
Page 1

CS252/Culler
Lec 4.1

1/31/02

CS252
Graduate Computer Architecture

Lecture 7

Cache Design (continued)

Feb 12, 2002
Prof. David Culler

CS252/Culler
Lec 4.2

1/31/02

How to Improve Cache
Performance?

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

yMissPenaltMissRateHitTimeAMAT ×+=

CS252/Culler
Lec 4.3

1/31/02

Where to misses come from?
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache,
so the block must be brought into the cache. Also called cold
start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due to
blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory &
capacity misses) will occur because a block can be discarded and
later retrieved if too many blocks map to its set. Also called
collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

• 4th “C”:
– Coherence - Misses caused by cache coherence.

CS252/Culler
Lec 4.4

1/31/02

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate
(SPEC92)

Conflict

CS252/Culler
Lec 4.5

1/31/02

Reducing Misses by Hardware
Prefetching of Instructions & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from

4KB cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8

streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty

CS252/Culler
Lec 4.6

1/31/02

Reducing Misses by
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults; a form of

speculative execution
• Prefetching comes in two flavors:

– Binding prefetch: Requests load directly into register.
» Must be correct address and register!

– Non-Binding prefetch: Load into cache.
» Can be incorrect. Faults?

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

Page 2

CS252/Culler
Lec 4.7

1/31/02

Reducing Misses by Compiler
Optimizations

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound elements

vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored in

memory
– Loop Fusion: Combine 2 independent loops that have same looping and some

variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data repeat edly

vs. going down whole columns or rows

CS252/Culler
Lec 4.8

1/31/02

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

CS252/Culler
Lec 4.9

1/31/02

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding
through memory every 100 words; improved
spatial locality

CS252/Culler
Lec 4.10

1/31/02

Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per
access; improve spatial locality

CS252/Culler
Lec 4.11

1/31/02

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits
CS252/Culler

Lec 4.12
1/31/02

Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to N3/B+2N2

• Conflict Misses Too?

Page 3

CS252/Culler
Lec 4.13

1/31/02

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the misses

vs. 48 despite both fit in cache

Blocking Factor

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

CS252/Culler
Lec 4.14

1/31/02

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

CS252/Culler
Lec 4.15

1/31/02

Summary: Miss Rate Reduction

• 3 Cs: Compulsory, Capacity, Conflict
0. Larger cache
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo- Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Prefetching comes in two flavors:
– Binding prefetch: Requests load directly into register.

» Must be correct address and register!
– Non-Binding prefetch: Load into cache.

» Can be incorrect. Frees HW/SW to guess!

CPUtime = IC × CPI
Execution

+ Memory accesses
Instruction

× Miss rate × Miss penalty

 × Clock cycle time

CS252/Culler
Lec 4.16

1/31/02

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CS252/Culler
Lec 4.17

1/31/02

Write Policy:
Write-Through vs Write-Back

• Write-through: all writes update cache and underlying
memory/cache

– Can always discard cached data - most up-to-date data is in memory
– Cache control bit: only a valid bit

• Write-back: all writes simply update cache
– Can’t just discard cached data - may have to write it back to memory
– Cache control bits: both valid and dirty bits

• Other Advantages:
– Write-through:

» memory (or other processors) always have latest data
» Simpler management of cache

– Write-back:
» much lower bandwidth, since data often overwritten multiple times
» Better tolerance to long-latency memory?

CS252/Culler
Lec 4.18

1/31/02

Write Policy 2:
Write Allocate vs Non-Allocate
(What happens on write-miss)

• Write allocate: allocate new cache line in cache
– Usually means that you have to do a “read miss” to
fill in rest of the cache-line!

– Alternative: per/word valid bits
• Write non-allocate (or “write-around”):

– Simply send write data through to underlying
memory/cache - don’t allocate new cache line!

Page 4

CS252/Culler
Lec 4.19

1/31/02

1. Reducing Miss Penalty:
Read Priority over Write on Miss

write
buffer

CPU

in out

DRAM
(or lower mem)

Write Buffer

CS252/Culler
Lec 4.20

1/31/02

1. Reducing Miss Penalty:
Read Priority over Write on Miss

• Write-through w/ write buffers => RAW conflicts
with main memory reads on cache misses

– If simply wait for write buffer to empty, might increase read miss
penalty (old MIPS 1000 by 50%)

– Check write buffer contents before read;
if no conflicts, let the memory access continue

• Write-back want buffer to hold displaced blocks
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read,

and then do the write
– CPU stall less since restarts as soon as do read

CS252/Culler
Lec 4.21

1/31/02

2. Reduce Miss Penalty:
Early Restart and Critical Word

First
• Don’t wait for full block to be loaded before

restarting CPU
– Early restart—As soon as the requested word of the block

ar�rives, send it to the CPU and let the CPU continue executio
– Critical Word First—Request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also
called wrapped fetch and requested word first

• Generally useful only in large blocks,
• Spatial locality => tend to want next sequential

word, so not clear if benefit by early restart

block

CS252/Culler
Lec 4.22

1/31/02

3. Reduce Miss Penalty: Non-
blocking Caches to reduce stalls on

misses
• Non-blocking cache or lockup-free cache allow data

cache to continue to supply cache hits during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss penalty
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by
overlapping multiple misses

– Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses

CS252/Culler
Lec 4.23

1/31/02

Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

CS252/Culler
Lec 4.24

1/31/02

4: Add a second-level cache
• L2 Equations

AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit Time L2 + Miss RateL2 + Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total number of

memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total number of

memory accesses generated by the CPU

Page 5

CS252/Culler
Lec 4.25

1/31/02

Partner Discussion

What’s different in L2 vs L1 Caches?

CS252/Culler
Lec 4.26

1/31/02

Comparing Local and Global
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to
single level cache rate
provided L2 >> L1

• Don’t use local miss rate
• L2 not tied to CPU clock

cycle!
• Cost & A.M.A.T.
• Generally Fast Hit Times

and fewer misses
• Since hits are few, target

miss reduction

Linear

Log

Cache Size

Cache Size

CS252/Culler
Lec 4.27

1/31/02

Reducing Misses:
Which apply to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations

CS252/Culler
Lec 4.28

1/31/02

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size &
A.M.A.T.

• 32KB L1, 8 byte path to memory

CS252/Culler
Lec 4.29

1/31/02

Reducing Miss Penalty Summary

• Four techniques
– Read priority over write on miss
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit under Miss, Miss under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in

between
– First attempts at L2 caches can make things worse, since

increased worst case is worse

CPUtime = IC × CPI Execut ion+
Memory accesses

Instruction
× Miss rate × Miss penalty

 × Clock cycle time

CS252/Culler
Lec 4.30

1/31/02

What is the Impact of What
You’ve Learned About Caches?

• 1960-1985: Speed
= ƒ(no. operations)

• 1990
– Pipelined

Execution &
Fast Clock Rate

– Out-of-Order
execution

– Superscalar
Instruction Issue

• 1998: Speed =
ƒ(non-cached memory accesses)

• Superscalar, Out-of-Order machines hide L1 data cache miss
(5 clocks) but not L2 cache miss (50 clocks)?

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

Page 6

CS252/Culler
Lec 4.31

1/31/02

1. Fast Hit times
via Small and Simple Caches

• Why Alpha 21164 has 8KB Instruction and
8KB data cache + 96KB second level cache?

– Small data cache and clock rate

• Direct Mapped, on chip

CS252/Culler
Lec 4.32

1/31/02

Address Translation

• Page table is a large data structure in memory
• Two memory accesses for every load, store, or instruction

fetch!!!
• Virtually addressed cache?

– synonym problem
• Cache the address translations?

CPU
Trans-
lation Cache

Main
Memory

VA PA miss

hit
data

CS252/Culler
Lec 4.33

1/31/02

TLBs
A way to speed up translation is to use a special cache of recently

used page table entries -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
(much less than main memory access time)

CS252/Culler
Lec 4.34

1/31/02

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,

set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines. This permits fully associative
lookup on these machines. Most mid-range machines use small
n-way set associative organizations.

CPU TLB
Lookup

Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

CS252/Culler
Lec 4.35

1/31/02

2. Fast hits by Avoiding
Address Translation

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to

remain invariant
across translation

VA
Tags

L2 $

CS252/Culler
Lec 4.36

1/31/02

2. Fast Cache Hits by Avoiding
Translation: Index with Physical

Portion of Address
• If index is physical part of address, can

start tag access in parallel with translation
so that can compare to physical tag

• Limits cache to page size: what if want
bigger caches and uses same trick?

– Higher associativity moves barrier to right
– Page coloring

Page Address Page Offset

Address Tag Index Block Offset

Page 7

CS252/Culler
Lec 4.37

1/31/02

2. Fast hits by Avoiding Address
Translation• Send virtual address to cache? Called Virtually Addressed Cache or

just Virtual Cache vs. Physical Cache
– Every time process is switched logically must flush the cache; otherwise get false

hits
» Cost is time to flush + “compulsory” misses from empty cache
» Add process identifier tag that identifies process as well as address within

process: can’t get a hit if wrong process

• Dealing with aliases (sometimes called synonyms);
Two different virtual addresses map to same physical address

– solve by fiat: no aliasing! What are the implications?

– HW antialiasing: guarantees every cache block has unique address
» verify on miss (rather than on every hit)
» cache set size <= page size ?
» what if it gets larger?

– How can SW simplify the problem? (called page coloring)

– I/O must interact with cache, so need virtual address
CS252/Culler

Lec 4.38
1/31/02

3: Fast Hits by pipelining Cache
Case Study: MIPS R4000

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens

here as well as initiation of instruction cache access.
– IS–second half of access to instruction cache.
– RF–instruction decode and register fetch, hazard checking and

also instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU

operation, and branch target computation and condition
evaluation.

– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• What is impact on Load delay?
– Need 2 instructions between a load and its use!

CS252/Culler
Lec 4.39

1/31/02

Case Study: MIPS R4000
IF IS

IF
RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken

CS252/Culler
Lec 4.40

1/31/02

R4000 Performance
• Not ideal CPI of 1:

– Load stalls (1 or 2 clock cycles)
– Branch stalls (2 cycles + unfilled slots)
– FP result stalls: RAW data hazard (latency)
– FP structural stalls: Not enough FP hardware (parallelism)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c

na
sa

7

or
a

sp
ic

e2
g6

su
2c

or

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural

stalls

CS252/Culler
Lec 4.41

1/31/02

What is the Impact of What
You’ve Learned About Caches?

• 1960-1985: Speed
= ƒ(no. operations)

• 1990
– Pipelined

Execution &
Fast Clock Rate

– Out-of-Order
execution

– Superscalar
Instruction Issue

• 1998: Speed =
ƒ(non-cached memory accesses)

• What does this mean for
– Compilers?,Operating Systems?, Algorithms?

Data Structures?

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

CS252/Culler
Lec 4.42

1/31/02

Alpha 21064
• Separate Instr & Data

TLB & Caches
• TLBs fully associative
• TLB updates in SW

(“Priv Arch Libr”)
• Caches 8KB direct

mapped, write thru
• Critical 8 bytes first
• Prefetch instr. stream

buffer
• 2 MB L2 cache, direct

mapped, WB (off-chip)
• 256 bit path to main

memory, 4 x 64-bit
modules

• Victim Buffer: to give
read priority over
write

• 4 entry write buffer
between D$ & L2$

Stream
Buffer

Write
Buffer

Victim Buffer

Instr Data

Page 8

CS252/Culler
Lec 4.43

1/31/02

0.01%

0.10%

1.00%

10.00%

100.00%

A
lp

ha
So

rt

T
PC

-B
 (

db
1) Li S
c

C
om

pr
es

s

O
ra

E
ar

D
od

uc

T
om

ca
tv

M
dl

jp
2

Sp
ic

e

Su
2c

or

M
is

s
R

at
e I $

D $

L2

Alpha Memory Performance:
Miss Rates of SPEC92

8K

8K

2M

I$ miss = 2%
D$ miss = 13%
L2 miss = 0.6%

I$ miss = 1%
D$ miss = 21%
L2 miss = 0.3%

I$ miss = 6%
D$ miss = 32%
L2 miss = 10%

CS252/Culler
Lec 4.44

1/31/02

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

A
lp

ha
So

rt

T
PC

-B
 (

db
1) Li S
c

C
om

pr
es

s

O
ra

E
ar

D
od

uc

T
om

ca
tv

M
dl

jp
2

C
P

I

L2

I$

D$

I Stall

Other

Alpha CPI Components
• Instruction stall: branch mispredict (green);
• Data cache (blue); Instruction cache (yellow); L2$ (pink)

Other: compute + reg conflicts, structural conflicts

CS252/Culler
Lec 4.45

1/31/02

Pitfall: Predicting Cache Performance
from Different Prog. (ISA, compiler,

...)

• 4KB Data cache miss
rate 8%,12%, or
28%?

• 1KB Instr cache miss
rate 0%,3%,or 10%?

• Alpha vs. MIPS
for 8KB Data $:
17% vs. 10%

• Why 2X Alpha v.
MIPS?

0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 %

3 0 %

3 5 %

1 2 4 8 1 6 32 64 1 2 8
Cache Size (KB)

Miss
Rate

D: tomcatv

D: gcc

D: espresso

I: gcc

I: espresso

I: tomcatv

D$, Tom

D$, gcc

D$, esp

I$, gcc

I$, esp

I$, Tom
CS252/Culler

Lec 4.46
1/31/02

Cache Optimization Summary
Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2
Better memory system + 3
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Caches + 2

m
is

s
ra

te
hi

t t
im

e
m

is
s

p
en

al
ty

