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CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

Who Cares About the Memory 
Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.
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Performance Gap:
(grows 50% / year)
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“Moore’s Law”

“Less’ Law?”
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Generations of Microprocessors 
• Time of a full cache miss in instructions executed:
1st  Alpha: 340 ns/5.0 ns = 68 clks x 2 or 136
2nd Alpha: 266 ns/3.3 ns = 80 clks x 4 or 320
3rd Alpha: 180 ns/1.7 ns =108 clks x 6 or 648

• 1/2X latency x 3X clock rate x 3X Instr/clock ⇒ 5X

CS252/Culler
Lec 4.4

1/31/02

Processor-Memory 
Performance Gap “Tax”

Processor % Area %Transistors 
(cost) (power)

• Alpha 21164 37% 77%
• StrongArm SA110 61% 94%
• Pentium Pro 64% 88%

– 2 dies per package: Proc/I$/D$ + L2$

• Caches have no “inherent value”, 
only try to close performance gap
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What is a cache?
• Small, fast storage used to improve average access 

time to slow memory.
• Exploits spacial and temporal locality
• In computer architecture, almost everything is a cache!

– Registers “a cache” on variables – software managed
– First-level cache a cache on second-level cache
– Second-level cache a cache on memory
– Memory a cache on disk (virtual memory)
– TLB a cache on page table
– Branch-prediction a cache on prediction information?

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster
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Traditional Four Questions for 
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level? 
(Block placement)

– Fully Associative, Set Associative, Direct Mapped
• Q2: How is a block found if it is in the upper level?

(Block identification)
– Tag/Block

• Q3: Which block should be replaced on a miss? 
(Block replacement)

– Random, LRU
• Q4: What happens on a write? 

(Write strategy)
– Write Back or Write Through (with Write Buffer)
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What are all the aspects of 
cache organization that impact 

performance?
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• Miss-oriented Approach to Memory Access:

– CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess
Execution

CPIICCPUtime ×




 ××+×=

CycleTimeyMissPenalt
Inst

MemMisses
Execution

CPIICCPUtime ×





 ×+×=

Review: Cache performance

• Separating out Memory component entirely
– AMAT = Average Memory Access Time
– CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccessCPI
Inst

AluOpsICCPUtime
A l u O p s

×




 ×+××=

yMissPenaltMissRateHitTimeAMAT ×+=
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( )DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime
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Impact on Performance
• Suppose a processor executes at 

– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1 
– 50% arith/logic, 30% ld/ st, 20% control

• Suppose that 10% of memory operations get 50 cycle 
miss penalty

• Suppose that 1% of instructions get same miss penalty
• CPI = ideal CPI + average stalls per instruction

1.1(cycles/ins)  +
[ 0.30 (DataMops/ins) 

x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[ 1 (InstMop/ins) 

x 0.01 (miss/InstMop) x 50 (cycle/miss)] 
= (1.1 +  1.5 + .5) cycle/ins = 3.1 

• 58% of the time the proc is stalled waiting for memory!
• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

CS252/Culler
Lec 4.10

1/31/02

Unified vs Split Caches
• Unified vs Separate I&D

• Example:
– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?
– Assume 33% data ops ⇒ 75% accesses from instructions (1.0/1.33)
– hit time=1, miss time=50
– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) =  2.05
AMATUnified=75%x(1+1.99%x50)+25%x(1+1+1.99%x50)= 2.24

ProcI-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1

Proc

Unified
Cache-2
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How to Improve Cache 
Performance?

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

yMissPenaltMissRateHitTimeAMAT ×+=
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Where to misses come from?
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache, 
so the block must be brought into the cache. Also called cold 
start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed 
during execution of a program, capacity misses will occur due to 
blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or 
direct mapped, conflict misses (in addition to compulsory & 
capacity misses) will occur because a block can be discarded and
later retrieved if too many blocks map to its set. Also called 
collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

• 4th “C”:
– Coherence - Misses caused by cache coherence.
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Cache Size (KB)   
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Cache Size

• Old rule of thumb: 2x size => 25% cut in miss rate
• What does it reduce?

Cache Size (KB)   
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Huge Caches => Working Sets
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Example LU Decomposition
from NAS Parallel Benchmarks
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Cache Organization?

• Assume total cache size not changed:
• What happens if:

1) Change Block Size: 

2) Change Associativity: 

3) Change Compiler: 

Which of 3Cs is obviously affected?
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Block Size (bytes)   

Miss 
Rate 

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

Larger Block Size 
(fixed size&assoc)

Reduced 
compulsory

misses
Increased
Conflict
Misses

What else drives up block size?
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Cache Size (KB)   
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3Cs Relative Miss Rate

Cache Size (KB)   
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Flaws: for fixed block size
Good: insight => invention
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Associativity vs Cycle Time

• Beware: Execution time is only final measure!
• Why is cycle time tied to hit time?

• Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way 

external cache +10%, 
internal + 2% 

– suggested big and dumb caches

Effective cycle time of assoc
pzrbski ISCA
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Example: Avg. Memory Access 
Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for 
4-way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)
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Fast Hit Time + Low Conflict 
=> Victim Cache

• How to combine fast hit time 
of direct mapped 
yet still avoid conflict misses? 

• Add buffer to place data 
discarded from cache

• Jouppi [1990]: 4-entry victim 
cache removed 20% to 95% of 
conflicts for a 4 KB direct 
mapped data cache

• Used in Alpha, HP machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator
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Reducing Misses via 
“Pseudo-Associativity”

• How to combine fast hit time of Direct Mapped and have the 
lower conflict misses of 2-way SA cache? 

• Divide cache: on a miss, check other half of cache to see if 
there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to  processor (L2)
– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time
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Reducing Misses by Hardware
Prefetching of Instructions & Data 

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 

4KB cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 

streams got 50% to 70% of misses from 
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory 
bandwidth that can be used without penalty
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Reducing Misses by 
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults; a form of 

speculative execution
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
» Must be correct address and register!

– Non-Binding prefetch: Load into cache.  
» Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth
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Reducing Misses by Compiler 
Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound elements 

vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored in 

memory
– Loop Fusion: Combine 2 independent loops that have same looping and some 

variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data repeat edly 

vs. going down whole columns or rows
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Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality
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Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding 
through memory every 100 words; improved 
spatial locality
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Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per 
access; improve spatial locality
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Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits
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Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to N3/B+2N2

• Conflict Misses Too? 
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Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  misses

vs. 48 despite both fit in cache

Blocking Factor   

0
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0 50 100 150

Fully Associative Cache    

Direct Mapped Cache   

CS252/Culler
Lec 4.33

1/31/02

Performance Improvement           
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merged
arrays

loop
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loop fusion blocking

Summary of Compiler Optimizations to 
Reduce Cache Misses (by hand)
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Summary: Miss Rate Reduction

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo- Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Prefetching comes in two flavors:
– Binding prefetch: Requests load directly into register.

» Must be correct address and register!
– Non-Binding prefetch: Load into cache.  

» Can be incorrect.  Frees HW/SW to guess!

CPUtime = IC × CPI
Execution

+ Memory accesses
Instruction

× Miss rate × Miss  penalty 
 

 
 × Clock  cycle  time
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Review: Improving Cache 
Performance

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 
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Write Policy:
Write-Through vs Write-Back

• Write-through: all writes update cache and underlying 
memory/cache

– Can always discard cached data - most up-to-date data is in memory
– Cache control bit: only a valid bit

• Write-back: all writes simply update cache
– Can’t just discard cached data - may have to write it back to memory
– Cache control bits: both valid and dirty bits

• Other Advantages:
– Write-through:

» memory (or other processors) always have latest data
» Simpler management of cache

– Write-back:
» much lower bandwidth, since data often overwritten multiple times
» Better tolerance to long-latency memory?
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Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

• Write allocate: allocate new cache line in cache
– Usually means that you have to do a “read miss” to 
fill in rest of the cache-line!

– Alternative: per/word valid bits
• Write non-allocate (or “write-around”):

– Simply send write data through to underlying 
memory/cache - don’t allocate new cache line!
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1. Reducing Miss Penalty: 
Read Priority over Write on Miss

write
buffer

CPU

in out

DRAM   
(or lower mem)

Write Buffer
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1. Reducing Miss Penalty: 
Read Priority over Write on Miss

• Write-through w/ write buffers => RAW conflicts 
with main memory reads on cache misses

– If simply wait for write buffer to empty, might increase read miss 
penalty (old MIPS 1000 by 50% )

– Check write buffer contents before read; 
if no conflicts, let the memory access continue

• Write-back want buffer to hold displaced blocks
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read, 

and then do the write
– CPU stall less since restarts as soon as do read
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2. Reduce Miss Penalty: 
Early Restart and Critical Word 

First
• Don’t wait for full block to be loaded before 

restarting CPU
– Early restart—As soon as the requested word of the block 

ar�rives, send it to the CPU and let the CPU continue executio
– Critical Word First—Request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block. Also
called wrapped fetch and requested word  first

• Generally useful only in large blocks, 
• Spatial locality => tend to want next sequential 

word, so not clear if benefit by early restart

block
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3. Reduce Miss Penalty: Non-
blocking Caches to reduce stalls on 

misses
• Non-blocking cache or  lockup-free cache allow data 

cache to continue to supply cache hits during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss”  reduces the effective miss penalty 
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss”  may 
further lower the effective miss penalty by 
overlapping multiple misses

– Significantly increases the complexity of the cache controller as 
there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses
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Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss
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4: Add a second-level cache
• L2 Equations

AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit Time L2 + Miss RateL2 + Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total number of 

memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total number of 

memory accesses generated by the CPU

– Global Miss Rate is what matters
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Comparing Local and Global 
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to 
single level cache rate 
provided L2 >> L1

• Don’t use local miss rate
• L2 not tied to CPU clock 

cycle!
• Cost & A.M.A.T.
• Generally Fast Hit Times 

and fewer misses
• Since hits are few, target 

miss reduction

Linear

Log

Cache Size

Cache Size
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Reducing Misses: 
Which apply to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

CS252/Culler
Lec 4.46

1/31/02

Relative CPU Time   

Block Size   
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L2 cache block size & 
A.M.A.T.

• 32KB L1, 8 byte path to memory

CS252/Culler
Lec 4.47

1/31/02

Reducing Miss Penalty Summary

• Four techniques
– Read priority over write on miss
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit under Miss, Miss under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in 

between
– First attempts at L2 caches can make things worse, since 

increased worst case is worse

CPUtime = IC × CPI Execut ion+
Memory accesses

Instruction
× Miss rate × Miss penalty 

 
 
 × Clock  cycle  time
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What is the Impact of What 
You’ve Learned About Caches?

• 1960-1985: Speed 
= ƒ(no. operations)

• 1990
– Pipelined 

Execution & 
Fast Clock Rate

– Out-of-Order 
execution

– Superscalar 
Instruction Issue

• 1998: Speed = 
ƒ(non-cached memory accesses)

• Superscalar, Out-of-Order machines hide L1 data cache miss 
(5 clocks) but not L2 cache miss (50 clocks)?
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Cache Optimization Summary
Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2
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