
1

CS252/Hill
Lec 8.1

2/14/02

Wireless Sensor Networks

Lecture 8 – CS252

CS252/Hill
Lec 8.2

2/14/02

Sensor Networks: The Vision

• Push connectivity out of the PC and into the 
real world

• Billions of sensors and actuators 
EVERYWHERE!!!

• Zero configuration
• Build everything out of CMOS so that each 

device costs pennies
• Enable wild new sensing paradigms

CS252/Hill
Lec 8.3

2/14/02

Why Now?

Combination of:
• Breakthroughs in MEMS technology
• Development of low power radio 
technologies

• Advances in low-power embedded 
microcontrollers

CS252/Hill
Lec 8.4

2/14/02

Real World Apps…

CS252/Hill
Lec 8.5

2/14/02

Vehicle Tracking

CS252/Hill
Lec 8.6

2/14/02

Cory Energy Monitoring/Mgmt 
System

• 50 nodes on 4 th floor
• 5 level ad hoc net
• 30 sec sampling
• 250K samples to database over 6 weeks



2

CS252/Hill
Lec 8.7

2/14/02

Structural performance due to multi -
directional ground motions (Glaser & 

CalTech)

Wiring for traditional 
structural instrumentation
+ truckload of equipment

Mote infrastructure
1
5

1
3

1
4

6
5
`

1
5

1
18

Mote 
Layout

1
29

Comparison of Results

CS252/Hill
Lec 8.8

2/14/02

Node Localization

2/13/2002Kamin Whitehouse.  Nest Retreat 4

“Best Fit”

Calibration

Localization

Regression

• Reducing Noise

• Reducing Error

• Results

Regression

Distance

RS
SI

40 cm2 0 cm 80 cm60 cm 100 cm

Error

60

50 cm

ErrorErrorErrorNoise

Noise

50 cm

60

CS252/Hill
Lec 8.9

2/14/02

Sensor Network Algorithms

• Directed Diffusion – Data centric routing 
(Estrin, UCLA)

• Sensor Network Query Processing (Madden, 
UCB)

• Distributed Data Aggregation
• Localization in sensor networks (UCLA, UW, 

USC, UCB)
• Multi-object tracking/Pursuer Evader (UCB, 

NEST)
• Security

CS252/Hill
Lec 8.10

2/14/02

Recipe For Architectural Research

1. Take known workload
2. Analyze performance on current systems
3. Form hypothesis on ways of improving 

“performance”
4. Build new system based on hypothesis
5. Re-analyze same workload on new system
6. Publish results

CS252/Hill
Lec 8.11

2/14/02

Our Approach….

1. Hypothesize about requirements based on potential 
applications

2. Explore design space based on these requirements
3. Develop hardware platform for experimentation
4. Build test applications on top of hardware platform
5. Evaluate performance characteristics of applications
6. GOTO step 1 (hopefully you’ll come up with a better 

set of requirements)

CS252/Hill
Lec 8.12

2/14/02

Sensor Node Requirements

• Low Power, Low Power, Low Power…
• Support Multi-hop Wireless Communication
• Self Configuring
• Small Physical Size
• Can Reprogram over Network 
• Meets Research Goals

– Operating system exploration
– Enables exploration of algorithm space
– Instrumentation
– Network architecture exploration



3

CS252/Hill
Lec 8.13

2/14/02

First Decision: The central 
controller

• What will control the device?
• Modern Microcontroller Sidebar

– What’s inside a microcontroller today?
– What peripheral equipment do you need 
to support one?

– How do you program one?

CS252/Hill
Lec 8.14

2/14/02

Major Axes of Microcontroller 
Diversity

• Flash based vs. SRAM based
– Combination of FLASH and CMOS logic is difficult

• Internal vs. External Memory
• Memory Size
• Digital Only vs. On-chip ADC
• Operating Voltage Range
• Operating Current, Power States and wake-up times
• Physical Size
• Support Circuitry Required

– External Clocks, Voltage References, RAM
• Peripheral Support

– SPI, USART, I2C, One-wire
• Cycle Counters
• Capture and Analog Compare
• Tool Chain

CS252/Hill
Lec 8.15

2/14/02 CS252/Hill
Lec 8.16

2/14/02

CS252/Hill
Lec 8.17

2/14/02

Second Decision: Radio 
Technologies

• Major RF Devices
– Cordless Phones Digital/Analog

» Single Channel
– Cellular Phones

» Multi-channel, Base station controlled
– 802.11

» “wireless Ethernet”
– Bluetooth

» Emerging, low-power frequency 
hopping 

CS252/Hill
Lec 8.18

2/14/02

What is in your cell phone? 
• Texas Instrument’s TCS2500 Chipset

ARM9, 120Mhz 
+ DSP >> 270.833 

kbps



4

CS252/Hill
Lec 8.19

2/14/02

RFM TR1000 Radio

• 916.5 Mhz fixed carrier frequency
• No bit timing provided by radio
• 5 mA RX, 10 mA TX
• Receive signal digitized based on analog thresholds
• Able to operate in OOK (10 kb/s) or ASK (115 kb/s) 

mode
• 10 Kbps design using programmed I/O
• Design SPI-based circuit to drive radio at full speed

– full speed on TI MSP, 50 kb/s on ATMEGA
• Improved Digitally controlled TX strength  DS1804 

– 1 ft to 300 ft transmission range, 100 steps 
• Receive signal strength detector

CS252/Hill
Lec 8.20

2/14/02

TR 1000 internals

CS252/Hill
Lec 8.21

2/14/02

Why not use federation of 
CPUs?

• Divide App, RF, Storage and Sensing
• Reproduce PC I/O hierarchy
• Dedicated communications processor could greatly 

reduce protocol stack overhead and complexity
• Providing physical parallelism would create a partition 

between applications and communication protocols 
• Isolating applications from protocols can prove costly

Flexibility is Key to success
Apps CPU

Sensing CPU Storage CPU RF CPU

StorageSensors Radio CS252/Hill
Lec 8.22

2/14/02

Can you do this with a single 
CPU?

CS252/Hill
Lec 8.23

2/14/02

The RENE architecture 
• Atmel AT90LS8535 

– 4 Mhz 8-bit CPU
– 8KB Instruction Memory
– 512B RAM
– 5mA active, 3mA idle, 

<5uA powered down 
• 32 KB EEPROM

– 1-4 uj/bit r/w
• RFM TR1000 radio

– Programmed I/O
– 10 kb/s – OOK

• Network programmable 
• 51-pin expansion connector
• GCC based 

tool/programming chain 

1.5”x1” form factor

AT90LS8535  Microcontroller

TR 1000 Radio Transceiver 32 KB External EEPROM

51-Pin I/O Expansion Connector

8 Analog I/O
8 Programming 

Lines

S
P

I B
us

CoprocessorTransmission
Power Control

Digital I/O

CS252/Hill
Lec 8.24

2/14/02

What is the software 
environment?

• Do I run JINI? Java?
• What about a real time OS?
• IP? Sockets? Threads?

• Why not?



5

CS252/Hill
Lec 8.25

2/14/02

TinyOS 

• OS/Runtime model designed to manage the 
high levels of concurrency required

• Gives up IP, sockets, threads
• Uses state-machine based programming 

concepts to allow for fine grained 
concurrency

• Provides the primitive of low-level message 
delivery and dispatching as building block 
for all distributed algorithms

CS252/Hill
Lec 8.26

2/14/02

Key Software Requirements

• Capable of fine grained 
concurrency

• Small physical size
• Efficient Resource Utilization
• Highly Modular
• Self Configuring

CS252/Hill
Lec 8.27

2/14/02

State Machine Programming 
Model

• System composed of state machines
• Command and event handlers 
transition modules from one state to 
another

– Quick, low overhead, non-blocking state 
transitions

• Many independent modules allowed to 
efficiently share a single execution 
context

CS252/Hill
Lec 8.28

2/14/02

Tiny OS Concepts
• Scheduler + Graph of Components

– constrained two-level scheduling model: 
threads + events

• Component:
– Commands, 
– Event Handlers
– Frame (storage)
– Tasks (concurrency) 

• Constrained Storage Model
– frame per component, shared stack, no 

heap

• Very lean multithreading
• Efficient Layering

Messaging Component

in
it

P
ow

er
(m

od
e)

TX
_p

ac
ke

t(b
u

f)

TX
_p

ac
k

et
_d

on
e 

(s
uc

ce
ss

)R
X

_p
ac

k
et

_d
on

e 
(b

uf
fe

r)

Internal 
State

in
it

po
w

er
(m

od
e)

se
nd

_m
sg

(a
dd

r, 
ty

pe
, d

at
a)

m
sg

_r
ec

(ty
pe

, d
at

a)
m

sg
_s

en
d_

do
ne

)

internal thread

Commands Events

CS252/Hill
Lec 8.29

2/14/02

Application = Graph of Components

RFM

Radio byte

Radio Packet

UART

Serial Packet

ADC

Temp photo

Active Messages

clocksbi
t

b
yt

e
p

ac
ke

t

Route map router sensor appln

ap
pl

ic
at

io
n

HW

SW
Example: ad hoc, multi-hop 
routing of photo sensor 
readings

3450 B code
226 B data

Graph of cooperating
state machines 
on shared stack

CS252/Hill
Lec 8.30

2/14/02

System Analysis

• After building apps, system is highly 
memory constrained

• Communication bandwidth is limited by 
CPU overhead at key times.  
Communication has bursty phases.

• Where did the Energy/Time go?
– 50% of CPU used when searching for packets
– With 1 packet per second, >90% of energy goes 

to RX!



6

CS252/Hill
Lec 8.31

2/14/02

Architectural Challenges

• Imbalance between memory, I/O and CPU
– Increase memory (Program and Data) by selecting 

different CPU

• Time/energy spent waiting for reception
– Solution: Low-power listening software protocols

• Peak CPU usage during transmission
– Solution: Hardware based communication accelerator

CS252/Hill
Lec 8.32

2/14/02

The MICA architecture 
• Atmel ATMEGA103 

– 4 Mhz 8-bit CPU
– 128KB Instruction Memory
– 4KB RAM
– 5.5mA active, 1.6mA idle, 

<1uA powered down 
• 4 Mbit flash (AT45DB041B)

– SPI interface
– 1-4 uj/bit r/w

• RFM TR1000 radio
– 50 kb/s – ASK
– Communication focused hardware 

acceleration
• Network programmable 
• 51-pin expansion connector

– Analog compare + interrupts
• GCC based tool/programming chain 

Cost-effective 
power source

2xAA form factor

Atmega103 Microcontroller

TR 1000 Radio Transceiver 4Mbit External Flash

51-Pin I/O Expansion Connector

8 Analog I/O
8 Programming 

Lines

S
P

I B
us

CoprocessorTransmission
Power Control

Power Regulation MAX1678 (3V)

DS2401 Unique ID

Hardware 
Accelerators

Digital I/O

CS252/Hill
Lec 8.33

2/14/02

Start Symbol Search Receiving individual bits

Start Symbol Detection

Synchronization

Radio Samples

MAC Delay Transmitting encoded bits

Start Symbol Transmission

Bit Modulations

Transmission

Reception Encoded data received

Data Received

…
Encoded data to be Transmitted

Data to be Transmitted

Encode processing

Decode processing

Transmit command 
provides data and starts
MAC protocol.

Wireless Communication Phases

………
……

…
CS252/Hill
Lec 8.34

2/14/02

Radio Interface

• Highly CPU intensive
• CPU limited, not RF limited in low power 

systems
• Example implementations

– RENE node:
» 19,200 bps RF capability
» 10,000 bps implementation, 4Mhz Atmel AVR

– Chipcon application note example:
» 9,600 bps RF capability
» Example implementation 1,200bps with 8x over 

sampling on 16 Mhz Microchip PICmicro  (chipcon
application note AN008)

CS252/Hill
Lec 8.35

2/14/02

Node Communication 
Architecture Options

Application Controller

RF Transceiver

Direct Device 

Control

Classic Protocol 

Processor
Application Controller

RF Transceiver

Protocol Processor

Narrow, refined 
Chip-to-Chip Interface

Raw RF Interface Hybrid Accelerator

Application Controller

RF Transceiver

Serialization Accelerator

Timing Accelerator

M
em

or
y 

I/O
 

BU
S

Hardware Accelerators

CS252/Hill
Lec 8.36

2/14/02

Accelerator Approach
• Standard Interrupt based I/O 

perform start symbol detection
• Timing accelerator employed to 

capture precise transmission timing
– Edge capture performed to +/- 1/4 us 

• Timing information fed into data 
serializer
– Exact bit timing performed without using  

data path
– CPU handles data byte-by-byte

Hybrid Accelerator

Application Controller

RF Transceiver

Serialization Accelerator

Timing Accelerator

M
em

or
y 

I/O
 

BU
S

Hardware Accelerators



7

CS252/Hill
Lec 8.37

2/14/02

Results from accelerator 
approach

• Bit Clocking Accelerator
– 50 Kbps transmission rate

» 5x over Rene implementation
– >8x reduction in peak CPU overhead

• Timing Accelerator
– Edge captured to +/- ¼ us

» Rene implementation = +/- 50 us
– CPU data path not involved

CS252/Hill
Lec 8.38

2/14/02

Power Optimization Challenge

Scenario:
• 1000 node multi-hop network
• Deployed network should be “dormant” 
until RF wake-up signal is heard

• After sleeping for hours, network 
must wake-up with-in 20 seconds

Goal:
• Minimize Power consumption

CS252/Hill
Lec 8.39

2/14/02

What are the important 
characteristics?

• Transmit Power?
• Receive Power consumption of the radio?
• Clock Skew? 

• Radio turn-on time?

CS252/Hill
Lec 8.40

2/14/02

Solutions

• Minimize the time to check for 
“wake-up” message

• “check” time must be greater than 
length of wake-up message

• If data packets are used for wake up 
signal, then “check” time must exceed 
packet transmission time

• Instead use long wake-up tone 

CS252/Hill
Lec 8.41

2/14/02

Tone-based wake-up protocol

• Each node turns on radio for 200us 
and checks for RF noise

• If present, then node continues to 
listen to confirm the tone

• If not, node goes back to sleep for 4 
seconds

• Resulting duty cycle?  .0002/4 = 
.005 %.

• 200us due to wake-up time of the 
radio

CS252/Hill
Lec 8.42

2/14/02

Project Ideas
• Tos_sim ++

– RF usage modeling
– Cycle-accurate simulation
– Nono-joule-accurate simulation

• Tiny application specific VM
– Source program lang
– Intermediate representation
– Mobile code story
– Communication model

• Analysis of CPU Multithreading/Radical core 
architectures

• Federated Architecture Alternative



8

CS252/Hill
Lec 8.43

2/14/02

Project Ideas (2)
• Closed loop system analysis

– Simulation of closed loop systems
– Impact of design decisions on latency

• Channel characterization, Error Correction
• Stable, energy efficient, multi-hop communication 

implementation
• Scalable Reliable Multicast Analog
• Sensor network specific CPU design
• “Passive Vigilance” Circuits
• Power Harvesting
• Correct Architectural Balance (Memory:I/O:CPU)
• Self-diagnosis/watchdog architecture 
• Cryptographic Support
• Alternate Scheduling Models – Perhaps periodic real-

time
• Explore query processing/content based routing
• Design and build your own X

CS252/Hill
Lec 8.44

2/14/02

Microcontroller Alternatives

• Atmega 163
– same pin out as RENE
– 2x memory
– Can self-reprogram 

• ARM Thumb
– lower power consumption, lower voltage
– greater performance
– poor integration à slow radio

• TI MSP340 
– Superior performance
– 1/10 power consumption
– Better integration 

No GCC, tool chain missing

Not enough memory

Peripheral support missing


