
Architectural and Implementation Tradeoffs in the Design of
Multiple-Context Processors

James Laudon, Anoop Gupta, and Mark Horowitz
Computer Systems Laboratory
Stanford University, CA 94305

Abstract

Multiple-context processors have been proposed as an architectural technique to mitigate the effects of large
memory latency in multiprocessors. In this paper, we examine two schemes for implementing multiple-context
processors. The first scheme switches between contexts only on a cache miss, while the other interleaves the
contexts on a cycle-by-cycle basis. Both schemes provide the capability for a single context to fully utilize
the pipeline. We show that cycle-by-cycle interleaving of contexts provides a performance advantage over
switching contexts only at a cache miss. This advantage results from the context interleaving hiding pipeline
dependencies and reducing the context switch cost. In addition, we show that while the implementation of the
interleaved scheme is more complex, the complexity is not overwhelming. As pipelines get deeper and operate
at lower percentages of peak performance, the performance advantage of the interleaved scheme is likely to
justify its additional complexity.

1 Introduction

The latency for memory references is a serious problem for high-performance, large-scale, shared-memory

multiprocessors. The combination of large physical distances between processors and memory and the fast

cycle time of processors leads to latencies ranging from many tens to hundreds of processor cycles [14, 17, 21].

For these multiprocessors to be effective on a wide range of applications, some mechanism is needed to avoid

or hide this memory latency.

There are several ways to avoid this large memory latency, including caching of shared data, and

restructuring of the application to maintain as much data locality as possible. While these schemes improve the

amount of computation a processor performs before requiring a long-latency memory access, often applications

still end up spending a large portion of their time waiting on memory references. To deal with this remaining

latency, several latency tolerating schemes have been proposed, including relaxed memory consistency models,

prefetching, and multiple-context processors. Recent studies [7, 12, 19] have shown that multiple-context

processors are a promising way to address the problem; this paper focuses on the multiple-context solution.

There have traditionally been two approaches for building multiple-context processors. The first ap-

proach, which has been referred to as a blocked scheme [4], shares the processor between a number of contexts.

A context utilizes all of the processor resources until it reaches a long latency operation, such as a cache miss,

at which it is considered blocked. It then gives up the processor to another context, which hopefully has useful

work to perform. The second approach, which we refer to as an interleaved scheme, switches between multiple

contexts on a cycle-by-cycle basis. A context issues a single instruction, then all other active contexts issue

their instructions in turn, after which the first context can issue its next instruction.

The blocked scheme has been explored primarily in the context of multiprocessors with coherent

caches [2, 12, 25]. For these machines, the point at which a processor is considered to be blocked is generally

at a cache or local memory miss. For example, the APRIL [2, 12] processor switches contexts when a memory

1

request cannot be satisfied by the cache or local memory. In addition, APRIL provides the ability to force a

context switch on a failed synchronization attempt. Using these two events as switch criteria, APRIL has the

ability to tolerate the latency of both memory requests and synchronization.

Interleaved processors have been proposed to solve two problems: stalls due to both pipeline dependen-

cies and memory latency. Two representative examples are the Denelcor HEP [23] and Halstead’s MASA [8].

In the HEP multiprocessor, interleaved contexts were used to remove almost all pipeline stalls. A context

could only issue an instruction every 8 cycles, which corresponded to the pipeline depth. Since an instruction

could never encounter a pipeline dependency, no hardware or compiler resources had to be devoted to resolving

pipeline hazards.1 In addition, HEP provided the ability to hide the latency of a memory request by removing

an instruction stream from the issue queue while the memory was being accessed. The MASA architecture

similarly masks both pipeline dependencies and memory latencies by only issuing a context’s instruction after

its previous instruction has completed.

While the interleaved scheme removes stalls due to pipeline dependencies, the performance of the

interleaved processor suffers when there are not enough processes available to keep the pipeline full. This can

be a severe drawback when the application does not provide enough parallelism. In addition, the performance of

a single thread can never be better than one instruction every pipeline depth cycles. So even if there are enough

processes to keep the pipeline full, it is not possible to run a single thread at near-peak processor performance.

To address these limitations, we add full pipeline interlocks to the traditional interleaved schemes. Instructions

are still only issued from a ready context; however, instructions from a single context can be issued every

cycle, allowing a single process to achieve the same performance on the multiple-context processor as on a

single-context processor. Since this modified interleaved scheme has advantages over the traditional interleaved

scheme, we will only consider the modified interleaved scheme further, referring to it as simply the interleaved

scheme.

In this paper, we compare the performance of the interleaved and blocked schemes. For our comparison,

we use the SPLASH [22] application suite, and simulate two pipelines that roughly model those of the MIPS

R3000 [10] and R4000 [16]. We show that the relative advantage of the interleaved scheme is greater for the

deeper, R4000-like pipeline. The advantage of the interleaved scheme also improves with increasing number of

contexts per processor. The performance advantage of the interleaved scheme is promising; for the SPLASH

applications, the interleaved scheme provides a 21% increase in processor utilization over the blocked scheme

when running on the deeper pipeline with four contexts per processor.

In addition to comparing the performance of the two schemes, we also discuss the implementation.

We show that the interleaved scheme imposes more constraints on the macro-architecture of the processor.

These constraints arise primarily because the processor issues a variable number of instructions between two

instructions from the same context, which limits the amount of decision making which can be performed in

the compiler. In addition to constraining the macro-architecture, the variable instruction issue complicates the

implementation. However, the additional complexity is not overwhelming, and for processors which noticeably

suffer from non-ideal pipeline utilization, the performance advantage of the interleaved scheme may warrant the

additional complexity.

Before comparing the performance of the two schemes, we describe our methodology in Section 2.

Then, in Section 3, we present the results of the performance comparison. We also examine the relationship

between an application’s behavior and the performance gains experienced by the interleaved scheme. To address

the other half of the cost/performance equation, we address implementation issues for the two schemes in

Section 4. We then discuss related work in Section 5, and finally present conclusions in Section 6.

1An exception to this is the divide unit, which could not sustain an issue rate of one divide per cycle.

2

MEMORY AND
DIRECTORY

PROCESSOR

NODE

SCALABLE INTERCONNECT

NETWORK
INTERFACE

DATA
CACHE

Figure 1: Base Architecture.

2 Evaluation Methodology

To describe our methodology, we start by describing the base architectures used in the evaluation. We then

describe the simulation environment, and finally discuss the benchmark applications used in the study.

2.1 Base Architecture

Figure 1 shows the base multiprocessor architecture used in this study. The multiprocessor consists of a number

of nodes connected together through a high-bandwidth, low-latency interconnect. Each node consists of a

processor, cache, local memory, and a network interface. The caches are kept coherent using a directory-based

cache coherence protocol, such as that used in the Stanford DASH multiprocessor [14].

We use two different processor architectures for our study. The pipelines of the processors are shown

in Figure 2; we refer to them as base and deeper. The base pipeline is representative of commercially available

RISC processors. The pipeline phases are: IF, instruction fetch; RF, instruction decode and register fetch; EX,

execution; DF, data fetch; and WB, result writeback. The second pipeline is representative of more deeply

pipelined RISC processors just becoming available (ours is based on the MIPS R4000 pipeline [16]). It is

similar to the base pipeline, except the IF cycle is split into two cycles, IF1 and IF2, and the DF cycle is split

into three cycles, DF1, DF2, and TC, where TC represents the cache tag check. The specific instruction set

used is the MIPS I instruction set [10]. This instruction set is representative of load/store RISC architectures.

2.2 Simulation Environment

The simulation environment consists of a detailed architecture simulator, which is tightly coupled to the Tango [6]

reference generator. Tango executes multiple processes on a uniprocessor, interleaving the processes to simulate

a multiprocessor. Tango augments the parallel program at the assembly code level to add this interleaving. Our

memory system and pipeline simulator is linked with the augmented parallel program to provide memory and

instruction latencies to Tango.

3

IF RF EX WBDF

WBIF1 IF2 RF EX TCDF1 DF2

DEEPER PIPELINE

BASE PIPELINE

Figure 2: Structure of the Two Pipelines.

2.2.1 Pipeline Simulation

The simulator handles three pipeline dependencies, which account for almost all of the pipeline stalls for the

applications we will study. The first dependency occurs between a load instruction and a subsequent instruction

that uses the result of the load instruction. If the load data is not available for the subsequent instruction, a

hazard has occurred. The load delay is the number of instructions following a load instruction that will cause

a hazard. The second dependency results from operations which take more than a single cycle to complete

the execution (EX) phase. For the pipelines we are considering, floating-point operations and integer multiply

and divide are the major operations taking more than a single EX cycle. For these operations, a result hazard

occurs when an instruction uses the result of an instruction before it is available. In addition, the functional

units may only be able to accept a new instruction every I cycles, where I is the issue rate of the functional unit.

If another instruction wishes to use the functional unit before I cycles have elapsed, an issue hazard results.

The final pipeline dependency occurs when a control-transfer instruction, such as a branch is encountered. The

address of the instruction following the branch may not be known until several cycles after the branch is issued.

A common solution used by RISC processors is the delayed branch, where a certain number of instructions

sequentially following the branch (in the branch delay slots), are executed regardless of the branch outcome.

The pipeline dependency parameters for our two processors are given in Table 1. For the branch delays,

the delay slots are nonsquashing (the delay slot instruction executes regardless of the branch outcome). While

the deeper pipeline has a single architectural delay slot, the pipeline is unable to generate a branch target until

three cycles after the branch. Thus for the deeper pipeline, all taken branches will have an additional two cycle

penalty. There are separate floating-point units for addition, multiplication, and division, and these units can

operate in parallel. In addition, there is a single multiply/divide functional unit, which can operate in parallel

with the floating-point units. The integer multiply/divide unit and the floating-point units are not pipelined, so

the issue latency and the result latency are equivalent. Operation on single-precision floating-point is slightly

faster than double-precision, and the single-precision numbers are shown in parenthesis in the table.

Each pipeline dependency typically stalls the processor for a much shorter duration than a remote

memory access. However, pipeline stalls are much more frequent than remote memory accesses. Since the total

number of pipeline stalls depends heavily on how well the compiler can hide these dependencies, it is important

that the code be optimized with respect to the pipelines that are being simulated. In the MIPS compiling

environment, pipeline scheduling is done by the assembler. We insure that the instrumented code is properly

scheduled by replacing the standard MIPS assembler with a parameterizable assembler developed at Stanford.

2.2.2 Multiple Context Simulation

The architecture simulator handles the multiplexing of multiple instruction streams on the multiple-context

processor. For the blocked scheme, the simulator switches contexts on read misses. The cost of a context switch

4

Table 1: Pipeline Simulation Parameters.

Base Pipeline Deeper Pipeline
Load Delay 1 pclock 2 pclocks
Branch Delay 1 pclock 1 pclock
Integer Multiply 12 pclocks 12 pclocks
Integer Divide 35 pclocks 76 pclocks
Floating-point Add 2 (2) pclocks 4 (4) pclocks
Floating-point Multiply 5 (4) pclocks 8 (7) pclocks
Floating-point Divide 19 (12) pclocks 36 (23) pclocks

for this scheme is equivalent to the pipeline depth (5 cycles for the base pipeline, 8 for the deeper pipeline),

since we assume the instructions already in the pipeline must be squashed. For the interleaved scheme, the

simulator cycles through the available contexts in a round-robin fashion. When a context encounters a read

miss, the context is marked unavailable until the read data returns. While the cost to switch between contexts

for the interleaved scheme is zero, there is an indirect cost associated with a context encountering a read miss.

This cost is equal to the number of instructions from this context that are already in the pipeline, as they must

be squashed. We will refer to this cost as the context switch cost for the interleaved scheme.

The simulator handles synchronization events in a manner analogous to memory operations. A processor

context switches (and marks a context unavailable) when blocking on a synchronization operation. When the

synchronization event successfully completes, the context is marked available. The lone exception to simulating

synchronization operations in this manner occurs for applications which perform explicit spinning on shared

memory locations. Spin-waiting poses an interesting problem for multiple contexts. For the blocked scheme,

deadlock is possible if one context repeatedly spins on an event, never missing in the cache, while the context

which is to produce the event is inactive on the same processor. To solve this problem for our simulations, we

add an explicit context switch instruction to each spin loop iteration. This is a reasonable solution, given the

programmer knows where the spinning is occurring. However, for cases where the programmer may not catch

all the spinning in an application, the processor should have some form of watchdog timer that forces a context

switch after a certain number of instructions by the same context.

In contrast, the interleaved scheme does not suffer from this potential deadlock situation. Even though

the context spinning may be on the same processor as the context that will produce the event, both contexts are

interleaved, providing forward progress for the event-producing context. However, the spinning context does

take processor cycles that would be better used by the contexts which are not spinning. This cycle stealing by a

spinning context from the event-producing context can increase the time spent spinning by a program. For our

simulations, we fix this problem by giving priority to instructions from non-spinning contexts. To enable a fair

comparison, for the blocked scheme we also give priority to switching to a context which is not spinning.

2.2.3 Memory System Simulation

The memory simulator consists of a detailed data cache model connected to a simplified network and memory

system. 2 The cache is lockup-free [11, 20, 24], with the simulator modeling all the internal states of the

cache. The parameters for the cache are given in Table 2. We have assumed that a write buffer and release

consistency [5] are being used, resulting in the cost associated with writes being very low [7]. We model this by

using a cache with a write-through policy for stores, and assume writes complete in the network immediately.

Therefore the processor will never stall on a write. While connecting a write-through cache directly to the

network is not a reasonable design decision for an actual multiprocessor implementation, it simplifies the

2Instruction references are not sent to the cache simulator and are implicitly assumed to hit in the cache.

5

Table 2: Cache Parameters.

Size 64 Kbytes
Associativity Direct Mapped
Line Size 32 bytes
Write Policy Write-through, no allocation
Pending Read Limit 1 per context
Write Occupancy 1 pclock
Read Occupancy 1 pclock
Invalidate Occupancy 2 pclocks
Cache Fill Occupancy 4 pclocks

Table 3: Memory Latencies.

Hit in Primary Cache 1 pclock
Reply from Local Node 25–45 pclocks (uniform distribution)
Reply from Remote Node 75–135 pclocks (uniform distribution)

simulator and reasonably models the low cost associated with writes under our assumptions. Read operations

have the latencies shown in Table 3. We model cache contention, which is added to these base latencies. While

cache contention is modeled, the network and memories are contentionless. This should not greatly affect our

results, as the network and memory contention should roughly increase the memory latency equally for both

the blocked and interleaved schemes. Simplifying the network and memory system allows us to simulate larger

problems, while still providing a sufficient model of the memory system behavior.

2.3 Applications

To evaluate the two architectural alternatives, we use the SPLASH suite, a set of parallel scientific and engineering

applications written in either C or FORTRAN. The applications use the Argonne National Laboratory macro

package [15] for synchronization and sharing. We briefly describe the six SPLASH applications below; a more

detailed discussion of the applications can be found in the SPLASH technical report [22].

Water is an example of an N-body application. It evaluates forces and potentials in a system of water

molecules in the liquid state. Our Water simulations were for 288 molecules. We simulated Water for two time

steps, while only recording the results for the second time step. Since Water does almost identical work on each

time step, gathering statistics from a single time step suffices. The second step is recorded to avoid undesirable

cache effects caused by the initialization of data by a single processor.

Ocean studies the role of eddy and boundary currents in influencing large-scale ocean movements. The

program sets up a set of spatial partial differential equations. These equations are transformed into difference

equations which are solved on two-dimensional fixed-size grids, statically partitioned between the processors.

We simulated Ocean on a 98x98 grid over six time steps. Again, the first time step is not recorded to avoid

initialization effects.

MP3D is a three-dimensional particle-based simulator for rarefied air flow. The overall computation

consists of evaluating the positions and velocities of the particles over several time steps, with barriers between

time steps. For our simulations, we simulated MP3D for four time steps, with 50,000 particles, and a 14x24x7

space array. Again, the first time step is not recorded.

LocusRoute is a VLSI standard cell router. It attempts to minimize circuit area by routing wires through

6

regions (routing cells) which have few other wires running through them. It does this by calculating a cost

function for each route being considered for a wire, and selects the lowest cost route. The cost function is based

on the number of wires already routed through the routing cells selected by the route. We routed Primary1.grin,

a circuit consisting of 1266 wires and 481x18 routing cell array, for two iterations using geographical wire

partitioning. We recorded statistics from the spawning of the processes, stopping just before the final route

quality computation.

PTHOR is a parallel, distributed-time, event-driven, circuit simulator. We simulated the risc circuit for

5,000 time ticks, with a 200 tick clock cycle. The risc circuit consists of 5,060 elements, where an element

corresponds to a basic functional block, such as an AND gate or latch. We started recording statistics after the

input files have been read and the simulator initialized, stopping just before the final simulation results were

printed.

Cholesky performs a parallel Cholesky factorization of a sparse positive definite matrix. We simulated

the factorization of the matrix BCSSTK14, which is a 1806x1806 matrix, with 30,824 non-zero elements. We

recorded statistics only for the parallel numeric factorization.

The SPLASH suite contains complete applications, not kernels. Four of the applications (Ocean,

Water, MP3D, and Cholesky) are scientific computations and two (LocusRoute and PTHOR) are from the area

of computer-aided design. While no application suite is ideal for all architectural evaluations, the SPLASH

suite does cover a range of problem domains and algorithms, and constitutes a reasonable workload for a

shared-memory multiprocessor.

3 Performance Results

While the previous section described the base architecture, we still have a number of degrees of freedom in

the design of a multiple context machine, such as the number of contexts supported in hardware. We start this

section by discussing the hardware configurations we simulated. We then examine the results of the performance

evaluation, using three of the SPLASH applications to illustrate the major trends. Using these applications,

we also examine the relationship of the application’s behavior and the performance gains experienced by the

interleaved scheme. Finally, we summarize the section.

3.1 Simulation Configurations

One of the important multiple-context parameters is the number of contexts supported in the hardware. For our

simulations, we vary this number of contexts between one and eight. As we will see from the simulation results,

eight contexts is usually enough to cover almost all the memory latency.

For all the simulations, a fixed number of application processes are used. We used 16 processes for our

simulations. Previous studies [7, 12, 25] have used a fixed number of processors in evaluating the effectiveness

of multiple contexts. With a fixed number of processors, the number of application processes increases as

the number of contexts (processes) per processor is increased. Since the number of application processes is

increasing, lack of application parallelism and varying process workloads affect the results. Using a fixed number

of processes does not have these problems, as the amount of work done by each context is roughly the same

across the different numbers of contexts per processor. However, using a fixed number of processes affects

the run-time behavior by reducing the amount of interprocessor communication needed by the program, since

processes which would have previously needed to communicate are now sharing a cache. While both methods

have their advantages and disadvantages, we are more interested in avoiding the effects of limited application

parallelism, and consequently simulate a fixed number of processes.

7

We present the simulation results of each application in two formats. To examine general trends,

we show a set of four graphs, presenting the processor utilization breakdown across the two pipelines and two

multiple-context schemes. In these graphs, the total time spent by the processor executing the program is broken

into several categories. These categories are (a) BUSY, time spent executing instructions, (b) SPIN, time spent

spin-waiting on an event, (c) PIPESTALL, stalls due to load hazards, branch delay slots without useful work, and

functional unit result and issue hazards, (d) SWITCH, context switch cost, (e) CACHESTALL, contention for

the lockup-free cache, and (f) IDLE, unoverlapped memory latency. To allow for a more detailed examination

of the results, we also provide a table containing the processor utilization breakdown and application miss rate.

In the tables, we have broken the PIPESTALL category of the graphs into its three components.

3.2 Simulation Results

To help illustrate the major trends, we have selected three of the SPLASH applications: MP3D, Water,

and PTHOR. These three were selected as a representative sample of the SPLASH applications we simulated.

The results for the other applications are given in Appendix A. Looking at the processor utilization graphs for

our three selected applications in Figures 3–5, we observe several general trends.

First, the addition of multiple contexts is quite effective in increasing the processor utilization. For

example, for MP3D running on the deeper pipeline, the processor utilization improves from under 25% to

over 60% for the eight-context blocked scheme, while improving to nearly 80% for the interleaved scheme.

MP3D operates on a large number of particles each time step, performing a relatively short computation on

each particle. Since the particle data is too large to fit in the cache, there is little reuse between time steps,

resulting in the high miss rate of 12.0%. This high miss rate explains the low single-context processor utilization

for MP3D. Water, on the other hand, has very good cache behavior (a 0.7% miss rate) and consequently has

a much higher single-context utilization (approximately 45%) for the deeper pipeline. Eight-context processor

utilization improves to 55% for the blocked scheme and to over 70% for the interleaved scheme. For PTHOR,

the utilization increases from 16% to over 45% for the blocked scheme and to nearly 65% for the interleaved

scheme. While the increases in processor utilization vary from application to application, all applications benefit

from the addition of multiple contexts.

Looking next at the differences in processor utilization between the two pipelines, we observe that, as

expected, for the deeper pipeline the applications spend a greater percentage of their time in context switches

and pipeline stalls than for the base pipeline. The percentage of time spent in pipeline stalls for the deeper

pipeline can be fairly substantial. Using the more detailed numbers in Tables 4–6, we observe that PTHOR

spends 0.66 cycles in pipeline stalls for every busy cycle, while for Water the ratio is 0.72 cycles stalled for

every busy cycle. MP3D has the lowest ratio of cycles stalled to cycles busy, 0.38. For Water and MP3D,

scientific codes, (floating-point) functional unit hazards are the major contributor to the pipeline stall time.

PTHOR, a CAD application, does not containing significant amounts of floating-point computation, and most

of its pipeline stall is due to load hazards. For all the SPLASH scientific applications, floating-point hazards are

the major contributor to stalls, while for the engineering applications, load or control-transfer hazards are the

major contributor.

Finally, we turn to the differences between the two multiple-context schemes. From the graphs, we

observe that the interleaved scheme is indeed benefiting from reduced pipeline stalls and lowered context switch

costs, although the benefits are being slightly offset by increased cache contention. We first examine in more

detail the difference in context switch overhead between the two schemes. For the interleaved scheme, the

percentage of total time spent context switching decreases as the number of contexts per processor increases.

There are three factors at play in determining the percentage of time the interleaved scheme spends context

switching. First, the total number of context switches depends directly on the read miss rate. For all the

8

Blocked Interleaved

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Base Pipeline

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80
| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Deeper Pipeline

Figure 3: Processor Utilization — MP3D.

Table 4: Detailed MP3D Results.

Base Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 70.8 70.8 40.5 43.3 8.0 9.8 0.4 0.3
Cache Contention 0.5 0.5 1.9 1.9 4.5 5.3 4.8 6.7
Switch Overhead 0.0 0.0 5.7 3.7 8.1 3.8 7.7 1.8
Load Stall 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0
Branch Stall 1.1 1.1 1.9 1.9 2.9 3.1 3.2 3.5
Execution Stall 1.7 1.7 2.7 2.3 4.2 2.4 4.7 1.6
Busy 25.8 25.8 47.2 46.9 72.2 75.6 79.1 86.1
Read Miss Rate 12.0 12.0 11.6 11.6 10.7 10.7 9.3 9.2

Deeper Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 65.6 65.6 32.4 35.3 5.4 6.2 0.5 0.3
Cache Contention 0.5 0.5 1.6 1.7 3.2 4.4 3.2 5.8
Switch Overhead 0.0 0.0 8.1 6.1 10.5 5.5 9.8 2.3
Load Stall 1.2 1.2 2.0 1.4 2.7 0.8 2.9 0.0
Branch Stall 2.8 2.8 4.8 3.9 6.7 3.8 7.1 3.3
Execution Stall 5.6 5.6 9.0 8.4 12.6 11.1 13.6 8.4
Busy 24.3 24.3 42.1 43.2 58.8 68.1 62.8 79.9
Read Miss Rate 12.0 12.0 11.6 11.6 10.7 10.7 9.3 9.2

9

Blocked Interleaved

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Base Pipeline

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90
| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Deeper Pipeline

Figure 4: Processor Utilization — Water.

Table 5: Detailed Water Results.

Base Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 21.5 21.5 8.6 5.6 2.6 1.9 0.6 0.4
Cache Contention 4.6 4.6 5.5 6.8 5.9 8.0 6.1 8.6
Switch Overhead 0.0 0.0 1.0 0.5 1.0 0.3 1.0 0.3
Load Stall 1.1 1.1 1.3 0.4 1.4 0.0 1.4 0.0
Branch Stall 2.8 2.8 3.2 3.5 3.4 3.8 3.5 4.0
Execution Stall 12.0 12.0 13.7 10.5 14.6 7.2 15.0 4.1
Busy 57.9 57.9 66.7 72.6 71.0 78.8 72.4 82.6
Read Miss Rate 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8

Deeper Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 17.9 17.9 7.0 4.8 2.1 2.1 0.4 0.8
Cache Contention 3.4 3.4 3.9 5.0 4.1 6.0 4.2 6.6
Switch Overhead 0.0 0.0 1.2 0.7 1.1 0.4 1.2 0.2
Load Stall 2.5 2.5 2.8 1.8 3.0 0.3 3.0 0.0
Branch Stall 8.0 8.0 8.9 6.9 9.4 5.0 9.5 4.8
Execution Stall 22.5 22.5 25.0 21.9 26.4 19.3 26.9 15.4
Busy 45.7 45.7 51.2 58.9 53.9 66.9 54.8 72.1
Read Miss Rate 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8

10

applications the read miss rate stays relatively constant across the different number of contexts, and has a minor

effect on the context switch overhead. Second, as the processor spends less time idle, the relative percentage

of time spent in the other categories increases. Finally, as more contexts are added, the cost of each context

switch decreases. It is this third factor which dominates for the interleaved scheme, causing the context switch

time to decrease as more contexts are added. For the blocked scheme, the percentage of time spent in context

switching is influenced only by the miss rate and decreasing idle time. Since the miss rate is relatively constant,

the decreasing idle time dominates, causing the relative percentage of time spent context switching to increase

as more contexts are added.

To examine the difference in pipeline stall time between the two schemes, we need to look at the more

detailed numbers in Tables 4–6. From these tables, we can see that the load, branch, and functional unit issue

and result stalls tend to decrease for the interleaved scheme with increasing numbers of contexts. In contrast,

for the blocked scheme the amount of time spent in pipeline stalls remains the same relative to the processor

busy time. For example, for Water running on the deeper pipeline, regardless of the number of contexts, there is

0.49 cycles of functional unit issue and result stalls for each busy cycle. Examining these three pipeline effects

in more detail, we see that the interleaved scheme does very well at reducing the load stalls to near zero as

the number of contexts is increased. However, while the branch and functional unit stalls are reduced, they do

not get removed completely. For branch stalls, this is because the penalty associated with an unfilled branch

delay slot cannot be hidden by the interleaved scheme. For functional unit stalls, the reduction is limited by

separate contexts encountering an issue hazard while contending for the same functional unit. The frequency

and duration of these conflicts depends on the application characteristics and the context interleaving.

As a final point, we notice that the performance of the interleaved scheme is less dependent on the

underlying pipeline than the blocked scheme. As more contexts are added, the processor utilization difference

between the two pipelines narrows. This is an important advantage of the interleaved scheme, as the trend

towards exploiting intra-stream, instruction-level parallelism is leading towards pipelines which operate less

efficiently relative to their peak rate.

3.3 Results Summary

As we have seen, the interleaved does indeed benefit from reduced pipeline delays and context switch costs. The

performance advantage of the interleaved scheme varies depending on the application, and can be substantial

for certain applications. Table 7 summarizes the results for all the SPLASH applications. The benefits of

the interleaved scheme are greater for deeper pipelines, with their higher pipeline dependency costs. These

results show the performance advantage of the interleaved scheme to be promising; what is now needed is

an investigation into its implementation cost. To address the cost, we need to look in more detail at the

implementation issues involved in building multiple-context processors using the two schemes.

4 Implementation Issues

The complexity associated with building any multiple-context processor is manifested primarily in three re-

quirements. The first requirement is that the memory system be able to handle multiple outstanding memory

operations, implying the need for a lockup-free cache [11]. In addition, resources shared between contexts,

such as the instruction cache and buffers, the data cache, and the TLB may need to be optimized to handle

the multiple working sets. While design of lockup-free caches and optimization of shared resources is beyond

the scope of this paper, they are important issues, and need to be addressed in the design of a multiple-context

processor. The second requirement is that the user-visible state be replicated to have a unique copy per context.

This user-visible state includes the register file(s), processor status word, program counter, and any other state

11

Blocked Interleaved

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Base Pipeline

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80
| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Deeper Pipeline

Figure 5: Processor Utilization — PTHOR.

Table 6: Detailed PTHOR Results.

Base Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 71.6 71.6 47.6 50.7 22.0 26.0 8.8 10.7
Cache Contention 1.0 1.0 2.2 2.4 4.6 5.8 6.2 9.7
Switch Overhead 0.0 0.0 5.1 2.9 7.4 3.7 8.9 2.9
Load Stall 2.7 2.7 4.7 3.1 7.3 2.2 8.7 0.7
Branch Stall 1.8 1.8 3.2 3.2 4.9 5.2 5.7 6.5
Execution Stall 0.2 0.2 0.3 0.3 0.5 0.3 0.6 0.1
Spin 4.6 4.6 4.7 4.9 3.4 4.1 1.9 1.7
Busy 18.1 18.1 32.1 32.5 49.8 52.8 59.2 67.7
Read Miss Rate 7.2 7.2 6.9 7.3 6.8 7.5 7.2 8.4

Deeper Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 66.9 66.9 39.8 44.7 17.6 23.1 7.5 10.5
Cache Contention 0.8 0.8 1.8 2.0 3.4 4.9 4.2 8.8
Switch Overhead 0.0 0.0 6.9 4.5 9.2 5.3 10.8 4.2
Load Stall 6.3 6.3 10.5 7.8 15.1 6.3 17.1 1.9
Branch Stall 4.5 4.5 7.2 6.2 10.3 7.4 11.7 7.6
Execution Stall 0.5 0.5 0.8 0.8 1.2 1.1 1.4 0.6
Spin 4.7 4.7 5.0 5.2 3.0 4.2 1.7 1.6
Busy 16.3 16.3 27.9 28.8 40.1 47.8 45.7 64.7
Read Miss Rate 7.2 7.2 6.9 7.3 6.8 7.5 7.3 8.3

12

Table 7: Processor Utilization Improvement of Interleaved Scheme.

Number of Contexts Two Four Eight

Base Pipeline
Water 8.9% 10.9% 14.1%
MP3D -0.7% 4.8% 8.9%
Ocean -2.2% 1.0% 7.5%
LocusRoute 10.6% 4.8% 2.8%
Cholesky 16.7% 23.7% 10.2%
PTHOR 1.0% 5.9% 14.3%
Geometric mean 5.5% 8.3% 9.6%

Deeper Pipeline
Water 15.2% 24.2% 31.7%
MP3D 2.7% 15.8% 27.2%
Ocean 2.7% 14.6% 22.8%
LocusRoute 13.7% 24.1% 33.2%
Cholesky 15.0% 28.7% 29.8%
PTHOR 3.2% 19.1% 41.4%
Geometric mean 8.6% 21.0% 30.9%

that must be saved during a context switch on a single-context processor. The third requirement is that additional

control logic and its associated state needs to be added to schedule the multiple contexts on the processor and

insure correct operation of the pipeline for all exceptional conditions.

In this section, instead of focusing on general issues in building multiple-context processors, we focus

primarily on the issues that will allow us to differentiate between the two multiple-context schemes. Since some

of the different complexities reflect back on the macro-architecture, we first explore the macro-architectural

issues and then turn to micro-architectural issues.

4.1 Macro-architectural Considerations

In modern instruction set architectures, many of the pipeline dependencies that must be obeyed are made visible

to the compiler. This is done in order to allow the compiler to schedule the code around these hardware

dependencies. Since the compiler has more global knowledge about the program, it can often make scheduling

decisions that are not practical to make in hardware at run-time. This has a simplifying effect on the hardware,

as the only place where hardware is needed to resolve dependencies is for those cases where the compiler does

not have enough knowledge to perform an adequate job.

Since the blocked scheme has only a single context active at any given point, the decision to resolve

pipeline dependencies in the compiler or hardware can be made on the basis of cost/performance analyses very

similar to the well-understood single-context processor tradeoffs. However, for the interleaved scheme, the

instruction issue of a single context relative to the processor instruction stream cannot be determined statically.

This greatly impairs the ability of the compiler to make scheduling decisions, forcing it to make conservative

assumptions. For intra-context pipeline dependencies, the compiler must assume that no intervening instructions

will resolve the dependency. Inter-stream dependencies cannot be resolved by the compiler, and require dynamic

hardware resolution. Using examples, we explore the constraints imposed by the interleaved scheme on the

macro-architecture. We first examine load and branch hazards, which show the effects of the interleaved scheme

on intra-context pipeline dependencies. Then we examine the floating-point hazards, showing the effects on

inter-context dependencies.

As our first example, we look at the tradeoff between the compiler removing load hazards by inserting

13

nop instructions into the code and the hardware providing interlocks to stall the pipeline to remove load hazards.

For this example, the use of dynamic hardware resolution has a larger performance advantage for the interleaved

scheme than the blocked scheme. For the blocked scheme, using the compiler to resolve load hazards results in a

simpler design by removing the need for hardware to detect the load hazard. On the other hand, using hardware

interlocks removes the need for the extra nop instructions, resulting in a smaller code space and its associated

benefits. For the interleaved scheme, we can still use the compiler to insert nops to resolve the load hazards,

however, providing hardware interlocks has an additional performance benefit over using the compiler. With an

interleaved multiple-context processor, instruction(s) from other contexts may be in the pipeline between the two

dependent instructions, and may provide enough delay that the hazard will never occur. The compiler is unable

to exploit this potential hazard removal, as it does not know how many instructions from other contexts will lie

between the two dependent instructions, and must conservatively assume that no instructions will separate them.

As an example where the cost portion of the cost/performance tradeoff equation changes, we examine the

tradeoffs involved in reducing the penalty associated with control-transfer instructions. Many RISC processors

utilize delayed branches to reduce the branch penalty. Assuming that unfilled branch delay slots execute

regardless of the interleaving, there appear to be no performance differences for delayed branches between the

blocked and interleaved processors. However, when the implementation issues involved in providing delayed

branches for an interleaved processor are examined, it becomes apparent that there is a larger hardware cost

than for the blocked processor (we explore this greater hardware cost in the micro-architecture section). This

extra complexity for implementing delayed branches for the interleaved schemes reduces the cost differential

between implementing delayed branches and more aggressive branch handling schemes such as using a branch

target buffer [13].

As our final example, we explore a case where the compiler is simply unable to resolve pipeline hazards

for the interleaved scheme. For this example, we examine the floating-point functional units. More specifically,

let us assume the processor supports a set of floating-point functional units which are capable of operating in

parallel, but with different latencies. For the blocked processor, the standard single-context processor tradeoffs

between the compiler and hardware exist for scheduling the overlapping of operations, preventing result and

issue hazards, and scheduling register file write port usage. However, for the interleaved scheme, the compiler

does not have control over the inter-context interleaving, and can no longer guarantee that these hazards will not

occur. For example, while the compiler will be able to prevent a single stream’s instructions from violating the

issue limits of a floating-point functional unit, the compiler cannot control two streams trying to issue operations

too quickly to the same functional unit. Also, if a single write port to the floating-point register file exists, the

compiler will be unable to schedule the write port between contexts, as the instructions from different contexts

executing in different functional units may complete at the same time. To solve these problems, the interleaved

scheme requires some hardware to perform dynamic hazard resolution.

While these examples only explore a small number of the tradeoffs involved in defining the macro-

architecture, they point out the major differences between the interleaved and blocked schemes. The blocked

scheme does not greatly alter the macro-architectural tradeoffs from those of the single-context architecture.

On the other hand, the interleaved scheme favors making macro-architectural decisions which rely on dynamic

pipeline-dependency resolution.

4.2 Micro-architectural Considerations

We have just seen that the two multiple-context schemes impose different constraints on the macro-architecture.

We now show that this is also true for the micro-architecture. As mentioned before, the primary micro-

architectural issues for a multiple-context processor involve the replication of the per-context state, and the

scheduling and control of the multiple contexts on a single pipeline. We address each of theses issues in turn.

14

4.2.1 State Replication

Each context (or process) has a fair amount of state associated with it. Some of this state is kept in hardware,

such as the floating-point and integer register sets, the program counter, and the processor status word. The rest

of the state, such as the process control block, page tables, and the stack and heap are kept in main memory or

on disk. When a context yields the processor, any of this state which has the potential to be lost by the time

the context is restarted must be saved. Certain process state may be replicated for performance reasons, such as

the TLB containing copies of the page table entries. For this redundant state, the decision to save state across a

context switch depends on the probability of the state being lost, the performance cost of losing the state, and

the hardware and performance cost of saving the state.

Since multiple-context processors experience frequent context switches, state-saving solutions which

incur high overhead (such as writing the processor state to main memory) are not feasible, as the cost of

the context switch will greatly overshadow any performance gains due to the addition of multiple contexts.

Therefore, the portion of the state residing in hardware will need to be replicated on the processor in order to

get a reasonable context switch cost.

While the interleaved and blocked schemes require the same amount of state to be replicated, the

cycle-by-cycle switching of the interleaved scheme places more constraints on the hardware required for state

replication. This results in two implementation implications. The first involves state selection control. Since

state tends to be distributed throughout the processor, the interleaved scheme may require a selection decision

to be made at each state location in order to be able to switch between contexts on a cycle-by-cycle basis. For

example, a process identifier may be needed for the TLB lookup, and the controller selecting the proper process

identifier may need to be separate from the controller selecting the next instruction to issue. In contrast, the

blocked scheme has the option of keeping this decision local (e.g. making the decision solely at the controller

which selects the next instruction), and broadcasting the result to the distributed state during the context switch

pipeline flush. The second implication is for the amount of hardware needed to replicate the state. With the

interleaved scheme, all the state must be simultaneously active, since there can be any interleaving of contexts

within the pipeline. However, for the blocked scheme only a single set of state needs to be active, since at any

given point there is only a single context executing on the machine. Since there may be extra functionality,

such as a large drive capacity, associated with active state, requiring all sets of state to be active may require

this extra functionality be replicated.

A good example of the difference in replication constraints is in the register file implementation. For

both schemes, the register cells must be replicated to provide a cell per context. Since adding multiple contexts

places no additional requirements on the number of reads or writes per cycle the register file needs to support,

the portion of the register file devoted to the read and write ports does not need to be replicated. Thus, the bit

and word lines, sense amplifiers, multiple port drivers, and a portion of the register addressing can be shared by

all the contexts. For the interleaved scheme, cells from any context can be active during a cycle. In order to be

able to address any memory cell, we need a new register specifier that consists of the context identifier and the

original register specifier. This adds a delay to the register file fetch time due to the increased time to decode the

larger register specifier. Looking at the blocked scheme, an optimization can be made to remove this extra delay.

If we physically transfer data from the context cells to a shared master cell at each context switch, the register

file fetch time can remain the same, since the register file only needs to be addressed by the register specifier.

In addition to the register file, there are many other cases, such as the TLB process identifier mentioned earlier,

where the single active context of the blocked scheme allows increased implementation flexibility.

15

PC Chain

PC Bus

EPC Chain0 EPC Chain1

Instruction Size
Result Bus

Branch Offset

Branch Sequential

Exception
Vector

Figure 6: Blocked Processor PC Unit.

4.2.2 Context Schedule and Control

Obviously the hardware required to identify the current context and determine the next context differs for the two

multiple-context schemes. For the blocked scheme, where a single context is active, a single context identifier

(CID) register can keep track of the currently executing context. When a context blocks, the CID register is

loaded with the new context identifier. However, for the interleaved scheme, a single CID register is no longer

enough to decide which context is performing an action, since instructions from different contexts can be at

various stages in the pipeline. Instead, each instruction is effectively tagged with a CID. This CID flows down

the program counter (PC) chain along with the PC value. At any given point in the pipeline, the appropriate

CID determines the set of state to be used.

In addition to the control of the state machines, the multiple-context processor needs to be able to issue

instructions from the multiple contexts to the pipeline, and handle pipeline exception conditions. To explore

this further, we describe possible designs for the PC units of the two multiple-context schemes. To make the

discussion of the differences required by the two schemes more concrete, we assume the deeper pipeline. The

issues for the base pipeline are similar.

Blocked Scheme One possible PC unit for the blocked scheme supporting two contexts is shown in Figure 6.

The rectangles in the diagram represent registers; all registers have input enable capability. The register enable

and tristate control is not shown. This PC unit is very similar to that of a single-context processor, with the

only difference being a modification to the exception PC (EPC) chain in order to support the multiple contexts.

This modification adds an EPC chain per context, which doubles as both the exception PC chain and the context

restart chain. Note, when we refer to the EPC chain, we are referring to the EPC chain of the current context

unless otherwise specified. We explain the PC Unit operation by first describing its operation, and then discuss

how the PC unit handles exceptions and context switches.

On any given cycle, one of several sources drives the PC bus. The possible PC sources are: (a) old

PC value plus the instruction size (normal sequential flow), (b) old PC value plus branch offset (branch), (c)

result bus (jump and jump indirect), (d) exception vector, or (e) EPC chain (restore from an exception or context

switch). The exception vector and EPC chain provide the ability to take and recover from exceptions. In general,

the depth of the EPC chain must be the number of branch delay slots in the machine, plus one. The reason

this depth is required is that the excepting instruction could be in the delay slot of a branch. The PCs of the

following instructions will not be strictly sequential for this case, so it is necessary to save the PCs up to and

including the first non-sequential instruction.

During normal operation, the EPC chain of the active context is continuously being loaded with PC

16

Exception
Vector

Instruction Size

Result Bus

Jump 0 Jump 1Exc 0 Exc 1

Sequential 0 Sequential 1 Branch 0 Branch 1

PC Bus
PC Chain CID

Branch Offset

EPC Chain0 EPC Chain1

Figure 7: Interleaved Processor PC Unit.

values as instructions complete. When an exception occurs, the EPC chain of the active context contains the

PC values of the excepting and subsequent instructions. All instructions in the pipeline are then squashed, and

control is transferred to the exception vector. Since there is a single EPC chain for this context, the exception

handler must save the EPC chain before enabling further exceptions. To return from the exception, the EPC

chain is shifted out onto the PC bus as the new PC values, and once the chain is empty, the normal flow of

instructions can proceed.

A data cache read miss, which forces a context switch, can be treated similarly to a hardware-handled

exception. The context switch is delayed until the normal exception point, at which time the EPC chain for the

blocked context is loaded as if an exception had occurred. The instructions in the pipeline are squashed and

the next context to run is selected. The EPC chain of the new context is shifted out, and the new context starts

executing from the instruction at which it had previously blocked.

Sharing the same EPC chain for both context switches and exceptions causes a problem when the

exception handler takes a data cache miss. Under the above scheme, the EPC chain values would be destroyed

by the context switch. Solutions to this problem are to either have an additional EPC chain for handling

exceptions, or to disable context switches upon entry into an exception handler until the EPC chain can be saved

(much like interrupts are disabled when taking an exception). Under most circumstances, the latter approach

appears to be better, due to its lower hardware cost. While the latter approach requires a privileged instruction

in the architecture for enabling/disabling context switches, this instruction can be useful in other situations, such

as to avoid performing context switches in application critical sections.

Interleaved Scheme Figure 7 shows a possible implementation for an interleaved PC unit supporting two

contexts. The interleaving of multiple contexts in the pipeline presents two complications in the design of the

PC unit. The first complication is relatively minor. Since the new PC value becomes available a specific number

of processor instructions after issue, this new PC value must be kept until the context becomes active again.

For example, for our pipeline, the branch result always becomes available at the end of the EX cycle. Since the

context may not be able to immediately drive its new PC value onto the bus at the point when the branch target

becomes available, holding registers must be provided until the context is selected to drive the PC Bus. The

same is true for the sequential instruction flow and other control transfers — the only difference is the exact

17

point in the pipeline where the new PC value becomes available.

The second, more serious complication arises because the number of instructions issued by the processor

between two instructions from the same context is variable. This complicates both the branch and exception

handling. Our macro-architecture specifies a delayed branch. A context may not have completed issuing all

of the delay slot instructions by the time the branch is resolved. Therefore, a state machine needs to compute

at the branch resolution point how many instructions from the delay slots have already been issued, and then

force the remaining delay slot instructions to be issued before the branch occurs. While the hardware to do

this is relatively straightforward, it is additional hardware that is not necessary for the blocked multiple-context

processor.

Similarly, the value on the PC bus cannot be assumed to be from the same context as an instruction in

the pipeline. This affects the computation of the branch target, since the branch offset cannot simply be added

to the value on the PC bus — this value is either from another context or from the same context, but a variable

number of instructions from the branch. To solve this problem, the branch offset is added to the PC value of

the branch (which is taken from the PC chain).

Problems also arise for exceptions, as the PC values from the excepting context may be scattered

throughout the pipeline, and even worse, there may not be enough PC values to completely fill the EPC chain.

To gather the scattered PC values in the pipeline, instructions from the excepting context can be put into the

EPC chain as they fall off the end of the pipeline (with instructions from the excepting context marked to not

update any state). Note that this still allows instructions from the other contexts to continue; only the excepting

context needs to be affected. As mentioned before, the length of the EPC chain is the minimum number of PC

values that allow the processor to be restarted after an exception, therefore, not having generated enough PC

values from the context will prevent proper return from the exception. To solve this problem, PC values can

continue to be generated from the excepting context, until enough exist to fill the EPC chain. At this point, the

exception vector can be forced onto the PC Bus during the context’s next cycle, starting the exception handler.

Since the interleaved scheme uses the EPC chain to also save the PC values on a context switch, we

would expect the same problems to occur for a context switch as for an exception. This is the case for the

scattering of PC values within the pipeline, however, for the case where there are not enough PC values to fill

the EPC chain, it is not necessary to continue to generate more PC values from this context. Since the context

will be suspended, the information on the instruction sequence will remain in this context’s branch, jump, and

sequential PC registers and PC control state machine. When the context is made ready again, the saved portion

of the PC chain is shifted out, then the PC control state machine for this context is unfrozen and the proper

PC value can be driven from the branch, jump, or sequential register. This does require that the context switch

control logic keep track of how many instructions it must shift out of the EPC chain.

In summary, the interleaved scheme places greater constraints on the architectural decisions than the

blocked scheme. This is due to the nondeterministic instruction issue of a context with respect to the processor

instruction stream. In particular, this nondeterminism removes much of the compiler’s ability to effectively

schedule code for the hardware’s pipeline dependencies. As a result, for the interleaved scheme the tradeoff is

tilted towards the use of more hardware-intensive dynamic dependency resolution. It may be that these potentially

higher-performing dynamic options would have already been chosen due to other considerations, lowering the

incremental cost of implementing the interleaved scheme. Indeed, the trend in processor architectures is towards

the use of dynamic dependency resolution. For example, the DEC Alpha architecture [3] has eliminated branch

and load delay slots, and has single-cycle issue for its floating-point units. However, these higher performance

options do have their cost, not only in terms of hardware, but also in increased design and verification time.

18

5 Related Work

The modification of the traditional interleaved processors proposed is similar to two recent proposals, which

employ interleaved processors to increase the functional unit utilization of superscalar processors. Prasadh and

Wu [18] propose a VLIW architecture, where instructions from several contexts are combined at run time to

increase the utilization of the functional units. The paper uses an extremely shallow pipeline (3 stages), and does

not address pipeline dependencies. Daddis and Torng [9] present a superscalar architecture in which instructions

from several contexts are used to fill a common instruction window. Instructions from this window are available

for issue when they have no dependencies. This scheme can hide pipeline dependencies by issuing instructions

from the same or a different context. Memory latency is also hidden by issuing instructions which do not

depend on result of the memory operation. Both of these proposals do not contain enough implementation

details to completely evaluate their impact on processor complexity. However, there appears to be a fair amount

of added complexity to simultaneously issue instructions from multiple contexts. The alternative solution of

only simultaneously issuing instructions from a single context, while interleaving contexts on a cycle-by-cycle

basis may provide comparable performance at a lower cost. We are planning to investigate these issues in the

near future.

Recently, Farrens and Pleszkun used both the interleaved and blocked schemes to help improve the

issue rate of the Cray-1S. They compared the schemes and showed the blocked scheme to have superior

performance [4]. There are two reasons why they arrived at a different conclusion than us. First, their interleaved

scheme switches between contexts regardless of the availability of instructions for the context, resulting in cycles

being lost switching to a context which has no useful work. Second, they assumed no context switch overhead

for both of the schemes. This second assumption is reasonable for their base architecture, where instruction

decoding and availability decision is done before the issue of the instructions. However, in general for the

blocked scheme, some time is needed to decode an instruction and determine whether a context switch should

be performed, and this time results in a non-zero switch cost.

6 Conclusions

In this paper, we have proposed an interleaved scheme which appears attractive for implementing multiple

contexts. The interleaved scheme has a performance advantage over the blocked alternative. While the blocked

scheme hides memory latency, the interleaved scheme can also reduce the effects of pipeline interlocks and

lower the context switch cost in addition to hiding memory latency. We have presented simulation results for

two pipelines which show that these advantages of the interleaved scheme exist, with the differences between the

two schemes becoming larger as the pipeline depth increases. However, performance alone does not determine

the usefulness of an architectural feature. In order to determine the usefulness of interleaved contexts, the other

side of the cost/performance tradeoff must also be explored. We examined the implementation complexity,

concluding that the interleaved scheme is more complex, due to the nondeterministic issue of instructions from

a single context relative to the processor instruction stream. This nondeterminism limits the amount of pipeline

scheduling which can be done by the compiler. However, this complexity is not overwhelming, and particularly

for processors which suffer from pipeline inefficiences, the performance of the interleaved scheme may justify

its additional complexity.

7 Acknowledgments

This research was supported by DARPA contract N00039-91-C-0138. In addition, James Laudon is supported

by IBM, and Anoop Gupta is partly supported by a NSF Presidential Young Investigator Award.

19

We thank Mike Smith for providing the parameterizable assembler and scheduler used in this study, and

for explaining its intricacies. We also thank Steve Goldschmidt for his quick response in adding extra features

to Tango.

References

[1] Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson, David Kranz, John Kubiatowicz, Kiyoshi

Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike Parkin, and Donald Yeung. The MIT Alewife

machine: A large-scale distributed-memory multiprocessor. In Workshop on Multithreaded Computers,

Supercomputing ’91, November 1991.

[2] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A processor architecture

for multiprocessing. In Proceedings of the 17th Annual International Symposium on Computer Architecture,

pages 104–114, May 1990.

[3] Digital Equipment Corporation. Alpha Architecture Handbook – Preliminary Edition. 1992.

[4] Matthew K. Farrens and Andrew R. Pleskun. Strategies for achieving improved processor throughput. In

Proceedings of the 18th Annual International Symposium on Computer Architecture, pages 362–369, May

1991.

[5] Kourosh Gharachorloo, Dan Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy.

Memory consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings of the

17th Annual International Symposium on Computer Architecture, pages 15–26, May 1990.

[6] Stephen R. Goldschmidt and Helen Davis. Tango introduction and tutorial. Technical Report CSL-TR-90-

410, Stanford University, 1990.

[7] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and Wolf-Dietrich Weber. Comparative

evaluation of latency reducing and tolerating techniques. In Proceeding of the 18th Annual International

Symposium on Computer Architecture, pages 254–263, May 1991.

[8] Robert H. Halstead, Jr. and Tetsuya Fujita. MASA: A multithreaded processor architecture for parallel sym-

bolic computing. In Proceedings of the 15th Annual International Symposium on Computer Architecture,

pages 443–451, June 1988.

[9] George E. Daddis Jr. and H. C. Torng. The concurrent execution of multiple instruction streams on

superscalar processors. In Proceedings of the 1991 International Conference on Parallel Processing, pages

I: 76–83, 1991.

[10] Gerry Kane. MIPS RISC Architecture. Prentice-Hall, 1988.

[11] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of the 8th Annual

Symposium on Computer Architecture, pages 81–87, 1981.

[12] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency tolerance through multithreading in large-

scale multiprocessors. In Proceedings of the International Symposium on Shared Memory Multiprocessing,

pages 91–101, April 1991.

[13] J. K. F. Lee and A. J. Smith. Branch prediction strategies and branch target buffer design. IEEE Computer,

17:6–22, 1984.

20

[14] Dan Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. The directory-

based cache coherence protocol for the DASH multiprocessor. In Proceedings of the 17th Annual Interna-

tional Symposium on Computer Architecture, pages 148–159, May 1990.

[15] Ewing Lusk, Ross Overbeek, et al. Portable Programs for Parallel Processors. Holt, Rinehart and Winston,

Inc., 1987.

[16] MIPS Computer Systems, Inc. MIPS R4000 Microprocessor User’s Manual. 1991.

[17] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton,

V. A. Norton, and J. Weiss. The IBM research parallel processor prototype (RP3): Introduction and

architecture. In Proceedings of the 1985 International Conference on Parallel Processing, pages 764–771,

1985.

[18] R. Guru Prasadh and Chuan lin Wu. A benchmark evaluation of a multi-threaded RISC processor ar-

chitecture. In Proceedings of the 1991 International Conference on Parallel Processing, pages I: 84–91,

1991.

[19] Rafael H. Saavedra-Barrera, David E. Culler, and Thorsten von Eicken. Analysis of multithreaded archi-

tectures for parallel computing. In Proceedings of the 2nd Annual Symposium on Parallel Algorithms and

Architecture, July 1990.

[20] C. Scheurich and M. Dubois. Lockup-free caches in high-performance multiprocessors. Journal of Parallel

and Distributed Computing, pages 25–36, January 1991.

[21] G. E. Schmidt. The Butterfly parallel processor. In Proceedings of the Second International Conference

on Supercomputing, pages 362–365, 1987.

[22] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford parallel applications for

shared-memory. Technical Report CSL-TR-91-469, Stanford University, 1991.

[23] Burton J. Smith. Architecture and applications of the HEP multiprocessor computer system. SPIE, 298:241–

248, 1981.

[24] Per Stenstrom, Fredrick Dahlgren, and Lars Lundberg. A lockup-free multiprocessor cache design. In

Proceedings of the 1991 International Conference on Parallel Processing, pages I: 246–250, 1991.

[25] Wolf-Dietrich Weber and Anoop Gupta. Exploring the benefits of multiple hardware contexts in a multi-

processor architecture: Preliminary results. In Proceedings of the 16th Annual International Symposium

on Computer Architecture, pages 273–280, June 1989.

21

A Additional Results

Blocked Interleaved

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Base Pipeline

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90
| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Deeper Pipeline

Figure 8: Processor Utilization — Ocean.

Table 8: Detailed Ocean Results.

Base Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 59.9 59.9 28.1 31.7 5.7 8.3 5.6 2.1
Cache Contention 0.2 0.2 1.1 0.9 2.5 2.9 2.5 4.5
Switch Overhead 0.0 0.0 4.0 2.4 5.4 2.5 5.7 1.7
Load Stall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Branch Stall 1.7 1.7 2.8 2.7 3.6 3.6 3.6 3.8
Execution Stall 2.4 2.4 3.9 3.5 5.1 4.3 5.1 4.5
Busy 35.8 35.8 60.1 58.7 77.7 78.4 77.6 83.4
Read Miss Rate 4.8 4.8 4.9 4.9 5.1 5.4 5.4 6.3

Deeper Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 51.7 51.7 21.0 25.6 5.8 5.7 4.3 1.4
Cache Contention 0.2 0.2 0.6 0.7 1.3 2.3 1.4 3.6
Switch Overhead 0.0 0.0 5.4 3.8 6.2 3.5 6.9 2.1
Load Stall 0.1 0.1 0.2 0.1 0.2 0.0 0.2 0.0
Branch Stall 4.9 4.9 7.3 4.3 8.7 4.1 8.7 3.5
Execution Stall 10.1 10.1 15.2 13.8 18.0 15.7 18.1 15.3
Busy 33.1 33.1 50.4 51.8 59.8 68.5 60.3 74.1
Read Miss Rate 4.7 4.7 4.9 4.9 4.7 5.4 5.3 6.3

22

Blocked Interleaved

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Base Pipeline

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80
| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Deeper Pipeline

Figure 9: Processor Utilization — LocusRoute.

Table 9: Detailed Locus Results.

Base Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 33.3 33.3 11.2 9.3 1.1 0.3 0.1 0.0
Cache Contention 1.2 1.2 2.2 2.8 3.0 3.6 3.0 3.7
Switch Overhead 0.0 0.0 3.6 1.4 2.6 0.9 2.7 0.6
Load Stall 1.0 1.0 1.5 0.6 1.8 0.1 1.9 0.0
Branch Stall 1.0 1.0 1.6 1.7 1.9 2.0 1.9 1.9
Execution Stall 1.3 1.3 1.9 1.7 2.3 1.2 2.4 0.7
Spin 15.3 15.3 4.9 1.7 0.5 1.0 0.2 2.7
Busy 46.9 46.9 73.0 80.7 86.7 90.9 87.9 90.3
Read Miss Rate 3.2 3.2 2.8 2.9 2.6 3.0 2.8 3.3

Deeper Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 26.5 26.5 6.9 6.2 0.5 0.3 0.0 0.0
Cache Contention 1.1 1.1 1.6 2.1 1.9 2.7 1.9 2.8
Switch Overhead 0.0 0.0 2.7 2.0 3.1 1.2 3.6 0.7
Load Stall 3.1 3.1 3.9 2.6 4.1 0.5 4.1 0.0
Branch Stall 15.7 15.7 19.6 13.3 20.8 8.9 20.6 8.5
Execution Stall 2.2 2.2 2.7 2.8 2.9 2.3 2.9 1.2
Spin 2.2 2.2 0.5 0.6 0.9 2.5 1.8 0.0
Busy 49.3 49.3 62.0 70.5 65.7 81.6 65.1 86.7
Read Miss Rate 2.8 2.8 2.5 3.0 2.5 3.0 2.9 2.8

23

Blocked Interleaved

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Base Pipeline

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80
| 90

| 100

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Number of Contexts

 P
ro

ce
ss

or
 U

til
iz

at
io

n

IDLE
CACHESTALL
SWITCH
PIPESTALL
SPIN
BUSY

| | | | | | | |

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

Deeper Pipeline

Figure 10: Processor Utilization — Cholesky.

Table 10: Detailed Cholesky Results.

Base Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 19.8 19.8 4.9 9.5 1.0 1.7 0.8 1.7
Cache Contention 0.8 0.8 1.1 1.5 1.5 2.7 2.2 3.7
Switch Overhead 0.0 0.0 7.6 1.0 6.0 1.1 3.8 1.1
Load Stall 0.5 0.5 0.6 0.3 0.8 0.1 0.9 0.0
Branch Stall 1.2 1.2 1.5 1.8 1.8 2.3 2.2 2.4
Execution Stall 8.2 8.2 10.0 8.6 12.0 8.7 13.9 8.6
Spin 27.1 27.1 21.9 16.2 14.1 5.7 2.6 1.3
Busy 42.4 42.4 52.3 61.0 62.8 77.7 73.6 81.1
Read Miss Rate 1.1 1.1 1.3 1.5 1.7 2.0 2.3 2.8

Deeper Pipeline
Single Context Two Contexts Four Contexts Eight Contexts
Block Inter Block Inter Block Inter Block Inter

Idle 16.0 16.0 3.8 3.9 0.8 0.9 2.9 3.3
Cache Contention 0.5 0.5 0.8 1.0 1.1 1.9 1.3 2.6
Switch Overhead 0.0 0.0 5.9 1.2 4.6 1.5 3.5 1.4
Load Stall 1.6 1.6 2.1 1.4 2.4 0.8 2.6 0.4
Branch Stall 4.3 4.3 5.7 4.5 6.5 3.7 6.9 2.9
Execution Stall 20.0 20.0 26.2 22.5 29.9 23.6 31.4 22.3
Spin 25.9 25.9 13.8 17.5 6.4 5.5 0.8 1.2
Busy 31.6 31.6 41.7 47.9 48.2 62.1 50.8 65.9
Read Miss Rate 1.1 1.1 1.2 1.4 1.8 2.0 2.2 2.6

24

