Cs252
Graduate Computer Architecture
Lecture 4

Cache Design

January 31, 2002
Prof. David Culler

cs252/Culler

1/31/02
Lec 41

Who Cares About the Memory

Hierarchy?
1000 A HProc
0,

o) “Moore’s LM 60%/yr.
o GPU-DRAM Gap A

$S100 Brocessor-Memory
IS Rerformance Gap:
) 10 (rows 50% / year)
5 “Less’ Law?” —DBRAM

o oRAM 7%lyr.

1 = —
CERCEEEFEEEFEVEELEREE

* 1980: no cache in pproc; 1995 2-level cache on chip

/31/02

(1989 first Intel pproc with a cache on chip)

cs252/Culler
Lec 4.2

Generations of Microprocessors

« Time of a full cache miss in instructions executed:

1st Alpha: 340 ns/5.0 ns = 68 clks x 2 or 136
2nd Alpha: 266 ns/3.3 ns = 80 clks x 4 or 320
3rd Alpha: 180 ns/1.7 ns =108 clks x 6 or 648

* 1/2X latency x 3X clock rate x 3X Instr/clock b -5X

31/02 cs252/Culler

13102

Processor-Memory
Performance Gap “Tax”

Processor % Area %Transistors
(-cost) (-power)
Alpha 21164 37% 77%
StrongArm SA110 61% 94%
Pentium Pro 64% 88%

- 2 dies per package: Proc/1$/D$ + L2$

Caches have no “inherent value”,
only try to close performance gap

cs252/Culer

What is a cache?

Small, fast storage used to improve average access
time to slow memory.

« Exploits spacial and temporal locality

« In computer architecture, almost everything is a cache!
- Registers “a cache” on variables - software managed

- First-level cache a cache on second-level cache

- Second-level cache a cache on memory

- Memory a cache on disk (virtual memory)

- TLB a cache on page table

- Branch-prediction a ca on informatign?
—Cache
Bigger | —tache | Faster
Momory

Disk, Tape, etc.

cs252/Culler

31/02
lecds

131/02

Traditional Four Questions for
Memory Hierarchy Designers

Q1: Where can a block be placed in the upper level?
(Block placement)

- Fully Associative, Set Associative, Direct Mapped

Q2: How is a block found if it is in the upper level?
(Block identification)

- Tag/Block

Q3: Which block should be replaced on a miss?
(Block replacement)

- Random, LRU

Q4: What happens on a write?

(Write strategy)

- Write Back or Write Through (with Write Buffer)

cs252/Culler
Lec 4.6

Page 1

What are all the aspects of
cache organization that impact
performance?

cs252/Culler
Lec 4.7

1/31/02

Review: Cache performance

* Miss-oriented Approach to Memory Access:

+ MemAccess.,

CPUtime=1C" &PI
& T

MissRate’ MissPenaltyd” CycleTime
Execution VZ 4
MemMisses,
Inst
includes ALU and Memory instructions

CPUtime=1C” ?Pl Excnution” MisPenaIty% CydleTime

- CP1

Execution

« Separating out Memory component entirely
- AMAT = Average Memory Access Time
= CPl 5 yops does not include memory instructions

CPUtime=1C” w"s
Inst
AMAT = HitTime+MissRate” MissPenalty

=(HitTime, o + MissRate,, ~ MissPenalty,)+
(HitTimey,, +MissRate,,,” MissPenaltyy,,)

cPI + MemAccess.

AMATE CycleTime
2

3102 cs252/Culler

Impact on Performance
« Suppose a processor executes at
- Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1
- 50% arith/logic, 30% ld/st, 20% control
« Suppose that 10% of memory operations get 50 cycle
miss penalty
« Suppose that 1% of instructions get same miss penalty
«CPI = ideal CPI + average stalls per instruction
1.1(cycles/ins) +
[0.30 (DataMops/ins)
X 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins)
X 0.01 (miss/ InstMop) x 50 (cycle/miss)]
= (1.1 + 1.5+ .5) cycle/ins = 3.1
* 58% of the time the proc is stalled waiting for memory!

« AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

1/31/02 cs252/Culler

Unified vs Split Caches

« Unified vs Separate 1&D
| [

T=Catie=1 DyCache-1
Unified
« Example:

- 16KB 1&D: Inst miss rate=0.64%, Data miss rate=6.47%
- 32KB unified: Aggregate miss rate=1.99%
* Which is better (ignore L2 cache)?
- Assume 33% data ops P 75% accesses from instructions (1.0/1.33)
- hit time=1, miss time=50
- Note that data hit has 1 stall for unified cache (only one port)

ache—

AMAT 0= 75%X(1+0.64%x50)+25%x(1+6.47%x50) = 2.05
AMAT, i 5i0g=75%X(1+1.99%X50)+25%x(1+1+1.99%x50)= 2.24

1/31/02 cs252/Culler

How to Improve Cache
Performance?

AMAT =HitTime+ MissRate” MissPenalty

1. Reduce the miss rate
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

cs252/Culler
Lec 411

31/02

Where to misses come from?
¢ Classifying Misses: 3 Cs

— Compulsory —The first access to a block is not in the cache,
so the block must be brought into the cache. Also called cold
start misses or first reference misses.

(Misses in even an Infinite Cache)

- CapaC|ty—|f the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due to
blocks being discarded and later retrieved.

(Misses in Fully Associative Size X Cache)

— Conflict—If block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory &
capacity misses) will occur because a block can be discarded and
later rétrieved if too many blocks map to its set. Also called
collision misses or interference misses.

(Misses in N-way Associative, Size X Cache)

« 4th “C™:
— Coherence - Misses caused by cache coherence.

cs252/Culler
Lec 412

131/02

Page 2

1/31/02

3Cs Absolute Miss Rate
(SPEC92)

1-way
onflict

8-way
Capacity

128

Compulsory

Cache Size (KB)

cs252/Culler

/31/02

Cache Size

1-way

0.14
0.12

0.1
0.08
0.06
0.04
0.02

Cache Size (KB) Compulsory
« Old rule of thumb: 2x size => 25% cut in miss rate

« What does it reduce?

cs252/Culler
Lec 4.14

Huge Caches => Working Sets

Data wafic

A

Replicalion capacty (cache size)

MissRate (%)

Example LU Decomposition
from NAS Parallel Benchmarks

Cache Organization?

Assume total cache size not changed:
What happens if:

1) Change Block Size:
2) Change Associativity:
3) Change Compiler:

Which of 3Cs is obviously affected?

O Y EEEY
P Processr Cacho iz (K5)
. csasaroer ersor csasorculer
Larger Block Size o
(fixed size c) Associativity
25% 0.14
) 1-way .

200 / S)_-_ 1K 012 canflict

w ><,/ —— 4K 01
- Isg
Miss P 0.08
Rate

% 0.06

M~ — N/« Capacity
0.04

5% \r 256K
Reduced ————] A} 0.02
compulsory 0% * 0
© o <
misses = ™ © a E Ir(w:crefell_sed
onflict
Block Size (bytes) Nisses Compulsory

31/02

What else drives up block size?

cs252/Culler
Lec 417

131/02

Cache Size (KB)

cs252/Culler
Lec 418

Page 3

3Cs Relative Miss Rate
100%
80% Conflict
60%

40%

20%

0%

-~ o~ < ©

Flaws: for fixed block size —
Good: insight => invention cche size (K B) Compulsory

1/31/02 cs252/Culler
Lec 4.10

©
—

32
64
28

Associativity vs Cycle Time

« Beware: Execution time is only final measure!
* Why is cycle time tied to hit time?

« Will Clock Cycle time increase?
- Hill [1988] suggested hit time for 2-way vs. 1-way
external cache ™+
internal + 2%

- suggested big and dumb caches

Effective cycle time of assoc
pzrbski 1SCA

31/02 cs252/Culler

Example: Avg. Memory Access
Time vs. Miss Rate
* Example: assume CCT = 1.10 for 2-way, 1.12 for
4-

rect mapped
Cache Size Associativity

KB) 1-way 2-way 4 way 8 way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

1/31/02 cs252/Culler

Fast Hit Time + Low Conflict
=> Victim Cache

* How to combine fast hit time
of direct mapped
yet still avoid conflict misses?
* Add buffer to place data
discarded from cache U
« Jouppi [1990]: 4 -entry victim
cache removed 20% to 95% of
conflicts for a 4 KB direct balinaat O
mapped data cache

» TAGS DATA

b v ne Cache line of Data
« Used in Alpha, HP machines b e e
v ne Cache line of Data
Nest Lower Level n
Hirarchy
. csasz/culer

Reducing Misses via
“Pseudo-Associativity”

« How to combine fast hit time of Direct Mapped and have the
lower conflict misses of 2-way SA cache?

« Divide cache: on a miss, check other half of cache to see if
there, if so have a pseldo-hit (slow hit)

-
« >
Pseudo Hit Time MISS Penaity
¥ >
< >

Time

« Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

- Better for caches not tied directly to processor (L2)
- Used in MIPS R1000 L2 cache, similar in UltraSPARC

31/02 cs252/Culler

Reducing Misses by Hardware
Prefetching of Instructions & Data

« E.g., Instruction Prefetching
- Alpha 21064 fetches 2 blocks on a miss
- Extra block placed in “stream buffer”
- On miss check stream buffer

* Works with data blocks too:

- Jouppi [1990] 1 data stream buffer got 25% misses from
4KB cache; 4 streams got 43%

- Palacharla & Kessler [1994] for scientific programs for 8
streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches
« Prefetching relies on having extra memory
bandwidth that can be used without penalty

131/02 cs252/Culler
Lec 4.24

Reducing Misses by
Software Prefetching Data

« Data Prefetch
- Load data into register (HP PA-RISC loads)
- Cache Prefetch: load into cache (MIPS 1V, PowerPC, SPARC v. 9)
- Special prefetching instructions cannot cause faults; a form of
speculative execution
« Prefetching comes in two flavors:
- Binding prefetch: Requests load directly into register.
» Must be correct address and register!
- Non-Binding prefetch: Load into cache.
» Can be incorrect. Faults?
¢ Issuing Prefetch Instructions takes time
- Is cost of prefetch issues < savings in reduced misses?
- Higher superscalar reduces difficulty of issue bandwidth

1/31/02 cs252/Culler

Lec 4.25

Reducing Misses by Compiler
Optimizations

McFarling [1989] reduced caches misses by 75%

on 8KB direct mapped cache, 4 byte blocks in_software
« Instructions

- Reorder procedures in memory so as to reduce conflict misses

- Profiling to look at conflicts(using tools they developed)

« Data
- Merging Arrays: improve spatial locality by single array of compound elements
vs. 2 arrays

- Loop Interchange: change nesting of loops to access data in order stored in
memory

Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap

- Blocking: Improve temporal locality by accessing “blocks” of data repeatedly
vs. going down whole columns or rows

3102 cs252/Culler

Lec 4.26

Merging Arrays Example

/* Before: 2 sequential
int val[SIZE];
int key[Sl ZE] ;

arrays */

/* After: 1 array of stuctures */
struct nerge {

int val;

int key;
H

struct nerge nerged_array[Sl ZE] ;

Reducing conflicts between val & key;
improve spatial locality

1/31/02 cs252/Culler

1/31/02

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (j =0; j <100; j = j+1)
for (i =0; i <5000; i =i+1)
x[(i][j] =2 * x[i][i];
/* After */
for (k =0; k < = k+1)
i 5000; i = i+1)
= < 100 | = j+1)

=2 [l

for (i =0;
for (j

N X100

»

Sequential accesses instead of striding
through memory every 100 words; improved
spatial locality

cs252/Culer

31/02

Loop Fusion Example

/* Before */
for (i =0; i <N i =1i+1)
for (j =0; j <N j =j+1)
alillil_= 1bli][j] * clillil;
for (i =0; i <N i =i+1)
for (j =0; j <N j =j+1)
dli][j] = ali ~+ cli ;
/* After */
for (i =0; i <N i
for (j =0; j <N
{ alillil = 2/blilfi] * c[illjl;
dlilfi] =afilljl + c[illjil;}

2 misses per access to a & c vs. one miss per
access; improve spatial locality

cs252/Culler
Lec 4,29

131/02

Blocking Examp

I+ metore e
for(\‘:;i<N;i:i+1) »
for (j =0; j <N j =j+1)
{r =0
for (k =0; k <N k = k+1){
ro=or 4 Y[k z[k][1]:}s

}?‘[L][J] = v —

 Two Inner Loops: >

- Read all NxN elements of z[]

- Read N elements of 1 row of y[] repeatedly I

- Write N elements of 1 row of x[] v

« Capacity Misses a function of N & Cache Size:
- 2N3+ N2 => (assuming no conflict; otherwise ..

« ldea: compute on BxB submatrix that fits

cs252/Culler

Lec 430

Page 5

Blocking Example

/* After */
for (J] =0; J] <N] =]]+B)
for (kk = 0; kk < N; kk = kk+B)
for (i =0; i <N i =i+1)
for (j =1j:] <min(jj+B1,N; | =]+1)
{r =0

for (;< = kk; k < mn(kk+B-1,N); k = k+1) {
ro=r o+ yliILkI*z[k][1]:}s

(101 = x[i10)] + s

N

« B called Blocking Factor

» Capacity Misses from 2N¢ + N2 to N3/B+2N?
¢ Conflict Misses Too?

cs252/Culler

1/31/02
Lec 4.31

Reducing Conflict Misses by Blocking

0.1 1
0.05 4 Direct Mapped Cache
Fully Associative Cache
0 + + 1
0 50 100 150

Blocking Factor

« Conflict misses in caches not FA vs. Blocking size

- Lam et al [1991] a blocking factor of 24 had a fifth the misses
vs. 48 despite both fit in cache
cszs2/culler

ey Lec 4.32

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

Summary: Miss Rate Reduction

vpenta (nasa7) B
i~ y
gmty (nasa7) CPUtime=1IC gCPI:Am‘} M?;ruﬁf:?% iss penaltyz Clock cycle time
tomcatv « 3 Cs: Compulsory, Capacity, Conflict
btrix (nasa?) 0. Larger ca‘che . .
1. Reduce Misses via Larger Block Size
mxm (nasa?) 2. Reduce Misses via Higher Associativity
spice 3. Reducing Misses via Victim Cache
cholesky 4. Reducing Misses via Pseudo- Associativity
5. Reducing Misses by HW Prefetching Instr, Data
(nasa?) 6. Reducing Misses by SW Prefetching Data
compress I I I 7. Reducing Misses by Compiler Optimizations
« Prefetching comes in two flavors:
1 15 2 25 3 - Binding prefetch: Requests load directly into register.
Performance | mprovement » Must be correct address and register!
- Non-Binding prefetch: Load into cache.
merged loop loop fusion O blocking » Can be incorrect. Frees HW/SW to guess!
arrays interchange
13120 e V3102 cszs2/Culler

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

cs252/Culler
Lec 435

31/02

Write Policy:
Write-Through vs Write-Back

« Write-through: all writes update cache and underlying
memory/cache
- Can always discard cached data - most up-to-date data is in memory
- Cache control bit: only a valid bit
* Write-back: all writes simply update cache
- Can't just discard cached data - may have to write it back to memory
- Cache control bits: both valid and dirty bits
« Other Advantages:
- Write-through:
» memory (or other processors) always have latest data
» Simpler management of cache
- Write-back:
» much lower bandwidth, since data often overwritten multiple times
» Better tolerance to long-latency memory?

cs252/Culler

131/02
Lec 4.3

Page 6

Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

* Write allocate: allocate new cache line in cache

- Usually means that you have to do a “read miss” to
fill in rest of the cache-line!

- Alternative: per/word valid bits
* Write non-allocate (or “write-around”):

- Simply send write data through to underlying
memory/cache - don't allocate new cache line!

1/31/02 cs252/Culler
Lec 4.3

1. Reducing Miss Penalty:
Read Priority over Write on Miss

CPU

Write Buffer

(or lower mem)

cs252/Culler

/31/02

1. Reducing Miss Penalty:
Read Priority over Write on Miss

e Write-through w/ write buffers => RAW conflicts
with main memory reads on cache misses
- If simply wait for write buffer to empty, might increase read miss
penalty (old MIPS 1000 by 50%)
- Check write buffer contents before read;
if no conflicts, let the memory access continue
¢ Write- back want buffer to hold displaced blocks
- Read miss replacing dirty block
- Normal: Write dirty block to memory, and then do the read

- Instead copy the dirty block to a write buffer, then do the read,
and then do the write

- CPU stall less since restarts as soon as do read

1/31/02 cs252/Culler

2. Reduce Miss Penalty:
Early Restart and Critical Word
First

« Don’t wait for full block to be loaded before
restarting CPU

- Early restart—As soon as the requested word of the block
ar rives, send it to the CPU and let the CPU continue executio

- Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also
called wrapped fetch and requested word first

« Generally useful only in large blocks,

« Spatial locality => tend to want next sequential
word, so not clear if benefit by early restart

| B o

1/31/02 cs252/Culler

3. Reduce Miss Penalty: Non-
blocking Caches to reduce stalls on
misses

Non-blocking cache_or lockup-free cache_allow data
cache to continue to supply cache hits during a miss
- requires F/E bits on registers or out-of-order execution

- requires multi-bank memories

“hit under miss” reduces the effective miss penalty
by working during miss vs. ignoring CPU requests
“hit under multiple miss” or “miss _under miss” may
further lower the effective miss penalty by
overlapping multiple misses

- Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses

- Requires muliple memory banks (otherwise cannot support)
- Penium Pro allows 4 outstanding memory misses

31/02 cs252/Culler
Lec 4,41

Value of Hit Under Miss for SPEC

Hit Under i Misses

1 Oox

12 0->1
. w955

o = 2564

05 s | Base

“Hit under n Misses”

compress
mdijdp2
hydro2d
spice2gs

Inteaer Floating Point
* FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
« Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
+ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss R

13102
Lec 4,47

Page 7

4: Add a second-level cache

« L2 Equations
AMAT = Hit Time , + Miss Rate ; x Miss Penalty,

Miss Penalty,; = Hit Time , + Miss Rate , x Miss Penalty,,

AMAT = Hit Time,, +

Miss Rate_l_x (Hit Time , +_Miss Rate ,

_+ Miss Penalty,,)

Definitions:
- Local miss rate— misses in this cache divided by the total number of
memory accesses to this cache (Miss rate,,)

- Global miss rate—misses in this cache divided by the total number of
memory accesses generated by the CPU

- Global Miss Rate is what matters

1/31/02 cs252/Culler

Comparing Local and Global

Miss Rates
32 KByte 1st level cache;
Increasing 2nd level cache
Global miss rate close to
single level cache rate
provided L2 >> L1
Don’t use local miss rate
L2 not tied to CPU clock
cycle!
Cost & A.M.A.T.
Generally Fast Hit Times
and fewer misses

Since hits are few, target
miss reduction

Linear

e e Ty

* -+ * Cache Size

cs252/Culler
Lec 4.44

/31/02

Reducing Misses:
Which apply to L2 Cache?

* Reducing Miss Rate

L2 cache block size &
ReMefrd-

1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations
16 32 64 128 256 512
Block Size
e 32KB L1, 8 byte path to memory
31/02 csz52/Culler V3o cs2s2/Culler
r
: ; What is the Impact of What
Reducing Miss Penalt mary , P
, Memory accesses, , You've Learned About Caches?
CPUtime=IC ~ SCPI J— Istruction " Missrate” MT ty,” Clock cycle time
1000

« Four techniques

Read priority over write on miss

Early Restart and Critical Word First on miss
Non-blocking Caches (Hit under Miss, Miss under Miss)
Second Level Cache

« Can be applied recursively to Multilevel Caches
- Danger is that time to DRAM will grow with multiple levels in
between

- First attempts at L2 caches can make things worse, since
increased worst case is worse

cs252/Culler

31/02
Lec 4,47

cru

1960-1985: Speed
= f(no. operations)
1990
- Pipelined
Execution &
Fast Clock Rate
- Out-of-Order
execution
- Superscalar
Instruction Issue |
1998: Speed = 293
f(non-cached memory accessesy
Superscalar, Out-of-Order machines hide L1 data
(-5 clocks) but not L2 cache miss (-50 clocks)?

10

DRAM

g824¢%

1991
1997
1008
1009

2000

cache miss

cs252/Culler

131/02
Lec 4.48

Page 8

miss rate

miss penalty

1/31/02

Cache Optimization Summary

Technique

Larger Block Size
Higher Associativity
Victim Caches
Pseudo-Associative Caches

HW Prefetching of Instr/Data
Compiler Controlled Prefetching
Compiler Reduce Misses

MR

+E b+t

MP

HT Complexity

Priority to Read Misses

Early Restart & Critical Word 1st
Non-Blocking Caches

Second Level Caches

+ o+ o+

NWNR[OWNNNR O

cs252/Culler
Lec 4,49

Page 9

