
Page 1

CS252/Culler
Lec 2.11/24/02

January 24, 2002
Prof. David E Culler

Computer Science 252
Spring 2002

©University of California, Berkeley

CS252
Graduate Computer Architecture

Lecture 2

Pipelining, Caching, and Benchmarks

CS252/Culler
Lec 2.21/24/02

5 Steps of MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Datapath

Control Path

CS252/Culler
Lec 2.31/24/02

5 Steps of MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Datapath

Control Path

In
st

 1

In
st

 1

In
st

 2

In
st

 1

In
st

 2

In
st

 3

CS252/Culler
Lec 2.41/24/02

Review: Visualizing Pipelining
Figure 3.3, Page 133 , CA:AQA 2e

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

CS252/Culler
Lec 2.51/24/02

Limits to pipelining

• Hazards: circumstances that would cause
incorrect execution if next instruction were
launched

– Structural hazards: Attempting to use the same hardware to
do two different things at the same time

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

CS252/Culler
Lec 2.61/24/02

Example: One Memory Port/Structural
Hazard

Figure 3.6, Page 142 , CA:AQA 2e

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

DMem

Structural Hazard

Page 2

CS252/Culler
Lec 2.71/24/02

Resolving structural hazards

• Defn: attempt to use same hardware for
two different things at the same time

• Solution 1: Wait
⇒must detect the hazard
⇒must have mechanism to stall

• Solution 2: Throw more hardware at the
problem

CS252/Culler
Lec 2.81/24/02

Detecting and Resolving Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

CS252/Culler
Lec 2.91/24/02

Eliminating Structural Hazards at Design
Time

A
LU

Instr
Cache

Reg File

M
U

X
M

U
X

D
ata

Cache

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Datapath

Control Path

CS252/Culler
Lec 2.101/24/02

Role of Instruction Set Design in
Structural Hazard Resolution

• Simple to determine the sequence of
resources used by an instruction

– opcode tells it all

• Uniformity in the resource usage
• Compare MIPS to IA32?
• MIPS approach => all instructions flow

through same 5-stage pipeling

CS252/Culler
Lec 2.111/24/02

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Data Hazards
Figure 3.9, page 147 , CA:AQA 2e

Time (clock cycles)

IF ID/RF EX MEM WB

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

CS252/Culler
Lec 2.121/24/02

• Read After Write (RAW)
InstrJ tries to read operand before Instr I writes it

• Caused by a “Data Dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

Page 3

CS252/Culler
Lec 2.131/24/02

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

CS252/Culler
Lec 2.141/24/02

Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated
pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

CS252/Culler
Lec 2.151/24/02

Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure 3.10, Page 149 , CA:AQA 2e

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

CS252/Culler
Lec 2.161/24/02

HW Change for Forwarding
Figure 3.20, Page 161, CA:AQA 2e

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

CS252/Culler
Lec 2.171/24/02

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e

Reg

A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg

A
LU DMemIfetch Reg

CS252/Culler
Lec 2.181/24/02

Resolving this load hazard

• Adding hardware? ... not
• Detection?
• Compilation techniques?

• What is the cost of load delays?

Page 4

CS252/Culler
Lec 2.191/24/02

Resolving the Load Data Hazard

Time (clock cycles)

or r8, r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch

A
LU DMem RegBubble Reg

Ifetch

A
LU DMemBubble Reg

How is this different from the instruction issue stall?
CS252/Culler

Lec 2.201/24/02

Try producing fast code for
a = b + c;

d = e – f;
assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f

SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load
Hazards

Fast code:

LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra

SUB Rd,Re,Rf
SW d,Rd

CS252/Culler
Lec 2.211/24/02

Instruction Set Connection

• What is exposed about this organizational
hazard in the instruction set?

• k cycle delay?
– bad, CPI is not part of ISA

• k instruction slot delay
– load should not be followed by use of the value in the

next k instructions

• Nothing, but code can reduce run-time
delays

• MIPS did the transformation in the
assembler

CS252/Culler
Lec 2.221/24/02

Historical Perspective: Microprogramming

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

one of these is
mapped into one
of these

Supported complex instructions a sequence of simple micro -inst (RTs)
Pipelined micro -instruction processing, but very limited view.
Could not reorganize macroinstructions to enable pipelining

CS252/Culler
Lec 2.231/24/02

Administration

• Tuesday is Stack vs GPR Debate
– Christine Chevalier Dan Adkins
– Yury Markovskiy Mukund Seshadri
– Yatish Patel Manikandan Narayanan
– Rachael Rubin Hayley Iben

• Think about address size, code density,
performance, compilation techniques, design
complexity, program characteristics

• Prereq quiz afterwards
• Please register (form on page)

CS252/Culler
Lec 2.241/24/02

Control Hazard on Branches
=> Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Page 5

CS252/Culler
Lec 2.251/24/02

Example: Branch Stall Impact

• If 30% branch, Stall 3 cycles significant
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3

CS252/Culler
Lec 2.261/24/02

A
dder

IF/ID

Pipelined MIPS Datapath
Figure 3.22, page 163, CA:AQA 2/e

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next
SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

ID
/EX

CS252/Culler
Lec 2.271/24/02

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

CS252/Culler
Lec 2.281/24/02

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

........
branch target if taken

– 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

– MIPS uses this

Branch delay of length n

CS252/Culler
Lec 2.291/24/02

Delayed Branch
• Where to get instructions to fill branch delay

slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Canceling branches allow more slots to be filled

• Compiler effectiveness for single branch delay
slot:

– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots

useful in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

CS252/Culler
Lec 2.301/24/02

Recall:Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

 CPI stall Pipeline CPI Ideal
depth Pipeline CPI Ideal Speedup ×

+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, CPI = 1:

Page 6

CS252/Culler
Lec 2.311/24/02

Example: Evaluating Branch
Alternatives

Assume:
Conditional & Unconditional = 14%, 65% change PC

Scheduling Branch CPI speedup v.
scheme penalty stall

Stall pipeline 3 1.42 1.0
Predict taken 1 1.14 1.26
Predict not taken 1 1.09 1.29
Delayed branch 0.5 1.07 1.31

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty

CS252/Culler
Lec 2.321/24/02

Questions?

CS252/Culler
Lec 2.331/24/02

The Memory Abstraction
• Association of <name, value> pairs

– typically named as byte addresses
– often values aligned on multiples of size

• Sequence of Reads and Writes
• Write binds a value to an address
• Read of addr returns most recently written

value bound to that address

address (name)
command (R/W)

data (W)

data (R)

done
CS252/Culler

Lec 2.341/24/02

Relationship of Caches and Pipeline

W
B

D
at

a

A
dder

IF/ID

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero? M
EM

/W
B

EX
/M

EM

4

A
dder

Next
SEQ PC

RD RD RD

Next PC

A
ddress

RS1
RS2

Imm

M
U

X

ID
/EX

I-$ D-$

Memory

CS252/Culler
Lec 2.351/24/02

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory
• Machine B: Single ported memory, but its
pipelined implementation has a 1.05 times
faster clock rate

• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

– Speedup(enhancement) = Time w/o enhancement / Time w/
– Speedup(B) = Time(A) / Time(B)

= CPI(A)xCT(A) / CPI(B)xCT(B)
= 1 / (1.4 x 1/1.05) = 0.75

Machine A is 1.33 times faster
CS252/Culler

Lec 2.361/24/02

Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level

(example: Block X)
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the
lower level (Block Y)

– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on
21264!) Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

Page 7

CS252/Culler
Lec 2.371/24/02

4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level?
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

CS252/Culler
Lec 2.381/24/02

Simplest Cache: Direct Mapped

Memory

4 Byte Direct Mapped Cache

Memory Address
0
1

2
3

4
5
6

7
8

9
A
B

C
D

E
F

Cache Index
0

1
2

3

• Location 0 can be occupied by
data from:

– Memory location 0, 4, 8, ... etc.
– In general: any memory location

whose 2 LSBs of the address are 0s
– Address<1:0> => cache index

• Which one should we place in
the cache?

• How can we tell which one is in
the cache?

CS252/Culler
Lec 2.391/24/02

1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1

2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

CS252/Culler
Lec 2.401/24/02

Two-way Set Associative Cache
• N-way set associative: N entries for each Cache

Index
– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared in parallel
– Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

CS252/Culler
Lec 2.411/24/02

Disadvantage of Set Associative Cache
• N-way Set Associative Cache v. Direct Mapped Cache:

– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:

– Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
CS252/Culler

Lec 2.421/24/02

Q1: Where can a block be placed in
the upper level?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative
– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

Page 8

CS252/Culler
Lec 2.431/24/02

Q2: How is a block found if it is in
the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index,
expands tag

Block
Offset

Block Address

IndexTag

CS252/Culler
Lec 2.441/24/02

Q3: Which block should be replaced on a
miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

CS252/Culler
Lec 2.451/24/02

Q4: What happens on a write?

• Write through—The information is written
to both the block in the cache and to the
block in the lower-level memory.

• Write back—The information is written only
to the block in the cache. The modified
cache block is written to main memory only
when it is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no repeated writes to same location

• WT always combined with write buffers so
that don’t wait for lower level memory

CS252/Culler
Lec 2.461/24/02

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and
Memory

– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM

write cycle

• Memory system design:
– Store frequency (w.r.t. time) -> 1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

CS252/Culler
Lec 2.471/24/02

A Modern Memory Hierarchy

• By taking advantage of the principle of locality:
– Present the user with as much memory as is available in the

cheapest technology.
– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

h
ip

C
ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
(10s sec)

Ts
CS252/Culler

Lec 2.481/24/02

Basic Issues in VM System Design
size of information blocks that are transferred from

secondary to main storage (M)

block of information brought into M, and M is full, then some region
of M must be released to make room for the new block -->
replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
of a fault --> demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame

Page 9

CS252/Culler
Lec 2.491/24/02

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
address a' and a' in M

= 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

CS252/Culler
Lec 2.501/24/02

Implications of Virtual Memory for
Pipeline design

• Fault?
• Address translation?

CS252/Culler
Lec 2.511/24/02

Paging Organization
frame 0

1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory
Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

V.A.

CS252/Culler
Lec 2.521/24/02

Address Translation

• Page table is a large data structure in memory
• Two memory accesses for every load, store, or instruction

fetch!!!
• Virtually addressed cache?

– synonym problem
• Cache the address translations?

CPU
Trans-
lation Cache

Main
Memory

VA PA miss

hit
data

CS252/Culler
Lec 2.531/24/02

TLBs
A way to speed up translation is to use a special cache of recently

used page table entries -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
(much less than main memory access time)

CS252/Culler
Lec 2.541/24/02

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,

set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines. This permits fully associative
lookup on these machines. Most mid-range machines use small
n-way set associative organizations.

CPU
TLB

Lookup Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

Page 10

CS252/Culler
Lec 2.551/24/02

Reducing Translation Time

Machines with TLBs go one step further to reduce #
cycles/cache access

They overlap the cache access with the TLB access:

high order bits of the VA are used to look in the TLB while
low order bits are used as index into cache

CS252/Culler
Lec 2.561/24/02

Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN

access memory with the PA from the TLB
ELSE do standard VA translation

CS252/Culler
Lec 2.571/24/02

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to

index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache

CS252/Culler
Lec 2.581/24/02

Another Word on Performance

CS252/Culler
Lec 2.591/24/02

SPEC: System Performance Evaluation
Cooperative

• First Round 1989
– 10 programs yielding a single number (“SPECmarks”)

• Second Round 1992
– SPECInt92 (6 integer programs) and SPECfp92 (14 floating point

programs)
» Compiler Flags unlimited. March 93 of DEC 4000 Model 610:
spice: unix.c:/def=(sysv,has_bcopy,”bcopy(a,b,c)=
memcpy(b,a,c)”
wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200
nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

• Third Round 1995
– new set of programs: SPECint95 (8 integer programs) and SPECfp95

(10 floating point)
– “benchmarks useful for 3 years”
– Single flag setting for all programs: SPECint_base95, SPECfp_base95

CS252/Culler
Lec 2.601/24/02

SPEC: System Performance Evaluation
Cooperative

• Fourth Round 2000: SPEC CPU2000
– 12 Integer
– 14 Floating Point
– 2 choices on compilation; “aggressive”

(SPECint2000,SPECfp2000), “conservative”
(SPECint_base2000,SPECfp_base); flags same for all
programs, no more than 4 flags, same compiler for
conservative, can change for aggressive

– multiple data sets so that can train compiler if trying to
collect data for input to compiler to improve optimization

Page 11

CS252/Culler
Lec 2.611/24/02

How to Summarize Performance
• Arithmetic mean (weighted arithmetic mean) tracks

execution time:
Σ(Ti)/n or Σ (Wi*T i)

• Harmonic mean (weighted harmonic mean) of rates (e.g.,
MFLOPS) tracks execution time:

n/Σ (1/Ri) or n/Σ (Wi/Ri)
• Normalized execution time is handy for scaling

performance (e.g., X times faster than SPARCstation
10)

• But do not take the arithmetic mean of normalized
execution time, use the geometric mean:

(Π Tj / Nj)1/n

CS252/Culler
Lec 2.621/24/02

SPEC First Round
• One program: 99% of time in single line of code
• New front-end compiler could improve

dramatically

Benchmark

0

100

200

300

400

500

600

700

800

gc
c

ep
re

ss
o

sp
ic

e

do
du

c

na
sa

7 li

eq
nt

ot
t

m
at

rix
30

0

fp
pp

p

to
m

ca
tv

CS252/Culler
Lec 2.631/24/02

Performance Evaluation

• “For better or worse, benchmarks shape a field”
• Good products created when have:

– Good benchmarks
– Good ways to summarize performance

• Given sales is a function in part of performance relative to
competition, investment in improving product as reported by
performance summary

• If benchmarks/summary inadequate, then choose between
improving product for real programs vs. improving product
to get more sales;
Sales almost always wins!

• Execution time is the measure of computer performance!

CS252/Culler
Lec 2.641/24/02

Summary #1/4:
Pipelining & Performance

• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

 CPI stall Pipeline 1
depth Pipeline Speedup ×

+
=

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

• Time is measure of performance: latency or
throughput

• CPI Law:

CS252/Culler
Lec 2.651/24/02

Summary #2/4: Caches

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses: increase cache size and/or associativity.

• Write Policy:
– Write Through: needs a write buffer.
– Write Back: control can be complex

• Today CPU time is a function of (ops, cache misses)
vs. just f(ops): What does this mean to
Compilers, Data structures, Algorithms?

CS252/Culler
Lec 2.661/24/02

Summary #3/4:
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Page 12

CS252/Culler
Lec 2.671/24/02

Review #4/4: TLB, Virtual Memory

• Caches, TLBs, Virtual Memory all understood by
examining how they deal with 4 questions: 1)
Where can block be placed? 2) How is block found?
3) What block is repalced on miss? 4) How are
writes handled?

• Page tables map virtual address to physical address
• TLBs make virtual memory practical

– Locality in data => locality in addresses of data,
temporal and spatial

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache

without TLB misses!

• Today VM allows many processes to share single
memory without having to swap all processes to
disk; today VM protection is more important than
memory hierarchy

