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5 Steps of MIPS Datapath
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Review: Visualizing Pipelining
Figure 3.3, Page 133 , CA:AQA 2e
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Limits to pipelining

• Hazards: circumstances that would cause 
incorrect execution if next instruction were 
launched

– Structural hazards: Attempting to use the same hardware to 
do two different things at the same time

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow 
(branches and jumps).
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Example: One Memory Port/Structural 
Hazard

Figure 3.6, Page 142 , CA:AQA 2e
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Resolving structural hazards

• Defn: attempt to use same hardware for 
two different things at the same time

• Solution 1: Wait
⇒must detect the hazard
⇒must have mechanism to stall

• Solution 2: Throw more hardware at the 
problem
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Detecting and Resolving Structural Hazard
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Eliminating Structural Hazards at Design 
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Role of Instruction Set Design in 
Structural Hazard Resolution

• Simple to determine the sequence of 
resources used by an instruction

– opcode tells it all

• Uniformity in the resource usage
• Compare MIPS to IA32?
• MIPS approach => all instructions flow 

through same 5-stage pipeling
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Data Hazards
Figure 3.9, page 147 , CA:AQA 2e
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• Read After Write (RAW)
InstrJ tries to read operand before Instr I writes it

• Caused by a “Data Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and 
– Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 
– All instructions take 5 stages, and 
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated 
pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure 3.10, Page 149 , CA:AQA 2e
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HW Change for Forwarding
Figure 3.20, Page 161, CA:AQA 2e
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Time (clock cycles)
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lw r1, 0(r2)
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Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e
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Resolving this load hazard

• Adding hardware? ... not
• Detection?
• Compilation techniques?

• What is the cost of load delays?
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Resolving the Load Data Hazard

Time (clock cycles)
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Try producing fast code for
a = b + c;

d = e – f;
assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b

LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f

SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load 
Hazards

Fast code:

LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 

SUB Rd,Re,Rf
SW d,Rd

CS252/Culler
Lec 2.211/24/02

Instruction Set Connection

• What is exposed about this organizational 
hazard in the instruction set?

• k cycle delay?
– bad, CPI is not part of ISA

• k instruction slot delay
– load should not be followed by use of the value in the 

next k instructions

• Nothing, but code can reduce run-time 
delays

• MIPS did the transformation in the 
assembler
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Historical Perspective: Microprogramming

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program 
plus Data

this can change!

one of these is
mapped into one
of these

Supported complex instructions a sequence of simple micro -inst (RTs)
Pipelined micro -instruction processing, but very limited view.
Could not reorganize macroinstructions to enable pipelining
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Administration

• Tuesday is Stack vs GPR Debate
– Christine Chevalier Dan Adkins
– Yury Markovskiy Mukund Seshadri
– Yatish Patel Manikandan Narayanan
– Rachael Rubin Hayley Iben

• Think about address size, code density, 
performance, compilation techniques, design 
complexity, program characteristics

• Prereq quiz afterwards
• Please register (form on page)
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Control Hazard on Branches
=> Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11
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Example: Branch Stall Impact

• If 30% branch, Stall 3 cycles significant
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3
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A
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Pipelined MIPS Datapath
Figure 3.22, page 163, CA:AQA 2/e
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

........
branch target if taken

– 1 slot delay allows proper decision and branch target 
address in 5 stage pipeline

– MIPS uses this

Branch delay of length n
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Delayed Branch
• Where to get instructions to fill branch delay 

slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Canceling branches allow more slots to be filled

• Compiler effectiveness for single branch delay 
slot:

– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots 

useful in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, 
multiple instructions issued per clock (superscalar)
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Recall:Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  CPI stall Pipeline  CPI Ideal
depth Pipeline  CPI Ideal  Speedup ×

+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:
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Example: Evaluating Branch 
Alternatives

Assume: 
Conditional & Unconditional = 14%, 65% change PC

Scheduling Branch CPI speedup v.
scheme penalty stall

Stall pipeline 3 1.42 1.0
Predict taken 1 1.14 1.26
Predict not taken 1 1.09 1.29
Delayed branch 0.5 1.07 1.31

Pipeline speedup = Pipeline depth
1 +Branch frequency×Branch penalty
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Questions?
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The Memory Abstraction
• Association of <name, value> pairs

– typically named as byte addresses
– often values aligned on multiples of size

• Sequence of Reads and Writes
• Write binds a value to an address
• Read of addr returns most recently written 

value bound to that address

address (name)
command (R/W)

data (W)

data (R)

done
CS252/Culler
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Relationship of Caches and Pipeline
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Example: Dual-port vs. Single-port

• Machine A: Dual ported memory
• Machine B: Single ported memory, but its 
pipelined implementation has a 1.05 times 
faster clock rate

• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

– Speedup(enhancement) = Time w/o enhancement / Time w/
– Speedup(B) = Time(A) / Time(B) 

= CPI(A)xCT(A) / CPI(B)xCT(B)
= 1 / (1.4 x 1/1.05) = 0.75

Machine A is 1.33 times faster
CS252/Culler
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Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level 

(example: Block X) 
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the 
lower level (Block Y)

– Miss Rate  = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 
21264!) Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y
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4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level? 
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)
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Simplest Cache: Direct  Mapped

Memory

4  Byte Direct Mapped Cache

Memory Address
0
1

2
3

4
5
6

7
8

9
A
B

C
D

E
F

Cache Index
0

1
2

3

• Location 0 can be occupied by 
data from:

– Memory location 0, 4, 8, ... etc.
– In general: any memory location

whose 2 LSBs of the address are 0s
– Address<1:0>  => cache index

• Which one should we place in 
the cache?

• How can we tell which one is in 
the cache?
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1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1

2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9
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Two-way Set Associative Cache
• N-way set associative: N entries for each Cache 

Index
– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared in parallel
– Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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Disadvantage of Set Associative Cache
• N-way Set Associative Cache v. Direct Mapped Cache:

– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available 
BEFORE Hit/Miss:

– Possible to assume a hit and continue.  Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
CS252/Culler
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Q1: Where can a block be placed in 
the upper level? 

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative
– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0
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Q2: How is a block found if it is in 
the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, 
expands tag

Block
Offset

Block Address

IndexTag
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Q3: Which block should be replaced on a 
miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way
Size LRU     Ran  LRU Ran      LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Q4: What happens on a write?

• Write through—The information is written 
to both the block in the cache and to the 
block in the lower-level memory.

• Write back—The information is written only 
to the block in the cache. The modified 
cache block is written to main memory only 
when it is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no repeated writes to same location

• WT always combined with write buffers so 
that don’t wait for lower level memory
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Write Buffer for Write Through

• A Write Buffer is needed between the Cache and 
Memory

– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM 

write cycle

• Memory system design:
– Store frequency (w.r.t. time)   ->  1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM
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A Modern Memory Hierarchy

• By taking advantage of the principle of locality:
– Present the user with as much memory as is available in the 

cheapest technology.
– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

h
ip

C
ache

1s 10,000,000s  
(10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s  
(10s sec)

Ts
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Basic Issues in VM System Design
size of information blocks that are transferred from

secondary to main storage (M)

block of information brought into M, and M is full, then some region
of M must be released to make room for the new block -->
replacement policy

which region of M is to hold the new block -->  placement policy 

missing item fetched from secondary memory only on the occurrence
of a fault  -->  demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame
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Address Map
V = {0, 1, . . . , n - 1}   virtual address space
M = {0, 1, . . . , m - 1}  physical address space

MAP:  V -->  M  U  {0}  address mapping function

n > m

MAP(a)  =  a'  if data at virtual address a is present in physical 
address a' and  a' in M

=  0  if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer
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Implications of Virtual Memory for 
Pipeline design

• Fault?
• Address translation?
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Paging Organization
frame 0

1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of 
mapping

also unit of
transfer from
virtual to
physical 
memory

Virtual Memory
Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation 
is more likely

V.A.
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Address Translation

• Page table is a large data structure in memory
• Two memory accesses for every load, store, or instruction 

fetch!!!
• Virtually addressed cache?

– synonym problem
• Cache the address translations?

CPU
Trans-
lation Cache

Main
Memory

VA PA miss

hit
data
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TLBs
A way to speed up translation is to use a special cache of recently

used page table entries  -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Address   Physical Address   Dirty   Ref   Valid   Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
(much less than main memory access time)

CS252/Culler
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Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,

set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines.  This permits fully associative
lookup on these machines.  Most mid-range machines use small
n-way set associative organizations.

CPU
TLB

Lookup Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB
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Reducing Translation Time

Machines with TLBs go one step further to reduce # 
cycles/cache access

They overlap the cache access with the TLB access:

high order bits of the VA are used to look in the TLB while 
low order bits are used as index into cache
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Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN

access memory with the PA from the TLB
ELSE do standard VA translation
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Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to

index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example:  suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache 
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache
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Another Word on Performance
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SPEC: System Performance Evaluation 
Cooperative

• First Round 1989
– 10 programs yielding a single number (“SPECmarks”)

• Second Round 1992
– SPECInt92 (6 integer programs) and SPECfp92 (14 floating point 

programs)
» Compiler Flags unlimited. March 93 of DEC 4000 Model 610:
spice: unix.c:/def=(sysv,has_bcopy,”bcopy(a,b,c)=
memcpy(b,a,c)”
wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200
nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

• Third Round 1995
– new set of programs: SPECint95 (8 integer programs) and SPECfp95

(10 floating point) 
– “benchmarks useful for 3 years”
– Single flag setting for all programs: SPECint_base95, SPECfp_base95 
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SPEC: System Performance Evaluation 
Cooperative

• Fourth Round 2000: SPEC CPU2000
– 12 Integer
– 14 Floating Point
– 2 choices on compilation; “aggressive” 

(SPECint2000,SPECfp2000), “conservative” 
(SPECint_base2000,SPECfp_base); flags same for all 
programs, no more than 4 flags, same compiler for 
conservative, can change for aggressive

– multiple data sets so that can train compiler if trying to 
collect data for input to compiler to improve optimization
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How to Summarize Performance
• Arithmetic mean (weighted arithmetic mean) tracks 

execution time: 
Σ(Ti)/n or Σ (Wi*T i)

• Harmonic mean (weighted harmonic mean) of rates (e.g., 
MFLOPS) tracks execution time: 

n/Σ (1/Ri) or n/Σ (Wi/Ri)
• Normalized execution time is handy for scaling 

performance (e.g., X times faster than SPARCstation 
10)

• But do not take the arithmetic mean of normalized 
execution time, use the geometric mean: 

( Π Tj / Nj )1/n
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SPEC First Round
• One program: 99% of time in single line of code
• New front-end compiler could improve 

dramatically

Benchmark
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Performance Evaluation

• “For better or worse, benchmarks shape a field”
• Good products created when have:

– Good benchmarks
– Good ways to summarize performance

• Given sales is a function in part of performance relative to 
competition, investment in improving product as reported by 
performance summary

• If benchmarks/summary inadequate, then choose between 
improving product for real programs vs. improving product 
to get more sales;
Sales almost always wins!

• Execution time is the measure of computer performance!
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Summary #1/4: 
Pipelining & Performance

• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  CPI stall Pipeline  1
depth Pipeline  Speedup ×

+
=

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction Cycle

• Time is measure of performance: latency or 
throughput

• CPI Law:
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Summary #2/4: Caches

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses:  increase cache size and/or associativity.

• Write Policy:
– Write Through: needs a write buffer.  
– Write Back: control can be complex

• Today CPU time is a function  of (ops, cache misses) 
vs. just f(ops): What does this mean to 
Compilers, Data structures, Algorithms?
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Summary #3/4: 
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B
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Review #4/4: TLB, Virtual Memory

• Caches, TLBs, Virtual Memory all understood by 
examining how they deal with 4 questions: 1) 
Where can block be placed? 2) How is block found? 
3) What block is repalced on miss? 4) How are 
writes handled?

• Page tables map virtual address to physical address
• TLBs make virtual memory practical

– Locality in data => locality in addresses of data, 
temporal and spatial

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache

without TLB misses!

• Today VM allows many processes to share single 
memory without having to swap all processes to 
disk; today VM protection is more important than 
memory hierarchy


