

Motivation: Who Cares About I/O?

CPU Performance: 60% per year
 I/O system performance limited by mechanical delays (disk I/O)

 <10% per year (IO per sec)

 Amdahl's Law: system speed-up limited by the slowest part!

 10% IO & 10x CPU => 5x Performance (lose 50%)
 10% IO & 100x CPU => 10x Performance (lose 90%)

 I/O bottleneck:

 Diminishing fraction of time in CPU
 Diminishing value of faster CPUs

	Disk Characteristics in 2000				
		Seagate Cheetah ST173404LC Ultra160 SCSI	IBM Travelstar 32GH DJSA - 232 ATA-4	IBM 1GB Microdrive DSCM-11000	
	Disk diameter (inches) Formatted data capacity (GB) Cylinders	3.5	2.5	1.0	
		73.4	32.0	1.0	
		14,100	21,664	7,167	
	Disks	12	4	1	
	Recording Surfaces (Heads) Bytes per sector	24	8	2	
		512 to 4096	512	512	
	Avg Sectors per track (512 byte) Max. areal density(Gbit/sq.in.)	~ 424	~ 360	~ 140	
/02		6.0 \$828	14.0 \$447	15.2 \$435 (\$255/0 Lec 6.1	uller 24

Disk Characteristics in 2000					
	Seagate Cheetah ST173404LC Ultra160 SCSI	IBM Travelstar 32GH DJSA - 232 ATA-4	IBM 1GB Microdrive DSCM-11000		
Rotation speed (RPM)	10033	5411	3600		
Avg. seek ms (read/write)	5.6/6.2	12.0	12.0		
Minimum seek ms (read/write)	0.6/0.9	2.5	1.0		
Max. seek ms	14.0/15.0	23.0	19.0		
Data transfer rate MB/second	27 to 40	11 to 21	2.6 to 4.2		
Link speed to	160	67	13		
Power idle/operating	16.4 / 23.5	2.0 / 2.6	0.5 / 0.8		
Watts				CS252/Ci Lec 6.3	

Disk	Disk Characteristics in 2000			
Buffer size in MB	Seagate Cheetah ST173404LC Ultra160 SCSI 4.0	IBM Travelstar 32GH DJSA - 232 ATA-4 2.0	IBM 1GB Microdrive DSCM-11000 0.125	
Size: height x width x depth inches Weight pounds	1.6 x 4.0 x 5.8 2.00	0.5 x 2.7 x 3.9 0.34	0.2 x 1.4 x 1.7 0.035	
Rated MTTF in powered-on hours	1,200,000	(300,000?)	(20K/5 yr life?)	
% of POH per month	100%	45%	20%	
% of POH seeking, reading, writing	90%	20%	20%	

Disk Characteristics in 2000					
	Seagate Cheetah ST173404LC	IBM Travelstar 32GH DJSA - 232 ATA-4	IBM 1GB Microdr DSCM-11000		
Load/Unload cycles (disk	250 per year	300,000	300,000		
powered on/off) Nonrecoverable read errors per bits read	<1 per 10 ¹⁵	< 1 per 10 ¹³	< 1 per 10 ¹³		
Seek errors	<1 per 10^{7}	not available	not available		
Shock tolerance: Operating, Not operating	10 G, 175 G	150 G, 700 G	175 G, 1500 C		
Vibration	5-400 Hz @	5-500 Hz @	5-500 Hz @ 1G,		
Operating, Not operating (sine	0.5G, 22-400 Hz @ 2.0G	1.0G, 2.5-500 Hz @ 5.0G	500 Hz @ 5G		

Fallacy: Use Data Sheet "Average Seek" Time

- Manufacturers needed standard for fair comparison ("benchmark")
 - Calculate all seeks from all tracks, divide by number of seeks => "average"
- Real average would be based on how data laid out on disk, where seek in real applications, then measure performance
 - Usually, tend to seek to tracks nearby, not to random track
- Rule of Thumb: observed average seek time is typically about 1/4 to 1/3 of quoted seek time (i.e., 3X-4X faster)
 - Barracuda 180 X avg. seek: 7.4 ms IP 2.5 ms

Fallacy: Use Data Sheet Transfer Rate

- \bullet Manufacturers quote the speed off the data rate off the surface of the disk
- Sectors contain an error detection and correction field (can be 20% of sector size) plus sector number as well as data
- There are gaps between sectors on track
- Rule of Thumb: disks deliver about 3/4 of internal media rate (1.3X slower) for data
- For example, Barracuda 180X quotes 64 to 35 MB/sec internal media rate
 A to 20 MB/sec unternal data mate (740)
- ₱ 47 to 26 MB/sec external data rate (74%)

CS25

Tape vs. Disk

- Longitudinal tape uses same technology as hard disk; tracks its density improvements
- · Disk head flies above surface, tape head lies on surface
- · Disk fixed, tape removable
- Inherent cost-performance based on geometries: fixed rotating platters with gaps (random access, limited area, 1 media / reader)
- vs. removable long strips wound on spool (sequential access, "unlimited" length, multiple / reader)
- Helical Scan (VCR, Camcoder, DAT) Spins head at angle to tape to improve density

S252/Culler

Current Drawbacks to Tape • Tape wear out: • Helical 100s of passes to 1000s for longitudinal • Head wear out: • 2000 hours for helical • Both must be accounted for in economic / reliability model • Bits stretch • Readers must be compatible with multiple generations of media • Long rewind, eject, load, spin-up times; not inherent, just no need in marketplace • Designed for archival

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)					
	<mark>IBM 3390К IBM 3.5" 0061 х70</mark>				
Capacity	20 GBytes	320 MBytes	23 GBytes		
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. <mark>9X</mark>		
Power	3 KW	11 W	<u>1 KW ^{3X}</u>		
Data Rate	15 MB/s	1.5 MB/s	120 MB/s 8X		
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s <mark>6X</mark>		
MTTF	250 KHrs	50 KHrs	??? Hrs		
Cost	\$250K	\$2K	\$150K		
Disk Arrays have potential for large data and I/O rates, high MB per cu. ft., high MB per KW, but what about reliability?					

RAID 3

- Sum computed across recovery group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk: good for large transfers
- Wider arrays reduce capacity costs, but decreases availability
- 33% capacity cost for parity in this configuration

Inspiration for RAID 4

- RAID 3 relies on parity disk to discover errors
- on Read
- But every sector has an error detection field
- Rely on error detection field to catch errors on read, not on the parity disk
- · Allows independent reads to different disks simultaneously

Summary Storage

- Disks:
 - Extraodinary advance in capacity/drive, \$/GB
 - Currently 17 Gbit/sq. in. ; can continue past 100 Gbit/sq. in.?
 - Bandwidth, seek time not keeping up: 3.5 inch form factor makes sense? 2.5 inch form factor in near future? 1.0 inch form factor in long term?
- Tapes
 - No investment, must be backwards compatible
 Are they already dead?
 What is a tapeless backup system?

CS252/Cull Lec 6.55