
Page 1

CS252/Culler
Lec 4.1

1/31/02

CS252
Graduate Computer Architecture

Lecture 4

Cache Design

January 31, 2002
Prof. David Culler

CS252/Culler
Lec 4.2

1/31/02

CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

Who Cares About the Memory
Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

“Moore’s Law”

“Less’ Law?”

CS252/Culler
Lec 4.3

1/31/02

Generations of Microprocessors
• Time of a full cache miss in instructions executed:
1st Alpha: 340 ns/5.0 ns = 68 clks x 2 or 136
2nd Alpha: 266 ns/3.3 ns = 80 clks x 4 or 320
3rd Alpha: 180 ns/1.7 ns =108 clks x 6 or 648

• 1/2X latency x 3X clock rate x 3X Instr/clock ⇒ 5X

CS252/Culler
Lec 4.4

1/31/02

Processor-Memory
Performance Gap “Tax”

Processor % Area %Transistors
(cost) (power)

• Alpha 21164 37% 77%
• StrongArm SA110 61% 94%
• Pentium Pro 64% 88%

– 2 dies per package: Proc/I$/D$ + L2$

• Caches have no “inherent value”,
only try to close performance gap

CS252/Culler
Lec 4.5

1/31/02

What is a cache?
• Small, fast storage used to improve average access

time to slow memory.
• Exploits spacial and temporal locality
• In computer architecture, almost everything is a cache!

– Registers “a cache” on variables – software managed
– First-level cache a cache on second-level cache
– Second-level cache a cache on memory
– Memory a cache on disk (virtual memory)
– TLB a cache on page table
– Branch-prediction a cache on prediction information?

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

CS252/Culler
Lec 4.6

1/31/02

Traditional Four Questions for
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level?
(Block placement)

– Fully Associative, Set Associative, Direct Mapped
• Q2: How is a block found if it is in the upper level?

(Block identification)
– Tag/Block

• Q3: Which block should be replaced on a miss?
(Block replacement)

– Random, LRU
• Q4: What happens on a write?

(Write strategy)
– Write Back or Write Through (with Write Buffer)

Page 2

CS252/Culler
Lec 4.7

1/31/02

What are all the aspects of
cache organization that impact

performance?

CS252/Culler
Lec 4.8

1/31/02

• Miss-oriented Approach to Memory Access:

– CPIExecution includes ALU and Memory instructions

CycleTimeyMissPenaltMissRate
Inst

MemAccess
Execution

CPIICCPUtime ×

 ××+×=

CycleTimeyMissPenalt
Inst

MemMisses
Execution

CPIICCPUtime ×

 ×+×=

Review: Cache performance

• Separating out Memory component entirely
– AMAT = Average Memory Access Time
– CPIALUOps does not include memory instructions

CycleTimeAMAT
Inst

MemAccessCPI
Inst

AluOpsICCPUtime
A l u O p s

×

 ×+××=

yMissPenaltMissRateHitTimeAMAT ×+=
()
()DataDataData

InstInstInst

yMissPenaltMissRateHitTime

yMissPenaltMissRateHitTime

×+

+×+=

CS252/Culler
Lec 4.9

1/31/02

Impact on Performance
• Suppose a processor executes at

– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1
– 50% arith/logic, 30% ld/ st, 20% control

• Suppose that 10% of memory operations get 50 cycle
miss penalty

• Suppose that 1% of instructions get same miss penalty
• CPI = ideal CPI + average stalls per instruction

1.1(cycles/ins) +
[0.30 (DataMops/ins)

x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins)

x 0.01 (miss/InstMop) x 50 (cycle/miss)]
= (1.1 + 1.5 + .5) cycle/ins = 3.1

• 58% of the time the proc is stalled waiting for memory!
• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

CS252/Culler
Lec 4.10

1/31/02

Unified vs Split Caches
• Unified vs Separate I&D

• Example:
– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?
– Assume 33% data ops ⇒ 75% accesses from instructions (1.0/1.33)
– hit time=1, miss time=50
– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05
AMATUnified=75%x(1+1.99%x50)+25%x(1+1+1.99%x50)= 2.24

ProcI-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1

Proc

Unified
Cache-2

CS252/Culler
Lec 4.11

1/31/02

How to Improve Cache
Performance?

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ×+=

CS252/Culler
Lec 4.12

1/31/02

Where to misses come from?
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache,
so the block must be brought into the cache. Also called cold
start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due to
blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory &
capacity misses) will occur because a block can be discarded and
later retrieved if too many blocks map to its set. Also called
collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

• 4th “C”:
– Coherence - Misses caused by cache coherence.

Page 3

CS252/Culler
Lec 4.13

1/31/02

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate
(SPEC92)

Conflict

CS252/Culler
Lec 4.14

1/31/02

Cache Size

• Old rule of thumb: 2x size => 25% cut in miss rate
• What does it reduce?

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

CS252/Culler
Lec 4.15

1/31/02

Huge Caches => Working Sets

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Per Processor Cache Size (KB)

M
is

s
R

at
e

(%
)

4-node
8-node
16-node
32-node

First working set

Capacity -generated traff ic
(including conflicts)

Second working set

D
at

a
tra

ffic

Other capacity -independent communication

Cold-start (compulsory) traff ic

Replication capacity (cache size)

Inherent communication

Example LU Decomposition
from NAS Parallel Benchmarks

CS252/Culler
Lec 4.16

1/31/02

Cache Organization?

• Assume total cache size not changed:
• What happens if:

1) Change Block Size:

2) Change Associativity:

3) Change Compiler:

Which of 3Cs is obviously affected?

CS252/Culler
Lec 4.17

1/31/02

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

Larger Block Size
(fixed size&assoc)

Reduced
compulsory

misses
Increased
Conflict
Misses

What else drives up block size?
CS252/Culler

Lec 4.18
1/31/02

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Associativity
Conflict

Page 4

CS252/Culler
Lec 4.19

1/31/02

3Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

CS252/Culler
Lec 4.20

1/31/02

Associativity vs Cycle Time

• Beware: Execution time is only final measure!
• Why is cycle time tied to hit time?

• Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,
internal + 2%

– suggested big and dumb caches

Effective cycle time of assoc
pzrbski ISCA

CS252/Culler
Lec 4.21

1/31/02

Example: Avg. Memory Access
Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for
4-way, 1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

CS252/Culler
Lec 4.22

1/31/02

Fast Hit Time + Low Conflict
=> Victim Cache

• How to combine fast hit time
of direct mapped
yet still avoid conflict misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry victim
cache removed 20% to 95% of
conflicts for a 4 KB direct
mapped data cache

• Used in Alpha, HP machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

CS252/Culler
Lec 4.23

1/31/02

Reducing Misses via
“Pseudo-Associativity”

• How to combine fast hit time of Direct Mapped and have the
lower conflict misses of 2-way SA cache?

• Divide cache: on a miss, check other half of cache to see if
there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor (L2)
– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

CS252/Culler
Lec 4.24

1/31/02

Reducing Misses by Hardware
Prefetching of Instructions & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from

4KB cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8

streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty

Page 5

CS252/Culler
Lec 4.25

1/31/02

Reducing Misses by
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults; a form of

speculative execution
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
» Must be correct address and register!

– Non-Binding prefetch: Load into cache.
» Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

CS252/Culler
Lec 4.26

1/31/02

Reducing Misses by Compiler
Optimizations

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound elements

vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored in

memory
– Loop Fusion: Combine 2 independent loops that have same looping and some

variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data repeat edly

vs. going down whole columns or rows

CS252/Culler
Lec 4.27

1/31/02

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

CS252/Culler
Lec 4.28

1/31/02

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding
through memory every 100 words; improved
spatial locality

CS252/Culler
Lec 4.29

1/31/02

Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per
access; improve spatial locality

CS252/Culler
Lec 4.30

1/31/02

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

Page 6

CS252/Culler
Lec 4.31

1/31/02

Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to N3/B+2N2

• Conflict Misses Too?

CS252/Culler
Lec 4.32

1/31/02

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the misses

vs. 48 despite both fit in cache

Blocking Factor

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

CS252/Culler
Lec 4.33

1/31/02

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

CS252/Culler
Lec 4.34

1/31/02

Summary: Miss Rate Reduction

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo- Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Prefetching comes in two flavors:
– Binding prefetch: Requests load directly into register.

» Must be correct address and register!
– Non-Binding prefetch: Load into cache.

» Can be incorrect. Frees HW/SW to guess!

CPUtime = IC × CPI
Execution

+ Memory accesses
Instruction

× Miss rate × Miss penalty

 × Clock cycle time

CS252/Culler
Lec 4.35

1/31/02

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CS252/Culler
Lec 4.36

1/31/02

Write Policy:
Write-Through vs Write-Back

• Write-through: all writes update cache and underlying
memory/cache

– Can always discard cached data - most up-to-date data is in memory
– Cache control bit: only a valid bit

• Write-back: all writes simply update cache
– Can’t just discard cached data - may have to write it back to memory
– Cache control bits: both valid and dirty bits

• Other Advantages:
– Write-through:

» memory (or other processors) always have latest data
» Simpler management of cache

– Write-back:
» much lower bandwidth, since data often overwritten multiple times
» Better tolerance to long-latency memory?

Page 7

CS252/Culler
Lec 4.37

1/31/02

Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

• Write allocate: allocate new cache line in cache
– Usually means that you have to do a “read miss” to
fill in rest of the cache-line!

– Alternative: per/word valid bits
• Write non-allocate (or “write-around”):

– Simply send write data through to underlying
memory/cache - don’t allocate new cache line!

CS252/Culler
Lec 4.38

1/31/02

1. Reducing Miss Penalty:
Read Priority over Write on Miss

write
buffer

CPU

in out

DRAM
(or lower mem)

Write Buffer

CS252/Culler
Lec 4.39

1/31/02

1. Reducing Miss Penalty:
Read Priority over Write on Miss

• Write-through w/ write buffers => RAW conflicts
with main memory reads on cache misses

– If simply wait for write buffer to empty, might increase read miss
penalty (old MIPS 1000 by 50%)

– Check write buffer contents before read;
if no conflicts, let the memory access continue

• Write-back want buffer to hold displaced blocks
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read,

and then do the write
– CPU stall less since restarts as soon as do read

CS252/Culler
Lec 4.40

1/31/02

2. Reduce Miss Penalty:
Early Restart and Critical Word

First
• Don’t wait for full block to be loaded before

restarting CPU
– Early restart—As soon as the requested word of the block

ar�rives, send it to the CPU and let the CPU continue executio
– Critical Word First—Request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also
called wrapped fetch and requested word first

• Generally useful only in large blocks,
• Spatial locality => tend to want next sequential

word, so not clear if benefit by early restart

block

CS252/Culler
Lec 4.41

1/31/02

3. Reduce Miss Penalty: Non-
blocking Caches to reduce stalls on

misses
• Non-blocking cache or lockup-free cache allow data

cache to continue to supply cache hits during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss penalty
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by
overlapping multiple misses

– Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses

CS252/Culler
Lec 4.42

1/31/02

Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

Page 8

CS252/Culler
Lec 4.43

1/31/02

4: Add a second-level cache
• L2 Equations

AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit Time L2 + Miss RateL2 + Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total number of

memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total number of

memory accesses generated by the CPU

– Global Miss Rate is what matters

CS252/Culler
Lec 4.44

1/31/02

Comparing Local and Global
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to
single level cache rate
provided L2 >> L1

• Don’t use local miss rate
• L2 not tied to CPU clock

cycle!
• Cost & A.M.A.T.
• Generally Fast Hit Times

and fewer misses
• Since hits are few, target

miss reduction

Linear

Log

Cache Size

Cache Size

CS252/Culler
Lec 4.45

1/31/02

Reducing Misses:
Which apply to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

CS252/Culler
Lec 4.46

1/31/02

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size &
A.M.A.T.

• 32KB L1, 8 byte path to memory

CS252/Culler
Lec 4.47

1/31/02

Reducing Miss Penalty Summary

• Four techniques
– Read priority over write on miss
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit under Miss, Miss under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in

between
– First attempts at L2 caches can make things worse, since

increased worst case is worse

CPUtime = IC × CPI Execut ion+
Memory accesses

Instruction
× Miss rate × Miss penalty

 × Clock cycle time

CS252/Culler
Lec 4.48

1/31/02

What is the Impact of What
You’ve Learned About Caches?

• 1960-1985: Speed
= ƒ(no. operations)

• 1990
– Pipelined

Execution &
Fast Clock Rate

– Out-of-Order
execution

– Superscalar
Instruction Issue

• 1998: Speed =
ƒ(non-cached memory accesses)

• Superscalar, Out-of-Order machines hide L1 data cache miss
(5 clocks) but not L2 cache miss (50 clocks)?

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

Page 9

CS252/Culler
Lec 4.49

1/31/02

Cache Optimization Summary
Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2

m
is

s
ra

te
m

is
s

p
en

al
ty

