized exponentiation algorithms by introduc-
ing randomness into these state machines while still preserving the end semantics of
the two transformations. At each step where a transformation may apply, we flip a
coin to decide whether or not to apply that transformation. We refer to the randomized
construction based on the transformation 01a 7→ 10a−11̄ as OA1 and the randomized
construction based on the transformation 01a01b 7→ 10a1̄0b−11̄ as OA2. The random-
ized state machine describing the operation of OA1 (as it appears in [2]) is shown in
Figure 7(a).

The randomized state machines in [2] that describe the operation of OA1 and OA2
do not conform to our definition of probabilistic state machines in Section 2, but this
is easily remedied. The first hurdle is that traces cannot be parsed uniquely as words
in {D, AD}∗. Although it would be convenient if our observable alphabet was O =
{D, AD}, the transition from s2 to s1 executes a doubling first and then an addition,
resulting in a DA output symbol corresponding to that key bit. This is undesirable be-
cause traces fail to be uniquely decodeable: for example, DADD could be interpreted
as either (DA, D, D) or (D, AD, D). We remedy this problem by interpreting the au-
tomaton in Figure 7(a) slightly differently. We relabel the DA transition from s2 to s1

to simply a D (i.e., Q = 2Q) and now associate the “owed” addition with each outgo-
ing transition from state s1. Our output alphabet becomes O = {D, AD, AAD}, and
then each sequence of D and A operations can deterministically be decomposed into a
sequence of symbols from O. The resulting state machine is shown in Figure 7(b).

A second hurdle is that Oswald and Aigner place observable operations on the
edges, rather than on the states. Fortunately, edge-annotated state machines can eas-
ily be transformed into a semantically equivalent state-annotated machine (of the type
defined in Section 2) by treating each edge in Figure 7(b) as a state in the probabilistic
FSA. This yields a faithful probabilistic finite state machine to which our algorithms
can be applied. See Figure 7(c) for the result of this process applied to OA1.

Once we have probabilistic finite state machine representations for the countermea-
sures, applying our techniques is straightforward. We simulated the operation of both
exponentiation algorithms in software. First, we generated a random 192 bit key k. Us-
ing k, we then generated a set of traces y = (y1, y2, . . . , yL). We introduced errors in
the traces consistent with observation error pe. With probability 1 − pe, each output

1: P=P+Q
Q=2Q

0: P=P+Q
Q=2Q

1:(0.5) Q=2Q

1:(0.5) P=P+Q
Q=2Q

0: Q=2Q

P=P+Q

0: Q=2Q 1:(0.5) Q=2Q

1:(0.5) P=P−Q
Q=2Q

s0

s1

s2

(a) A randomized state ma-
chine that represents random
application of the transforma-
tion 01a 7→ 10a1̄ of a key
k in the scalar multiplication
k × M . Q is initialized to M .

1:(0.5) P=P−Q
Q=2Q

1: P=P+Q
Q=2Q

P=P−Q
1:(0.5) P=P+Q

Q=2Q

1:(0.5) P=P+Q
Q=2Q

0: P=P+Q
Q=2Q

P=P+Q
1:(0.5) P=P+Q

Q=2Q

0: P=P+Q
Q=2Q

0: Q=2Q 1:(0.5) Q=2Q

0: Q=2Q

1: Q=2Q

s0

s1

s2

s3

(b) A reinterpretation of Fig-
ure 7(a) such that the observ-
able operation labeling each
edge is a member of O =
{D, AD, AAD}.

D

AD AD

D

AD D

AD

AD

AAD

D AAD

1: 0.5

1: 0.5

1: 0.5

0: 1.0

1: 1.0

1: 1.0

0: 1.0

0: 1.0

0: 1.0

0: 1.0

0: 1.0

0: 1.0

1: 1.0

1: 0.5

1: 0.5

1: 0.5

0: 1.0

1: 1.0

1: 0.5

1: 0.5

1: 0.5

1: 0.5

0: 1.0

0: 1.0
0: 1.0

1: 0.5

1: 0.5

1: 0.5

1: 0.5

(c) A faithful probabilistic state machine (conforming to the definition in
Section 2) that models the behavior of Figure 7(b).

Fig. 7. The first Oswald-Aigner construction (OA1).

symbol is observed correctly, and with probability pe, it is changed to some other out-
put symbol (chosenly randomly). We assumed the error probability pe is known to the
attacker, and we incorporated it into the output distribution (i.e., Pr[Yn | Qn]) of the
resulting IDHMM. Treating the OA1 or OA2 countermeasure as an IDHMM driven by
k, we then applied the INFER algorithm from Figure 6 to compute

kguess = (kN , kN−1, . . . , k2, k1), where

kn = argmax
b∈{0,1}

Pr[Kn = b | Y = (y1, y2, . . . , yL)] .

The following table summarizes the results of our attacks against OA1 and OA2:

Number of key bits correctly recovered
Number of traces used

Countermeasure pe 1 5 10 25 50 100 500

OA1 0 170 187 192 192 192 192 192
OA1 0.1 157 178 184 185 187 192 192
OA1 0.25 143 163 173 180 182 183 184
OA1 0.4 120 147 159 168 172 173 174

OA2 0 165 188 192 192 192 192 192
OA2 0.1 156 174 184 187 189 192 192
OA2 0.25 135 161 174 177 180 181 182
OA2 0.4 126 146 154 168 171 172 173

Each entry in the table specifies the number of key bits (out of 192) that we correctly
recovered using the corresponding number of traces and given observation error pe.

Both OA1 and OA2 are clearly insecure under our assumptions in Section 3. With a
perfect side channel (pe = 0), we recovered the entire secret key perfectly with as few
as 10 traces; also, our techniques remain effective in the presence of noise.

One can also reduce the number of traces by combining our attack with a semi-
exhaustive attack over the most likely key candidates. It suffices to recover 182 of the
192 key bits correctly, on average; then we can apply a meet-in-the-middle search over
all possible 10-bit error patterns to identify the correct private key, using 238 work.
Hence, with a 0.1 probability of observation error, the entire key can be recovered with
only 10 traces, and for a 0.25 error probability, the data complexity increases to 50-500
traces.

6 Related Work

Several authors have analyzed the security of selected randomized countermeasures
against side channel attacks [13, 14, 16], including the Oswald-Aigner constructions.
However, the analysis techniques previously used have been ad-hoc in sense that they
are tailored specifically to the countermeasure being analyzed, and it is not clear how
to generalize them to analyze other randomized countermeasures (if this is even possi-
ble). In contrast, our techniques are broadly applicable to randomized countermeasures
whose operation can be modeled by a probabilistic finite state machine.

Based on a comprehensive case analysis, Okeya and Sakurai [13] present an attack
against OA1 that with high probability recovers a 192 bit key using approximately 292
traces of the side channel. They assume the ability to perfectly distinguish between
elliptic curve point additions and doublings and do not consider the case when the side
channel is noisy.

C.D. Walter [14] presents an attack against OA2 based on a detailed analysis of its
operation. With high probability, his attack recovers a 192 bit key using O(10) traces
of the side channel. This attack can be generalized to work against OA1 as well. Then,
Walter also discusses how to partition traces into smaller subsections and exhaustively
search (independently) for the key corresponding to each subsection. Depending on the
key size, it is possible for his second technique to succeed with as few as two traces.
Both his attacks assume the ability to perfectly distinguish between elliptic curve point
additions and doublings.

Song et al. [18] use Hidden Markov Models to exploit weaknesses of the widely
used SSH protocol. By observing the inter-keystroke timings of a user’s key presses
during an SSH session, the authors are able to recover significant information about
the key stroke sequences. They use this technique to speed up exhaustive search for
passwords by a factor of 50. Other than the work of Song et al., we are not aware of any
previous work that uses HMM’s for side channel cryptanalysis.

7 Conclusion

We introduced HMM attacks, a general-purpose cryptanalysis technique for evaluating
the security properties of randomized countermeasures whose operation can be modeled
by a probabilistic finite state machine. We also introduced Input Driven Hidden Markov
Models, an extension of HMM’s that model inputs, and we presented efficient approxi-
mate inference algorithms for recovering the input to an IDHMM given multiple output
traces. Our work improves on existing attacks against randomized countermeasures in
two fundamental ways. Firstly, previous attacks against randomized countermeasures
typically consist of detailed case analyses which are not clear how to generalize to
attacks on larger classes of countermeasures. We present a cryptanalytical framework
applicable to a general class of randomized countermeasures. Secondly, previous at-
tacks against randomized countermeasures assume the ability to perfectly distinguish
between operations in the side channel. Our techniques are still applicable if the side
channel is noisy.

We demonstrate the application of HMM attacks and IDHMM’s in an analysis of
Randomized Addition-Subtraction Chains proposed by Oswald and Aigner. When our
observations of the side channel are perfect, we are able to completely recover the secret
key using as few as 5–10 traces. Our attacks are robust to noise in the side channel as
well. For instance, when the probability of each observation being incorrect is 0.25, we
are still able to recover the secret key by using 50–500 traces.

Acknowledgements

This research was supported in part by NSF ITR CCR-0113941 and NSF CAREER
CCR-0093337.

References

1. Ha, J., Moon, S.: Randomized signed-scalar multiplication of ECC to resist power at-
tacks. In: Fourth International Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES). (2002)

2. Oswald, E., Aigner, M.: Randomized addition-subtraction chains as a countermeasure
against power attacks. In: Third International Workshop on Cryptographic Hardware and
Embedded Systems (CHES). (2001)

3. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against side channel
attacks. In: PKC2002. (2002)

4. Walter, C.: MIST: An efficient, randomized exponentiation algorithm for resisting power
analysis. In: RSA 2002 - Cryptographers’ Track. (2002)

5. Liardet, P.Y., Smart, N.: Preventing SPA/DPA in ECC systems using the Jacobi form. In:
Third International Workshop on Cryptographic Hardware and Embedded Systems (CHES).
(2001)

6. Itoh, K., Yajima, J., Takenaka, M., Torri, N.: DPA countermeasures by improving the win-
dow method. In: Fourth International Workshop on Cryptographic Hardware and Embedded
Systems (CHES). (2002)

7. May, D., Muller, H., Smart, N.: Randomized register renaming to foil DPA. In: Third Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (CHES). (2001)

8. Goubin, L., Patarin, J.: DES and differential cryptanalysis. In: First International Workshop
on Cryptographic Hardware and Embedded Systems (CHES). (1999)

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Lecture Notes in Computer Science
1666 (1999) 388–397

10. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. Lecture Notes in Computer Science 1109 (1996) 104–113

11. Jordan, M.: An Introduction to Probabilistic Graphical Models. in preparation (2003)
12. Russell, S., Norvig, P.: Artificial Intelligence, A Modern Approach. Prentice Hall (1995)
13. Okeya, K., Sakurai, K.: On insecurity of the side channel attack countermeasure using

addition-subtraction chains under distinguishability between addition and doubling. In: The
7th Australasian Conference on Information Security and Privacy. (2002)

14. Walter, C.: Security constraints on the Oswald-Aigner exponentiation algorithm. Cryptology
ePrint Archive: http://eprint.iacr.org/ (2003)

15. Coron, J.S.: Resistance against differential power analysis attacks for elliptic curve cryp-
tosystems. In: First International Workshop on Cryptographic Hardware and Embedded
Systems (CHES). (1999)

16. Walter, C.: Breaking the Liardet-Smart randomized exponentiation algorithm. In: Fifth
Smart Card Research and Advanced Application Conference (CARDIS). (2002)

17. Karlof, C., Wagner, D.: Hidden Markov Model Cryptanalysis. Technical Report UCB//CSD-
03-1244, University of California at Berkeley (2003)

18. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks on SSH.
In: Tenth USENIX Security Symposium. (2001)

