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How to Improve Cache 
Performance?

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

yMissPenaltMissRateHitTimeAMAT ×+=
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Where to misses come from?
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache, 
so the block must be brought into the cache. Also called cold 
start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed 
during execution of a program, capacity misses will occur due to 
blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or 
direct mapped, conflict misses (in addition to compulsory & 
capacity misses) will occur because a block can be discarded and
later retrieved if too many blocks map to its set. Also called 
collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

• 4th “C”:
– Coherence - Misses caused by cache coherence.
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Reducing Misses by Hardware
Prefetching of Instructions & Data 

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 

4KB cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 

streams got 50% to 70% of misses from 
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory 
bandwidth that can be used without penalty
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Reducing Misses by 
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults; a form of 

speculative execution
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
» Must be correct address and register!

– Non-Binding prefetch: Load into cache.  
» Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth
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Reducing Misses by Compiler 
Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound elements 

vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored in 

memory
– Loop Fusion: Combine 2 independent loops that have same looping and some 

variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data repeat edly 

vs. going down whole columns or rows
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Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality
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Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding 
through memory every 100 words; improved 
spatial locality
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Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per 
access; improve spatial locality
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Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits
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Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to N3/B+2N2

• Conflict Misses Too? 
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Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  misses

vs. 48 despite both fit in cache
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Performance Improvement           
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Summary of Compiler Optimizations to 
Reduce Cache Misses (by hand)
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Summary: Miss Rate Reduction

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo- Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Prefetching comes in two flavors:
– Binding prefetch: Requests load directly into register.

» Must be correct address and register!
– Non-Binding prefetch: Load into cache.  

» Can be incorrect.  Frees HW/SW to guess!

CPUtime = IC × CPI
Execution

+ Memory accesses
Instruction

× Miss rate × Miss  penalty 
 

 
 × Clock  cycle  time
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Review: Improving Cache 
Performance

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 
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Write Policy:
Write-Through vs Write-Back

• Write-through: all writes update cache and underlying 
memory/cache

– Can always discard cached data - most up-to-date data is in memory
– Cache control bit: only a valid bit

• Write-back: all writes simply update cache
– Can’t just discard cached data - may have to write it back to memory
– Cache control bits: both valid and dirty bits

• Other Advantages:
– Write-through:

» memory (or other processors) always have latest data
» Simpler management of cache

– Write-back:
» much lower bandwidth, since data often overwritten multiple times
» Better tolerance to long-latency memory?
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Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

• Write allocate: allocate new cache line in cache
– Usually means that you have to do a “read miss” to 
fill in rest of the cache-line!

– Alternative: per/word valid bits
• Write non-allocate (or “write-around”):

– Simply send write data through to underlying 
memory/cache - don’t allocate new cache line!
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1. Reducing Miss Penalty: 
Read Priority over Write on Miss

write
buffer

CPU

in out

DRAM   
(or lower mem)

Write Buffer
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1. Reducing Miss Penalty: 
Read Priority over Write on Miss

• Write-through w/ write buffers => RAW conflicts 
with main memory reads on cache misses

– If simply wait for write buffer to empty, might increase read miss 
penalty (old MIPS 1000 by 50% )

– Check write buffer contents before read; 
if no conflicts, let the memory access continue

• Write-back want buffer to hold displaced blocks
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read, 

and then do the write
– CPU stall less since restarts as soon as do read
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2. Reduce Miss Penalty: 
Early Restart and Critical Word 

First
• Don’t wait for full block to be loaded before 

restarting CPU
– Early restart—As soon as the requested word of the block 

ar�rives, send it to the CPU and let the CPU continue executio
– Critical Word First—Request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block. Also
called wrapped fetch and requested word  first

• Generally useful only in large blocks, 
• Spatial locality => tend to want next sequential 

word, so not clear if benefit by early restart

block
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3. Reduce Miss Penalty: Non-
blocking Caches to reduce stalls on 

misses
• Non-blocking cache or  lockup-free cache allow data 

cache to continue to supply cache hits during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss”  reduces the effective miss penalty 
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss”  may 
further lower the effective miss penalty by 
overlapping multiple misses

– Significantly increases the complexity of the cache controller as 
there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses
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Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

CS252/Culler
Lec 4.24

1/31/02

4: Add a second-level cache
• L2 Equations

AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit Time L2 + Miss RateL2 + Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total number of 

memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total number of 

memory accesses generated by the CPU
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Partner Discussion

What’s different in L2 vs L1 Caches?
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Comparing Local and Global 
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to 
single level cache rate 
provided L2 >> L1

• Don’t use local miss rate
• L2 not tied to CPU clock 

cycle!
• Cost & A.M.A.T.
• Generally Fast Hit Times 

and fewer misses
• Since hits are few, target 

miss reduction

Linear

Log

Cache Size

Cache Size
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Reducing Misses: 
Which apply to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

CS252/Culler
Lec 4.28

1/31/02

Relative CPU Time   
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• 32KB L1, 8 byte path to memory
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Reducing Miss Penalty Summary

• Four techniques
– Read priority over write on miss
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit under Miss, Miss under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in 

between
– First attempts at L2 caches can make things worse, since 

increased worst case is worse

CPUtime = IC × CPI Execut ion+
Memory accesses

Instruction
× Miss rate × Miss penalty 

 
 
 × Clock  cycle  time
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What is the Impact of What 
You’ve Learned About Caches?

• 1960-1985: Speed 
= ƒ(no. operations)

• 1990
– Pipelined 

Execution & 
Fast Clock Rate

– Out-of-Order 
execution

– Superscalar 
Instruction Issue

• 1998: Speed = 
ƒ(non-cached memory accesses)

• Superscalar, Out-of-Order machines hide L1 data cache miss 
(5 clocks) but not L2 cache miss (50 clocks)?
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1. Fast Hit times 
via Small and Simple Caches

• Why Alpha 21164 has 8KB Instruction and 
8KB data cache + 96KB second level cache?

– Small data cache and clock rate

• Direct Mapped, on chip
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Address Translation

• Page table is a large data structure in memory
• Two memory accesses for every load, store, or instruction 

fetch!!!
• Virtually addressed cache?

– synonym problem
• Cache the address translations?

CPU
Trans-
lation Cache

Main
Memory

VA PA miss

hit
data
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TLBs
A way to speed up translation is to use a special cache of recently

used page table entries  -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Address   Physical Address   Dirty   Ref   Valid   Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
(much less than main memory access time)
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Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,

set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines.  This permits fully associative
lookup on these machines.  Most mid-range machines use small
n-way set associative organizations.

CPU TLB
Lookup

Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB
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2. Fast hits by Avoiding 
Address Translation 

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$
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MEM
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Virtually Addressed Cache
Translate only on miss

Synonym Problem
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Tags
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Overlap $ access
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across translation

VA
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L2 $

CS252/Culler
Lec 4.36

1/31/02

2. Fast Cache Hits by Avoiding 
Translation: Index with Physical 

Portion of Address
• If index is physical part of address, can 

start tag access in parallel with translation 
so that can compare to physical tag

• Limits cache to page size: what if want 
bigger caches and uses same trick?

– Higher associativity moves barrier to right
– Page coloring

Page Address Page Offset

Address Tag Index Block Offset
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2. Fast hits by Avoiding Address 
Translation• Send virtual address to cache? Called Virtually Addressed Cache or 

just Virtual Cache vs.  Physical Cache
– Every time process is switched logically must flush the cache; otherwise get false 

hits
» Cost is time to flush + “compulsory” misses from empty cache
» Add process identifier tag that identifies process as well as address within 

process: can’t get a hit if wrong process

• Dealing with aliases (sometimes called synonyms); 
Two different virtual addresses map  to same physical address

– solve by fiat: no aliasing!   What are the implications?

– HW antialiasing: guarantees every cache block has unique address
» verify on miss (rather than on every hit)
» cache set size <= page size ?
» what if it gets larger?

– How can SW simplify the problem?  (called page coloring)

– I/O must interact with cache, so need virtual address
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3: Fast Hits by pipelining Cache
Case Study: MIPS R4000 

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens 

here as well as initiation of instruction cache access.
– IS–second half of access to instruction cache. 
– RF–instruction decode and register fetch, hazard checking and 

also instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU 

operation, and branch target computation and condition 
evaluation.

– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• What is impact on Load delay? 
– Need 2 instructions between a load and its use!
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Case Study: MIPS R4000
IF IS

IF
RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken
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R4000 Performance
• Not ideal CPI of 1:

– Load stalls (1 or 2 clock cycles)
– Branch stalls (2 cycles + unfilled slots)
– FP result stalls: RAW data hazard (latency)
– FP structural stalls: Not enough FP hardware (parallelism)
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What is the Impact of What 
You’ve Learned About Caches?

• 1960-1985: Speed 
= ƒ(no. operations)

• 1990
– Pipelined 

Execution & 
Fast Clock Rate

– Out-of-Order 
execution

– Superscalar 
Instruction Issue

• 1998: Speed = 
ƒ(non-cached memory accesses)

• What does this mean for
– Compilers?,Operating Systems?, Algorithms? 

Data Structures?
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Alpha 21064
• Separate Instr & Data 

TLB & Caches
• TLBs fully associative
• TLB updates in SW

(“Priv Arch Libr”)
• Caches 8KB direct 

mapped, write thru
• Critical 8 bytes first
• Prefetch instr. stream 

buffer
• 2 MB L2 cache, direct 

mapped, WB (off-chip)
• 256 bit path to main 

memory,  4 x 64-bit 
modules

• Victim Buffer: to give 
read priority over 
write

• 4 entry write buffer 
between D$ & L2$

Stream
Buffer

Write
Buffer

Victim Buffer

Instr Data
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Alpha Memory Performance: 
Miss Rates of SPEC92
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Alpha CPI Components
• Instruction stall: branch mispredict (green);
• Data cache (blue); Instruction cache (yellow); L2$ (pink) 

Other: compute + reg conflicts, structural conflicts
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Pitfall: Predicting Cache Performance 
from Different Prog. (ISA, compiler, 

...)

• 4KB Data cache miss 
rate 8%,12%, or 
28%?

• 1KB Instr cache miss 
rate 0%,3%,or 10%?

• Alpha vs. MIPS
for 8KB Data $:
17% vs. 10%

• Why 2X Alpha v. 
MIPS?
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Cache Optimization Summary
Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2
Better memory system + 3
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Caches + 2
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