
Page 1

CS252/Culler
Lec 1.11/22/02

January 22, 2002
Prof. David E Culler

Computer Science 252
Spring 2002

CS252
Graduate Computer Architecture

Lecture 1

Introduction

CS252/Culler
Lec 1.21/22/02

Outline

• Why Take CS252?
• Fundamental Abstractions & Concepts
• Instruction Set Architecture & Organization
• Administrivia
• Pipelined Instruction Processing
• Performance
• The Memory Abstraction
• Summary

CS252/Culler
Lec 1.31/22/02

Why take CS252?

• To design the next great instruction set?...well...
– instruction set architecture has largely converged
– especially in the desktop / server / laptop space
– dictated by powerful market forces

• Tremendous organizational innovation relative to
established ISA abstractions

• Many New instruction sets or equivalent
– embedded space, controllers, specialized devices, ...

• Design, analysis, implementation concepts vital to all
aspects of EE & CS

– systems, PL, theory, circuit design, VLSI, comm.
• Equip you with an intellectual toolbox for dealing with

a host of systems design challenges

CS252/Culler
Lec 1.41/22/02

Example Hot Developments ca. 2002
• Manipulating the instruction set abstraction

– itanium: translate ISA64 -> micro-op sequences
– transmeta: continuous dynamic translation of IA32
– tinsilica: synthesize the ISA from the application
– reconfigurable HW

• Virtualization
– vmware: emulate full virtual machine
– JIT: compile to abstract virtual machine, dynamically compile

to host
• Parallelism

– wide issue, dynamic instruction scheduling, EPIC
– multithreading (SMT)
– chip multiprocessors

• Communication
– network processors, network interfaces

• Exotic explorations
– nanotechnology, quantum computing

CS252/Culler
Lec 1.51/22/02

Forces on Computer Architecture

Computer
Architecture

Technology Programming
Languages

Operating
Systems

History

Applications

(A = F / M)

CS252/Culler
Lec 1.61/22/02

Amazing Underlying Technology Change

Page 2

CS252/Culler
Lec 1.71/22/02

A take on Moore’s Law

Tr
an

si
st

or
s

uu uuuuu

uu

u

uu

u

u

u uu

u

u

u

u

uu

uu u u

u
u

u

u

u u

u

u

u

u

u

uu

u u

uu
u

uuu u

u
u uu u

u

uuu u

uuu

u
u uuu

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008
i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

CS252/Culler
Lec 1.81/22/02

Technology Trends

• Clock Rate: ~30% per year
• Transistor Density: ~35%
• Chip Area: ~15%
• Transistors per chip: ~55%
• Total Performance Capability: ~100%
• by the time you graduate...

– 3x clock rate (3-4 GHz)
– 10x transistor count (1 Billion transistors)
– 30x raw capability

• plus 16x dram density, 32x disk density

CS252/Culler
Lec 1.91/22/02

P
er

fo
rm

an
ce

0.1

1

10

100

1965 1970 1975 1980 1985 1990 1995

Supercomputers

Minicomputers

Mainframes

Microprocessors

Performance Trends

CS252/Culler
Lec 1.101/22/02

Measurement and Evaluation
Architecture is an iterative process

-- searching the space of possible designs
-- at all levels of computer systems

Good IdeasGood Ideas

Mediocre Ideas
Bad Ideas

Cost /
Performance
Analysis

Design

Analysis

Creativity

CS252/Culler
Lec 1.111/22/02

What is “Computer Architecture”?

I/O systemInstr . Set Proc.

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

• Coordination of many levels of abstraction
• Under a rapidly changing set of forces
• Design, Measurement, and Evaluation

Datapath & Control

Layout

CS252/Culler
Lec 1.121/22/02

Coping with CS 252
• Students with too varied background?

– In past, CS grad students took written prelim exams on
undergraduate material in hardware, software, and theory

– 1st 5 weeks reviewed background, helped 252, 262, 270
– Prelims were dropped => some unprepared for CS 252?

• In class exam on Tues Jan. 29 (30 mins)
– Doesn’t affect grade, only admission into class
– 2 grades: Admitted or audit/take CS 152 1st
– Improve your experience if recapture common background

• Review: Chapters 1, CS 152 home page, maybe
“Computer Organization and Design (COD)2/e”

– Chapters 1 to 8 of COD if never took prerequisite
– If took a class, be sure COD Chapters 2, 6, 7 are familiar
– Copies in Bechtel Library on 2-hour reserve

• FAST review this week of basic concepts

Page 3

CS252/Culler
Lec 1.131/22/02

Review of Fundamental Concepts

• Instruction Set Architecture
• Machine Organization
• Instruction Execution Cycle
• Pipelining
• Memory
• Bus (Peripheral Hierarchy)
• Performance Iron Triangle

CS252/Culler
Lec 1.141/22/02

The Instruction Set: a Critical Interface

instruction set

software

hardware

CS252/Culler
Lec 1.151/22/02

Instruction Set Architecture
... the attributes of a [computing] system as seen
by the programmer, i.e. the conceptual structure
and functional behavior, as distinct from the
organization of the data flows and controls the logic
design, and the physical implementation.

– Amdahl, Blaaw, and
Brooks, 1964

SOFTWARESOFTWARE
-- Organization of Programmable

Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

CS252/Culler
Lec 1.161/22/02

Organization
Logic Designer's View

ISA Level

FUs & Interconnect

• Capabilities & Performance
Characteristics of Principal
Functional Units

– (e.g., Registers, ALU, Shifters, Logic
Units, ...)

• Ways in which these components
are interconnected

• Information flows between
components

• Logic and means by which such
information flow is controlled.

• Choreography of FUs to
realize the ISA

• Register Transfer Level (RTL)
Description

CS252/Culler
Lec 1.171/22/02

Review: MIPS R3000 (core)
0r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage

2^32 x bytes

31 x 32-bit GPRs (R0=0)
32 x 32-bit FP regs (paired DP)

HI, LO, PC

Data types ?

Format ?

Addressing Modes?

Arithmetic logical

Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,

AddI , AddIU, SLTI, SLTIU, AndI , OrI, XorI, LUI

SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access

LB, LBU, LH, LHU, LW, LWL,LWR

SB, SH, SW, SWL, SWR

Control

J, JAL, JR, JALR

BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

CS252/Culler
Lec 1.181/22/02

Review: Basic ISA Classes
Accumulator:
1 address add A acc ← acc + mem[A]
1+x address addx A acc ← acc + mem[A + x]

Stack:
0 address add tos ← tos + next

General Purpose Register:
2 address add A B EA(A) ← EA(A) + EA(B)
3 address add A B C EA(A) ← EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra ← Rb + Rc

load Ra Rb Ra ← mem[Rb]
store Ra Rb mem[Rb] ← Ra

Page 4

CS252/Culler
Lec 1.191/22/02

Instruction Formats
Variable:

Fixed:

Hybrid:

…

•Addressing modes
–each operand requires addess specifier => variable format

•code size => variable length instructions
•performance => fixed length instructions

–simple decoding, predictable operations

•With load/store instruction arch, only one memory
address and few addressing modes
•=> simple format, address mode given by opcode

CS252/Culler
Lec 1.201/22/02

MIPS Addressing Modes & Formats
• Simple addressing modes
• All instructions 32 bits wide

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

• Register Indirect?

CS252/Culler
Lec 1.211/22/02

Cray-1: the original RISC

Op

015

Rd Rs1 R2

2689

Load, Store and Branch

35

Op

015

Rd Rs1 Immediate

2689 35 15 0

Register-Register

CS252/Culler
Lec 1.221/22/02

VAX-11: the canonical CISC

• Rich set of orthogonal address modes
– immediate, offset, indexed, autoinc/dec, indirect,

indirect+offset
– applied to any operand

• Simple and complex instructions
– synchronization instructions
– data structure operations (queues)
– polynomial evaluation

OpCode A/M A/M A/M

Byte 0 1 n m

Variable format, 2 and 3 address instruction

CS252/Culler
Lec 1.231/22/02

Review: Load/Store Architectures

MEM reg

° Substantial increase in instructions
° Decrease in data BW (due to many registers)

° Even more significant decrease in CPI (pipelining)
° Cycle time, Real estate, Design time, Design complexity

° 3 address GPR
° Register to register arithmetic
° Load and store with simple addressing modes (reg + immediate)
° Simple conditionals
compare ops + branch z
compare&branch
condition code + branch on condition

° Simple fixed-format encoding

op

op

op

r r r

r r immed

offset

CS252/Culler
Lec 1.241/22/02

MIPS R3000 ISA (Summary)
• Instruction Categories

– Load/Store
– Computational
– Jump and Branch
– Floating Point

» coprocessor
– Memory Management
– Special

R0 - R31

PC
HI

LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

Registers

Page 5

CS252/Culler
Lec 1.251/22/02

CS 252 Administrivia
• TA: Jason Hill, jhill@cs.berkeley.edu
• All assignments, lectures via WWW page:

http://www.cs.berkeley.edu/~culler/252S02/
• 2 Quizzes: 3/21 and ~14th week (maybe take home)
• Text:

– Pages of 3rd edition of Computer Architecture: A Quantitative Approach
» available from Cindy Palwick (MWF) or Jeanette Cook ($30 1-5)

– “Readings in Computer Architecture” by Hill et al
• In class, prereq quiz 1/29 last 30 minutes

– Improve 252 experience if recapture common background
– Bring 1 sheet of paper with notes on both sides
– Doesn’t affect grade, only admission into class
– 2 grades: Admitted or audit/take CS 152 1st
– Review: Chapters 1, CS 152 home page, maybe “Computer Organizat ion

and Design (COD)2/e”
– If did take a class, be sure COD Chapters 2, 5, 6, 7 are familiar
– Copies in Bechtel Library on 2-hour reserve

CS252/Culler
Lec 1.261/22/02

Research Paper Reading

• As graduate students, you are now researchers.
• Most information of importance to you will be in

research papers.
• Ability to rapidly scan and understand research

papers is key to your success.
• So: 1-2 paper / week in this course

– Quick 1 paragraph summaries will be due in class
– Important supplement to book.
– Will discuss papers in class

• Papers “Readings in Computer Architecture” or online
• Think about methodology and approach

CS252/Culler
Lec 1.271/22/02

First Assignment (due Tu 2/5)

• Read
– Amdahl, Blaauw, and Brooks, Architecture of the IBM

System/360
– Lonergan and King, B5000

• Four each prepare for in-class debate 1/29
• rest write analysis of the debate

• Read “Programming the EDSAC”, Cambell-Kelly
– write subroutine sum(A,n) to sum an array A of n numbers

– write recursive fact(n) = if n==1 then 1 else n*fact(n-1)

CS252/Culler
Lec 1.281/22/02

Grading
• 10% Homeworks (work in pairs)
• 40% Examinations (2 Quizzes)
• 40% Research Project (work in pairs)

– Draft of Conference Quality Paper
– Transition from undergrad to grad student
– Berkeley wants you to succeed, but you need to show initiative
– pick topic
– meet 3 times with faculty/TA to see progress
– give oral presentation
– give poster session
– written report like conference paper
– 3 weeks work full time for 2 people (over more weeks)
– Opportunity to do “research in the small” to help make transition

from good student to research colleague
• 10% Class Participation

CS252/Culler
Lec 1.291/22/02

Course Profile
• 3 weeks: basic concepts

– instruction processing, storage
• 3 weeks: hot areas

– latency tolerance, low power, embedded design,
network processors, NIs, virtualization

• Proposals due
• 2 weeks: advanced microprocessor design
• Quiz & Spring Break
• 3 weeks: Parallelism (MPs, CMPs, Networks)
• 2 weeks: Methodology / Analysis / Theory
• 1 weeks: Topics: nano, quantum
• 1 week: Project Presentations

CS252/Culler
Lec 1.301/22/02

Levels of Representation (61C Review)

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

°
°

ALUOP[0:3] <= InstReg[9:11] & MASK

Page 6

CS252/Culler
Lec 1.311/22/02

Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

CS252/Culler
Lec 1.321/22/02

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-

flight issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

CS252/Culler
Lec 1.331/22/02

Fast, Pipelined Instruction Interpretation

Instruction Register

Operand Registers

Instruction Address

Result Registers

Next Instruction

Instruction Fetch

Decode &
Operand Fetch

Execute

Store Results

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

Time

Registers or Mem
CS252/Culler

Lec 1.341/22/02

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

CS252/Culler
Lec 1.351/22/02

Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

CS252/Culler
Lec 1.361/22/02

Pipelining Lessons

• Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Time to “fill” pipeline
and time to “drain” it
reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Page 7

CS252/Culler
Lec 1.371/22/02

Instruction Pipelining

• Execute billions of instructions, so throughput is
what matters

– except when?

• What is desirable in instruction sets for pipelining?
– Variable length instructions vs.

all instructions same length?
– Memory operands part of any operation vs.

memory operands only in loads or stores?
– Register operand many places in instruction

format vs. registers located in same place?

CS252/Culler
Lec 1.381/22/02

Example: MIPS (Note register location)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

CS252/Culler
Lec 1.391/22/02

5 Steps of MIPS Datapath
Figure 3.1, Page 130, CA:AQA 2e

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

CS252/Culler
Lec 1.401/22/02

5 Steps of MIPS Datapath
Figure 3.4, Page 134 , CA:AQA 2e

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

CS252/Culler
Lec 1.411/22/02

Visualizing Pipelining
Figure 3.3, Page 133 , CA:AQA 2e

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

CS252/Culler
Lec 1.421/22/02

Its Not That Easy for Computers

• Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

– Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

Page 8

CS252/Culler
Lec 1.431/22/02

Review of Performance

CS252/Culler
Lec 1.441/22/02

Which is faster?

• Time to run the task (ExTime)
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns …
(Performance)

– Throughput, bandwidth

Plane

Boeing 747

BAD/Sud
Concorde

Speed

610 mph

1350 mph

DC to
Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

CS252/Culler
Lec 1.451/22/02

Performance(X) Execution_time(Y)
n = =

Performance(Y) Execution_time(Y)

Definitions
• Performance is in units of things per sec

– bigger is better

• If we are primarily concerned with response time

– performance(x) = 1
execution_time(x)

" X is n times faster than Y" means

CS252/Culler
Lec 1.461/22/02

Computer Performance

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

CS252/Culler
Lec 1.471/22/02

Cycles Per Instruction
(Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

“Average Cycles per Instruction”

j

n

j
j I CPI TimeCycle time CPU ×∑×=

=1

Count nInstructio
I F where F CPI CPI j

j

n

j
jj =∑ ×=

=1

CS252/Culler
Lec 1.481/22/02

Example: Calculating CPI bottom up

Typical Mix of
instruction types
in program

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)

1.5

Page 9

CS252/Culler
Lec 1.491/22/02

Example: Branch Stall Impact

• Assume CPI = 1.0 ignoring branches (ideal)
• Assume solution was stalling for 3 cycles
• If 30% branch, Stall 3 cycles on 30%

• Op Freq Cycles CPI(i) (% Time)
• Other 70% 1 .7 (37%)
• Branch 30% 4 1.2 (63%)

• => new CPI = 1.9
• New machine is 1/1.9 = 0.52 times faster (i.e. slow!)

CS252/Culler
Lec 1.501/22/02

Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

 CPI stall Pipeline CPI Ideal
depth Pipeline CPI Ideal Speedup ×

+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, CPI = 1:

CS252/Culler
Lec 1.511/22/02

Now, Review of Memory Hierarchy

CS252/Culler
Lec 1.521/22/02

The Memory Abstraction
• Association of <name, value> pairs

– typically named as byte addresses
– often values aligned on multiples of size

• Sequence of Reads and Writes
• Write binds a value to an address
• Read of addr returns most recently written

value bound to that address

address (name)
command (R/W)

data (W)

data (R)

done

CS252/Culler
Lec 1.531/22/02

Recap: Who Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr
)

DRAM
9%/yr.
(2X/10
yrs)

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Joy’s Law”

Processor-DRAM Memory Gap (latency)

CS252/Culler
Lec 1.541/22/02

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<1s ns

Cache
10s-100s K Bytes
1-10 ns
$10/ MByte

Main Memory
M Bytes
100ns- 300ns
$1/ MByte

Disk
10s G Bytes, 10 ms
(10,000,000 ns)
$0.0031/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512- 4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Page 10

CS252/Culler
Lec 1.551/22/02

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it

will tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced,

items whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

• Last 15 years, HW (hardware) relied on locality
for speed

CS252/Culler
Lec 1.561/22/02

Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level (example:

Block X)
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the lower
level (Block Y)

– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
• Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

CS252/Culler
Lec 1.571/22/02

Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory

• Average memory-access time
= Hit time + Miss rate x Miss penalty

(ns or clocks)
• Miss penalty: time to replace a block from

lower level, including time to replace in CPU
– access time: time to lower level

= f(latency to lower level)
– transfer time: time to transfer block

=f(BW between upper & lower levels)
CS252/Culler

Lec 1.581/22/02

Simplest Cache: Direct Mapped

Memory

4 Byte Direct Mapped Cache

Memory Address
0
1

2
3

4
5
6

7
8

9
A
B

C
D

E
F

Cache Index
0

1
2

3

• Location 0 can be occupied by
data from:

– Memory location 0, 4, 8, ... etc.
– In general: any memory location

whose 2 LSBs of the address are 0s
– Address<1:0> => cache index

• Which one should we place in
the cache?

• How can we tell which one is in
the cache?

CS252/Culler
Lec 1.591/22/02

1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1

2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

CS252/Culler
Lec 1.601/22/02

The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Page 11

CS252/Culler
Lec 1.611/22/02

Relationship of Caching and Pipelining

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

•

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

I-Cache

D
-C

ac
he

CS252/Culler
Lec 1.621/22/02

Computer System Components
Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

• All have interfaces & organizations
• Bus & Bus Protocol is key to composition
=> perhipheral hierarchy

CS252/Culler
Lec 1.631/22/02

A Modern Memory Hierarchy
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the chea pest
technology.

– Provide access at the speed offered by the fastest technology.
• Requires servicing faults on the processor

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

h
ip

C
ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
(10s sec)

Ts
CS252/Culler

Lec 1.641/22/02

TLB, Virtual Memory

• Caches, TLBs, Virtual Memory all understood by
examining how they deal with 4 questions: 1)
Where can block be placed? 2) How is block found?
3) What block is repalced on miss? 4) How are
writes handled?

• Page tables map virtual address to physical address
• TLBs make virtual memory practical

– Locality in data => locality in addresses of data,
temporal and spatial

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache

without TLB misses!

• Today VM allows many processes to share single
memory without having to swap all processes to
disk; today VM protection is more important than
memory hierarchy

CS252/Culler
Lec 1.651/22/02

Summary

• Modern Computer Architecture is about managing and
optimizing across several levels of abstraction wrt
dramatically changing technology and application load

• Key Abstractions
– instruction set architecture
– memory
– bus

• Key concepts
– HW/SW boundary
– Compile Time / Run Time
– Pipelining
– Caching

• Performance Iron Triangle relates combined effects
– Total Time = Inst. Count x CPI + Cycle Time

