
Salable, Distributed Data Struturesfor Internet Servie ConstrutionSteven D. Gribble, Eri A. Brewer, Joseph M. Hellerstein, and David CullerThe University of California at Berkeleyfgribble,brewer,jmh,ullerg�s.berkeley.eduAbstratThis paper presents a new persistent data manage-ment layer designed to simplify luster-based Internetservie onstrution. This self-managing layer, alleda distributed data struture (DDS), presents a onven-tional single-site data struture interfae to servie au-thors, but partitions and repliates the data aross a lus-ter. We have designed and implemented a distributedhash table DDS that has properties neessary for Inter-net servies (inremental saling of throughput and dataapaity, fault tolerane and high availability, high on-urreny, onsisteny, and durability). The hash tableuses two-phase ommits to present a oherent view ofits data aross all luster nodes, allowing any node toservie any task. We show that the distributed hashtable simpli�es Internet servie onstrution by deou-pling servie-spei� logi from the omplexities of per-sistent, onsistent state management, and by allowingservies to inherit the neessary servie properties fromthe DDS rather than having to implement the proper-ties themselves. We have saled the hash table to a 128node luster, 1 terabyte of storage, and an in-ore readthroughput of 61,432 operations/s and write throughputof 13,582 operations/s.1 IntrodutionInternet servies are suessfully bringing infras-trutural omputing to the masses. Millions of peo-ple depend on Internet servies for appliations likesearhing, instant messaging, diretories, and maps,and also to safeguard and provide aess to their per-sonal data (suh as email and alendar entries). Asa diret onsequene of this inreasing user depen-dene, today's Internet servies must possess manyof the same properties as the telephony and powerinfrastrutures. These servie properties inlude theability to sale to large, rapidly growing user popula-tions, high availability in the fae of partial failures,stritly maintaining the onsisteny of users' data,and operational manageability.It is hallenging for a servie to ahieve all ofthese properties, espeially when it must managelarge amounts of persistent state, as this state must

remain available and onsistent even if individualdisks, proesses, or proessors rash. Unfortunately,the onsequenes of failing to ahieve the proper-ties are harsh, inluding lost data, angry users, andperhaps �nanial liability. Even worse, there appearto be few reusable Internet servie onstrution plat-forms (or data management platforms) that suess-fully provide all of the properties.Many projets and produts propose using soft-ware platforms on lusters to address these hal-lenges and to simplify Internet servie onstrution[1, 2, 6, 15℄. These platforms typially rely on om-merial databases or distributed �le systems for per-sistent data management, or they do not addressdata management at all, foring servie authors toimplement their own servie-spei� data manage-ment layer. We argue that databases and �le sys-tems have not been designed with Internet servieworkloads, the servie properties, and luster envi-ronments spei�ally in mind, and as a result, theyfail to provide the right saling, onsisteny, or avail-ability guarantees that servies require.In this paper, we bring salable, available, andonsistent data management apabilities to lusterplatforms by designing and implementing a reusable,luster-based storage layer, alled a distributed datastruture (DDS), spei�ally designed for the needsof Internet servies. A DDS presents a onven-tional single site in-memory data struture interfaeto appliations, and durably manages the data be-hind this interfae by distributing and repliatingit aross the luster. Servies inherit the aforemen-tioned servie properties by using a DDS to storeand manage all persistent servie state, shieldingservie authors from the omplexities of salable,available, persistent data storage, thus simplifyingthe proess of implementing new Internet servies.We believe that given a small set of DDS types(suh as a hash table, a tree, and an administra-tive log), authors will be able to build a large lassof interesting and sophistiated servers. This pa-per desribes the design, arhiteture, and imple-mentation of one suh distributed data struture (adistributed hash table built in Java). We evaluate



its performane, salability and availability, and itsability to simplify servie onstrution.1.1 Clusters of WorkstationsIn [15℄, it is argued that lusters of workstations(ommodity PC's with a high-performane network)are a natural platform for Internet servies. Eahluster node is an independent failure boundary,whih means that repliating omputation and dataan provide fault tolerane. A luster permits in-remental salability: if a servie runs out of a-paity, a good software arhiteture allows nodes tobe added to the luster, linearly inreasing the ser-vie's apaity. A luster has natural parallelism:if appropriately balaned, all CPUs, disks, and net-work links an be used simultaneously, inreasingthe throughput of the servie as the luster grows.Clusters have high throughput, low lateny redun-dant system area networks (SAN) that an ahieve1 Gb/s throughput with 10 to 100 �s lateny.1.2 Internet Servie WorkloadsPopular Internet servies proess hundreds ofmillions of tasks per day. A task is usually \small",ausing a small amount of data to be transferredand omputation to be performed. For example,aording to press releases, Yahoo (http://www.yahoo.om) serves 625 million page views per day.Randomly sampled pages from the Yahoo diretoryaverage 7KB of HTML data and 10KB of imagedata. Similarly, AOL's web proxy ahe (http://www.aol.om) handles 5.2 billion web requests perday, with an average response size of 5.5 KB. Ser-vies often take hundreds of milliseonds to proessa given task, and their responses an take many se-onds to ow bak to lients over what are predom-inantly low bandwidth last-hop network links [19℄.Given this high task throughput and non-negligiblelateny, a servie may handle thousands of tasks si-multaneously. Human users are typially the ulti-mate soure of tasks; beause users usually generatea small number of onurrent tasks (e.g., 4 parallelHTTP GET requests are typially spawned whena user requests a web page), the large set of tasksbeing handled by a servie are largely independent.2 Distributed Data StruturesA distributed data struture (DDS) is a self-managing storage layer designed to run on a lus-ter of workstations [2℄ and to handle Internet ser-vie workloads. A DDS has all of the previouslymentioned servie properties: high throughput, highonurreny, availability, inrementally salability,and strit onsisteny of its data. Servie authorssee the interfae to a DDS as a onventional data

''6''6
6
6

6

FOXVWHU

6
6
6

& & &
& & &
& & &

& & &
& & &
& & &Figure 1: High-level view of a DDS: a DDS is aself-managing, luster-based data repository. All servieinstanes (S) in the luster see the same onsistent im-age of the DDS; as a result, any WAN lient (C) anommuniate with any servie instane.struture, suh as a hash table, a tree, or a log. Be-hind this interfae, the DDS platform hides all ofthe the mehanisms used to aess, partition, repli-ate, sale, and reover data. Beause these om-plex mehanisms are hidden behind the simple DDSinterfae, authors only need to worry about servie-spei� logi when implementing a new servie. ThediÆult issues of managing persistent state are han-dled by the DDS platform.Figure 1 shows a high-level illustration of aDDS. All luster nodes have aess to the DDS andsee the same onsistent image of the DDS. As longas servies keep all persistent state in the DDS, anyservie instane in the luster an handle requestsfrom any lient, although we expet lients will haveaÆnity to partiular servie instanes to allow ses-sion state to aumulate.The idea of having a storage layer to managedurable state is not new, of ourse; databases and�le systems have done this for many deades. Thenovel aspets of a DDS are the level of abstrationthat it presents to servie authors, the onsistenymodel it supports, the aess behavior (onurrenyand throughput demands) that it presupposes, andits many design and implementation hoies that aremade based on its expeted runtime environmentand the types of failures that it should withstand.A diret omparison between databases, distributed�le systems, and DDS's helps to show this.Relational database management systems(RDBMS): an RDBMS o�ers extremely strongdurability and onsisteny guarantees, namelyACID properties derived from the use of transa-tions [18℄, but these ACID properties an ome athigh ost in terms of omplexity and overhead. As aresult, Internet servies that rely on RDBMS bak-ends typially go to great lengths to redue the work-load presented to the RDBMS, using tehniquessuh as query ahing in front ends [15, 21, 32℄.RDBMS's o�er a high degree of data independene,whih is a powerful abstration that adds addi-



tional omplexity and performane overhead. Themany layers of most RDBMS's (suh as SQL pars-ing, query optimization, aess path seletion, et.)permit users to deouple the logial struture oftheir data from its physial layout. This deou-pling allows users to dynamially onstrut and issuequeries over the data that are limited only by whatan be expressed in the SQL language, but data in-dependene an make parallelization (and thereforesaling) hard in the general ase. From the per-spetive of the servie properties, an RDBMS al-ways hooses onsisteny over availability: if thereare media or proessor failures, an RDBMS an be-ome unavailable until the failure is resolved, whihis unaeptable for Internet servies.Distributed �le systems: �le systems haveless stritly de�ned onsisteny models. Some (e.g.,NFS [31℄) have weak onsisteny guarantees, whileothers (e.g., Frangipani [33℄ or AFS [12℄) guaranteea oherent �lesystem image aross all lients, withloking typially done at the granularity of �les. Thesalability of distributed �le systems similarly varies;some use entralized �le servers, and thus do notsale. Others suh as xFS [3℄ are ompletely server-less, and in theory an sale to arbitrarily large a-paities. File systems expose a relatively low levelinterfae with little data independene; a �le sys-tem is organized as a hierarhial diretory of �les,and �les are variable-length arrays of bytes. Theseelements (diretories and �les) are diretly exposedto �le system lients; lients are responsible for log-ially struturing their appliation data in terms ofdiretories, �les, and bytes inside those �les.Distributed data strutures (DDS): a DDShas a stritly de�ned onsisteny model: all opera-tions on its elements are atomi, in that any oper-ation ompletes entirely, or not at all. DDS's haveone-opy equivalene, so although data elements in aDDS are repliated, lients see a single, logial dataitem. Two-phase ommits are used to keep repliasoherent, and thus all lients see the same image ofa DDS through its interfae. Transations arossmultiple elements or operations are not urrentlysupported: as we will show later, many of our ur-rent protool design deisions and implementationhoies exploit the lak of transational support forgreater eÆieny and simpliity. There are Inter-net servies that require transations (e.g. for e-ommere); we an imagine building a transationalDDS, but it is beyond the sope of this paper, and webelieve that the atomi single-element updates andoherene provided by our urrent DDS are strongenough to support interesting servies.A DDS's interfae is more strutured and at ahigher level than that of a �le system. The granu-larity of an operation is a omplete data struture

element rather than an arbitrary byte range. Theset of operations over the data in a DDS is �xed bya small set of methods exposed by the DDS API, un-like an RDBMS in whih operations are de�ned bythe set of expressible delarations in SQL. The queryparsing and optimization stages of an RDBMS areompletely obviated in a DDS, but the DDS inter-fae is less exible and o�ers less data independene.In summary, by hoosing a level of abstrationsomewhere in between that of an RDBMS and a �lesystem, and by hoosing a well-de�ned and simpleonsisteny model, we have been able to design andimplement a DDS with all of the servie properties.It has been our experiene that the DDS interfaes,although not as general as SQL, are rih enough tosuessfully build sophistiated servies.3 Assumptions and Design PriniplesIn this setion of the paper, we present the de-sign priniples that guided us while building our dis-tributed hash table DDS. We also state a number ofkey assumptions we made regarding our luster en-vironment, failure modes that the DDS an handle,and the workloads it will reeive.Separation of onerns: the lean separationof servie ode from storage management simpli�essystem arhiteture by deoupling the omplexitiesof state management from those of servie onstru-tion. Beause persistent servie state is kept in theDDS, servie instanes an rash (or be graefullyshut down) and restart without a omplex reoveryproess. This greatly simpli�es servie onstrution,as authors need only worry about servie-spei�logi, and not the omplexities of data partitioning,repliation, and reovery.Appeal to properties of lusters: in addi-tion to the properties listed in setion 1.1, we re-quire that our luster is physially seure and well-administered. Given all of these properties, a lus-ter represents a arefully ontrolled environment inwhih we have the greatest hane of being able toprovide all of the servie properties. For example, itslow lateny SAN (10-100 �s instead of 10-100ms forthe wide-area Internet) means that two-phase om-mits are not prohibitively expensive. The SAN'shigh redundany means that the probability of anetwork partition an be made arbitrarily small, andthus we need not onsider partitions in our proto-ols. An uninterruptible power supply (UPS) andgood system administration help to ensure that theprobability of system-wide simultaneous hardwarefailure is extremely low; we an thus rely on databeing available in more than one failure boundary(i.e., the physial memory or disk of more than one



node) while designing our reovery protools.1Design for high throughput and high on-urreny: given the workloads presented in setion1.2, the ontrol struture used to e�et onurrenyis ritial. Tehniques often used by web servers,suh as proess-per-task or thread-per-task, do notsale to our needed degree of onurreny. Instead,we use asynhronous, event-driven style of ontrolow in our DDS, similar to that espoused by modernhigh performane servers [5, 20℄ suh as the Harvestweb ahe [8℄ and Flash web server [28℄. A onve-nient side-e�et of this style is that layering is inex-pensive and exible, as layers an be onstruted byhaining together event handlers. Suh haining alsofailitates interposition: a \middleman" event han-dler an be easily and dynamially pathed betweentwo existing handlers. In addition, if a server ex-perienes a burst of traÆ, the burst is absorbed inevent queues, providing graeful degradation by pre-serving the throughput of the server but temporar-ily inreasing lateny. By ontrast, thread-per-tasksystems degrade in both throughput and lateny ifbursts are absorbed by additional threads.3.1 AssumptionsIf one DDS node annot ommuniate with an-other, we assume it is beause this other node hasstopped exeuting (due to a planned shutdown or arash); we assume that network partitions do notour inside our luster, and that DDS softwareomponents are fail-stop. The need for no networkpartitions is addressed by the high redundany ofour network, as previously mentioned. We have at-tempted to indue fail-stop behavior in our softwareby having it terminate its own exeution if it en-ounters an unexpeted ondition, rather than at-tempting to graefully reover from suh a ondi-tion. These strong assumptions have been valid inpratie; we have never experiened an unplannednetwork partition in our luster, and our softwarehas always behaved in a fail-stop manner. We fur-ther assume that software failures in the luster areindependent. We repliate all durable data at morethan one plae in the luster, but we assume thatat least one replia is ative (has not failed) at alltimes. We also assume some degree of synhrony,in that proesses take a bounded amount of timeto exeute tasks, and that messages take a boundedamount of time to be delivered.We make several assumptions about the work-load presented to our distributed hash tables. Atable's key spae is the set of 64-bit integers; we1We do have a hekpoint mehanism (disussed later)that permits us to reover in the ase that any of these lusterproperties fail, however all state hanges that happen afterthe last hekpoint will be lost should this our.

assume that the population density over this spaeis even (i.e. the probability that a given key existsin the table is a funtion of the number of valuesin the table, but not of the partiular key). Wedon't assume that all keys are aessed equiproba-bly, but rather that the \working set" of hot keys islarger than the number of nodes in our luster. Wethen assume that a partitioning strategy that mapsfrations of the keyspae to luster nodes based onthe nodes' relative proessing speed will indue abalaned workload. Our urrent DDS design doesnot graefully handle a small number of extremehotspots (i.e., if a handful of keys reeive most ofthe workload). If there are many suh hotspots,however, then our partitioning strategy will prob-abilistially balane them aross aross the luster.Failure of these workload assumptions an result inload imbalanes aross the luster, leading to a re-dution in throughput.Finally, we assume that tables are large and longlived. Hash table reations and destrutions are rel-atively rare events: the ommon ase is for hashtables to serve read, write, and remove operations.4 Distributed Hash Tables: Arhi-teture and ImplementationIn this setion, we present the arhiteture andimplementation of a distributed hash table DDS.Figure 2 illustrates our hash table's arhiteture,whih onsists of the following omponents:Client: a lient onsists of servie-spei� soft-ware running on a lient mahine that ommuni-ates aross the wide area with one of many servieinstanes running in the luster. The mehanism bywhih the lient selets a servie instane is beyondthe sope of this work, but it typially involves DNSround robin [7℄, a servie-spei� protool, or level 4or level 7 load-balaning swithes on the edge of theluster. An example of a lient is a web browser, inwhih ase the servie would be a web server. Notethat lients are ompletely unaware of DDS's: nopart of the DDS system runs on a lient.Servie: a servie is a set of ooperating soft-ware proesses, eah of whih we all a servie in-stane. Servie instanes ommuniate with wide-area lients and perform some appliation-level fun-tion. Servies may have soft state (state whih maybe lost and reomputed if neessary), but they relyon the hash table to manage all persistent state.Hash table API: the hash table API is theboundary between a servie instane and its \DDSlibrary". The API provides servies with put(),get(), remove(), reate(), and destroy() opera-tions on hash tables. Eah operation is atomi, andall servies see the same oherent image of all exist-



6$16$1

VWRUDJH
´EULFNµ
VWRUDJH
´EULFNµ VWRUDJH

´EULFNµ
VWRUDJH
´EULFNµ VWRUDJH

´EULFNµ
VWRUDJH
´EULFNµ

VWRUDJH
´EULFNµ
VWRUDJH
´EULFNµ VWRUDJH

´EULFNµ
VWRUDJH
´EULFNµ VWRUDJH

´EULFNµ
VWRUDJH
´EULFNµ

VHUYLFHVHUYLFH
''6�OLE''6�OLE

VHUYLFHVHUYLFH
''6�OLE''6�OLE

VHUYLFHVHUYLFH
''6�OLE''6�OLE

FOLHQWFOLHQW FOLHQWFOLHQW FOLHQWFOLHQW FOLHQWFOLHQW FOLHQWFOLHQW

:$1:$1

FOXVWHU

KDVK�WDEOH�
$3,

EULFN� �
VLQJOH�QRGH��
GXUDEOH�KDVK�

WDEOH

UHGXQGDQW��ORZ�
ODWHQF\��KLJK�
WKURXJKSXW�
QHWZRUN

Figure 2: Distributed hash table arhiteture:eah box in the diagram represents a software proess. Inthe simplest ase, eah proess runs on its own physialmahine, however there is nothing preventing proessesfrom sharing mahines.ing hash tables through this API. Hash table namesare strings, hash table keys are 64 bit integers, andhash table values are opaque byte arrays; operationsa�et hash table values in their entirety.DDS library: the DDS library is a Java lasslibrary that presents the hash table API to servies.The library aepts hash table operations, and o-operates with the \briks" to realize those opera-tions. The library ontains only soft state, inlud-ing metadata about the luster's urrent on�gura-tion and the partitioning of data in the distributedhash tables aross the \briks". The DDS libraryats as the two-phase ommit oordinator for state-hanging operations on the distributed hash tables.Brik: briks are the only system omponentsthat manage durable data. Eah brik manages aset of network-aessible single node hash tables. Abrik onsists of a bu�er ahe, a lok manager, apersistent hained hash table implementation, andnetwork stubs and skeletons for remote ommunia-tion. Typially, we run one brik per CPU in theluster, and thus a 4-way SMP will house 4 briks.Briks may run on dediated nodes, or they mayshare nodes with other omponents.4.1 Partitioning, Repliation, andReplia ConsistenyA distributed hash table provides inrementalsalability of throughput and data apaity as morenodes are added to the luster. To ahieve this,we horizontally partition tables to spread operationsand data aross briks. Eah brik thus stores somenumber of partitions of eah table in the system, andwhen new nodes are added to the luster, this parti-

tioning is altered so that data is spread onto the newnode. Beause of our workload assumptions (setion3.1), this horizontal partitioning evenly spreads bothload and data aross the luster.Given that the data in the hash table is spreadaross multiple nodes, if any of those nodes fail, thena portion of the hash table will beome unavailable.For this reason, eah partition in the hash table isrepliated on more than one luster node. The setof replias for a partition form a replia group; allreplias in the group are kept stritly oherent witheah other. Any replia an be used to servie aget(), but all replias must be updated during aput() or remove(). If a node fails, the data from itspartitions is available on the surviving members ofthe partitions' replia groups. Replia group mem-bership is thus dynami; when a node fails, all ofits replias are removed from their replia groups.When a node joins the luster, it may be added tothe replia groups of some partitions (suh as in thease of reovery, desribed later).To maintain onsisteny when state hangingoperations (put() and remove()) are issued againsta partition, all replias of that partition must besynhronously updated. We use an optimisti two-phase ommit protool to ahieve onsisteny, withthe DDS library serving as the ommit oordinatorand the replias serving as the partiipants. If theDDS library rashes after prepare messages are sent,but before any ommit messages are sent, the repli-as will time out and abort the operation.However, if the DDS library rashes after send-ing out any ommits, then all replias must om-mit. For the sake of availability, we do not rely onthe DDS library to reover after a rash and issuingpending ommits. Instead, replias store short in-memory logs of reent state hanging operations andtheir outomes. If a replia times out while waitingfor a ommit, that replia ommuniates with all ofits peers to �nd out if any have reeived a ommitfor that operation, and if so, the replia ommits aswell; if not, the replia aborts. Beause all peersin the replia group that time out while waiting fora ommit ommuniate with all other peers, if anyreeives a ommit, then all will ommit.Any replia may abort during the �rst phaseof the two-phase ommit (e.g., if the replia annotobtain a write lok on a key). If the DDS libraryreeives any abort messages at the end of the �rstphase, it sends aborts to all replias in the seondphase. Replias do not ommit side-e�ets unlessthey reeive a ommit message in the seond phase.If a replia rashes during a two-phase ommit,the DDS library simply removes it from its repliagroup and ontinues onward. Thus, all repliagroups shrink over time; we rely on a reovery meh-



11010011

1

1

11

1

0

0 0

0 0

000 100

01

011 111

10

NH\�

5*QDPH 5*�PHPEHUVKLS�OLVW
000

100

10

01

dds1.cs, dds2.cs

dds3.cs, dds4.cs

dds5.cs

dds3.cs, dds4.cs

6WHS����ORRNXS�NH\�LQ
'3�PDS�WR�ILQG�5*QDPH

6WHS����ORRNXS�5*QDPH LQ
5*�PDS�WR�ILQG�OLVW�RI�UHSOLFDV

011 dds5.cs, dds6.cs

111 dds7.csFigure 3: Distributed hash table metadata maps:this illustration highlights the steps taken to disover theset of replia groups whih serve as the baking store fora spei� hash table key. The key is used to traverse theDP map trie and retrieve the name of the key's repliagroup. The replia group name is then used looked upin the RG map to �nd the group's urrent membership.anism (desribed later) for rashed replias to rejointhe replia group. We made the signi�ant optimiza-tion that the image of eah replia must only be on-sistent through its brik's ahe, rather than havinga onsistent on-disk image. This allows us to havea purely onit-driven ahe evition poliy, ratherthan having to fore ahe elements out to ensureon-disk onsisteny. An impliation of this is that ifall members of a replia group rash, that partitionis lost. We assume nodes are independent failureboundaries (setion 3.1); there must be no system-ati software failure aross nodes, and the luster'spower supply must be uninterruptible.Our two-phase ommit mehanism gives atomiupdates to the hash table. It does not, however, givetransational updates. If a servie wishes to updatemore than one element atomially, our DDS doesnot provide any help. Adding transational supportto our DDS infrastruture is a topi of future work,but this would require signi�ant additional om-plexity suh as distributed deadlok detetion andundo/redo logs for reovery.We do have a hekpoint mehanism in our dis-tributed hash table that allows us to fore the on-disk image of all partitions to be onsistent; the diskimages an then be baked up for disaster reov-ery. This hekpoint mehanism is extremely heavy-weight, however; during the hekpointing of a hashtable, no state-hanging operations are allowed. Weurrently rely on system administrators to deidewhen to initiate hekpoints.4.2 Metadata mapsTo �nd the partition that manages a partiularhash table key, and to determine the list of repliasin partitions' replia groups, the DDS libraries on-

sult two metadata maps that are repliated on eahnode of the luster. Eah hash table in the lusterhas its own pair of metadata maps.The �rst map is alled the data partitioning(DP) map. Given a hash table key, the DP mapreturns the name of the key's partition. The DPmap thus ontrols the horizontal partitioning of dataaross the briks. As shown in �gure 3, the DP mapis a trie over hash table keys; to �nd a key's parti-tion, key bits are used to walk down the trie, startingfrom the least signi�ant key bit until a leaf node isfound. As the luster grows, the DP trie subdividesin a \split" operation. For example, partition 10in the DP trie of �gure 3 ould split into partitions010 and 110; when this happens, the keys in the oldpartition are shu�ed aross the two new partitions.The opposite of a split is a \merge"; if the luster isshrunk, two partitions with a ommon parent in thetrie an be merged into their parent. For example,partitions 000 and 100 in �gure 3 ould be mergedinto a single partition 00.The seond map is alled the replia group (RG)membership map. Given a partition name, the RGmap returns a list of briks that are urrently serv-ing as replias in the partition's replia group. TheRG maps are dynami: if a brik fails, it is removedfrom all RG maps that ontain it. A brik joinsa replia group after �nishing reovery. An invari-ant that must be preserved is that the replia groupmembership maps for all partitions in the hash tablemust have at least one member.The maps are repliated on eah luster node,in both the DDS libraries and the briks. The mapsmust be kept onsistent, otherwise operations maybe applied to the wrong briks. Instead of enforingonsisteny synhronously, we allow the libraries'maps to drift out of date, but lazily update themwhen they are used to perform operations. TheDDS library piggybaks hashes of the maps2 on op-erations sent to briks; if a brik detets that eithermap used is out of date, the brik fails the operationand returns a \repair" to the library. Thus, all mapsbeome eventually onsistent as they are used. Be-ause of this mehanism, libraries an be restartedwith out of date maps, and as the library gets usedits maps beome onsistent.To put() a key and value into a hash table,the DDS library serviing the operation onsults itsDP map to determine the orret partition for thekey. It then looks up that partition name in its RGmap to �nd the urrent set of briks serving as repli-as, and �nally performs a two-phase ommit arossthese replias. To do a get() of a key, a similarproess is used, exept that the DDS library an2It is important to use large enough of a hash to make theprobability of ollision negligible; we urrently use 32 bits.



selet any of the replias listed in the RG map toservie the read. We use the loality-aware requestdistribution (LARD) tehnique [14℄ to selet a readreplia|LARD further partitions keys aross repli-as, in e�et aggregating their physial ahes.4.3 ReoveryIf a brik fails, all replias on it beome un-available. Rather than making these partitions un-available, we remove the failed brik from all repliagroups and allow operations to ontinue on the sur-viving replias. When the failed brik reovers (oran alternative brik is seleted to replae it), it must\ath up" to all of the operations it missed. Inmany RDBMS's and �le systems, reovery is a om-plex proess that involves replaying logs, but in oursystem we use properties of lusters and our DDSdesign for vast simpli�ations.Firstly, we allow our hash table to \say no"|briks may return a failure for an operation, suhas when a two-phase ommit annot obtain loks onall briks (e.g., if two puts() to the same key aresimultaneously issued), or when replia group mem-berships hange during an operation. The freedomto say no greatly simpli�es system logi, sine wedon't worry about orretly handling operations inthese rare situations. Instead, we rely on the DDSlibrary (or, ultimately, the servie and perhaps eventhe WAN lient) to retry the operation. Seondly,we don't allow any operation to �nish unless all par-tiipating omponents agree on the metadata maps.If any omponent has an out-of-date map, opera-tions fail until the maps are reoniled.We make our partitions relatively small(~100MB), whih means that we an transfer an en-tire partition over a fast system-area network (typ-ially 100 Mb/s to 1 Gb/s) within 1 to 10 seonds.Thus, during reovery, we an inrementally opyentire partitions to the reovering node, obviatingthe need for the undo and redo logs that are typi-ally maintained by databases for reovery. Whena node initiates reovery, it grabs a write lease onone replia group member from the partition thatit is joining; this write lease means that all state-hanging operations on that partition will start tofail. Next, the reovering node opies the entirereplia over the network. Then, it sends updatesto the RG map to all other replias in the group,whih means that DDS libraries will start to lazilyreeive this update. Finally, it releases the writelok, whih means that the previously failed oper-ations will sueed on retry. The reovery of thepartition is now omplete, and the reovering nodean begin reovery of other partitions as neessary.There is an interesting hoie of the rate atwhih partitions are transferred over the network

during reovery. If this rate is fast, then the involvedbriks will su�er a loss in read throughput during thereovery. If this rate is slow, then the briks won'tlose throughput, but the partition's mean time to re-overy will inrease. We hose to reover as quiklyas possible, sine in a large luster only a small fra-tion of the total throughput of the luster will bea�eted by the reovery.A similar tehnique is used for DP map splitand merge operations, exept that all replias mustbe modi�ed and both the RG and DP maps are up-dated at the end of the operation.4.3.1 Convergene of ReoveryA hallenge for fault-tolerant systems is to re-main onsistent in the fae of repeated failures; ourreovery sheme desribed above has this property.In steady state operation, all replias in a groupare kept perfetly onsistent. During reovery, statehanging operations fail (but only on the reoveringpartition), implying that surviving replias remainonsistent and reovering nodes have a stable imagefrom whih to reover. We also ensure that a reov-ering node only joins the replia group after it hassuessfully opied over the entire partition's databut before it release its write lease. A remainingwindow of vulnerability in the system is if reov-ery takes longer than the write lease; if this seemsimminent, the reovering node ould aggressively re-new its write lease, but we have not urrently im-plemented this behavior.If a reovering node rashes during reovery, itswrite lease will expire and the system will ontinueas normal. If the replia on whih the lease wasgrabbed rashes, the reovering node must reiniti-ate reovery with another surviving member of thereplia group. If all members of a replia grouprash, data will be lost, as mentioned in Setion 3.1.4.4 AsynhronyAll omponents of the distributed hash tableare built using an asynhronous, event-driven pro-gramming style. Eah hash table layer is designedso that only a single thread ever exeutes in it ata time. This greatly simpli�ed implementation byeliminating the need for data loks, and rae ondi-tions due to threads. Hash table layers are separatedby FIFO queues, into whih I/O ompletion eventsand I/O requests are plaed. The FIFO disiplineof these queues ensures fairness aross requests, andthe queues at as natural bu�ers that absorb burststhat exeed the system's throughput apaity.All interfaes in the system (inluding the DDSlibrary APIs) are split-phase and asynhronous.This means that a hash table get() doesn't blok,but rather immediately returns with an identi�er



100

1000

10000

100000

1 10 100 1000

# of DDS bricks

m
a

x
 t

h
ro

u
g

h
p

u
t 

(o
p

s/
s)

 

reads

writes

(128,13582)

(128,61432)

Figure 4: Throughput salability: this benhmarkshows the linear saling of throughput as a funtion ofthe number of briks serving in a distributed hash table;note that both axis have logarithmi sales. As we addedmore briks to the DDS, we inreased the number oflients using the DDS until throughput saturated.that an be mathed up with a ompletion eventthat is delivered to a aller-spei�ed upall handler.This upall handler an be appliation ode, or itan be a queue that is polled or bloked upon.5 PerformaneIn this setion, we present performane benh-marks of the distributed hash table implementationthat were gathered on a luster of 28 2-way SMPsand 38 4-way SMPs (a total of 208 500MHz PentiumCPUs). Eah 2-way SMP has 500 MB of RAM, andeah 4-way SMP has 1 GB. All are onneted witheither 100 Mb/s swithed Ethernet (2-way SMPs)or 1 Gb/s swithed Ethernet (4-way SMPs). Thebenhmarks are run using Sun's JDK 1.1.7v3, usingthe OpenJIT 1.1.7 JIT ompiler and \green" (user-level) threads on top of Linux v2.2.5.When running our benhmarks, we evenlyspread hash table briks amongst 4-way and 2-waySMPs, running at most one brik node per CPU inthe luster. Thus, 4-way SMPs would have at most 4brik proesses running on them, while 2-way SMPswould have at most 2. We also made use of theseluster nodes as load generators; beause of this, wewere only able to gather performane numbers toa maximum of a 128 brik distributed hash table,as we needed the remaining 80 CPUs to generateenough load to saturate suh a large table.5.1 In-Core BenhmarksOur �rst set of benhmarks tested the in-oreperformane of the distributed hash table. By lim-iting the working set of keys that we requested to asize that �ts in the aggregate physial memory of thebriks, this set of benhmarks investigates the over-head and throughput of the distributed hash tableode independently of disk performane.

0

4000

8000

12000

16000

20000

0 5 10 15 20 25 30

# se rv ice  instance s

ha
sh

 ta
bl

e 
th

ro
ug

hp
ut

 (r
ea

ds
/s

)

2  b r icks

8  b r icks

16  b r icks

32  b r icks

Figure 5: Graeful degradation of reads: thisgraph demonstrates that the read throughput from adistributed hash table remains onstant even if the of-fered load exeeds the apaity of the hash table.5.1.1 Throughput SalabilityThis benhmark demonstrates that hash ta-ble throughput sales linearly with the number ofbriks. The benhmark onsists of several serviesthat eah maintain a pipeline of 100 operations (ei-ther gets() or puts()) to a single distributed hashtable. We varied the number of briks in the hashtable; for eah on�guration, we slowly inreasedthe number of servies and measured the omple-tion throughput owing from the briks. All on�g-urations had 2 replias per replia group, and eahbenhmark iteration onsisted of reads or writes of150-byte values. The benhmark was losed-loop: anew operation was immediately issued with a ran-dom key for eah ompleted operation.Figure 4 shows the maximum throughput sus-tained by the distributed hash table as a funtion ofthe number of briks. Throughput sales linearly upto 128 briks; we didn't have enough proessors tosale the benhmark further. The read throughputahieved with 128 briks is 61,432 reads per seond(5.3 billion per day), and the write throughput with128 briks is 13,582 writes per seond (1.2 billionper day); this performane is adequate to serve thehit rates of most popular web sites on the Internet.5.1.2 Graeful Degradation for ReadsBursts of traÆ are a ommon phenomenon forall Internet servies. If a traÆ burst exeeds theservie's apaity, the servie should have the prop-erty of \graeful degradation": the throughput ofthe servie should remain onstant, with the exesstraÆ either being rejeted or absorbed in bu�ersand served with higher lateny. Figure 5 shows thethroughput of a distributed hash table as a fun-tion of the number of simultaneous read requestsissued to it; eah servie instane has a losed-looppipeline of 100 operations. Eah line on the graphrepresents a di�erent number of briks serving the



0

50

100

150

200

250

300

0 50000 100000 150000 200000

time (ms)

th
ro

u
g

h
p

u
t (

w
ri

te
s/

s)

0

20

40

60

80

100

120

C
P

U
 u

til
iz

at
io

n
 (%

)

b rick C PU  1

brick C PU  2

throughput

p
au

se
 c

lie
n

ts

Figure 6: Write imbalane leading to ungraefuldegradation: the bottom urve shows the throughputof a two-brik partition under overload, and the top twourves show the CPU utilization of those briks. Onebrik is saturated, the other beomes only 30% busy.hash table. Eah on�guration is seen to eventuallyreah a maximum throughput as its briks saturate.This maximum throughput is suessfully sustainedeven as additional traÆ is o�ered. The overloadtraÆ is absorbed in the FIFO event queues of thebriks; all tasks are proessed, but they experienehigher lateny as the queues drain from the burst.5.1.3 Ungraeful Degradation for WritesAn unfortunate performane anomaly emergedwhen benhmarking put() throughput. As the of-fered load approahed the maximum apaity of thehash table briks, the total write throughput sud-denly began to drop. On loser examination, wedisovered that most of the briks in the hash ta-ble were unloaded, but one brik in the hash tablewas ompletely saturated and had beome the bot-tlenek in the losed-loop benhmark.Figure 6 illustrates this imbalane. To generateit, we issued puts() to a hash table with a singlepartition and two replias in its replia group. Eahput() operation aused a two-phase ommit arossboth replias, and thus eah replia saw the same setof network messages and performed the same om-putation (but perhaps in slightly di�erent orders).We expeted both replias to perform identially,but instead one replia beame more and more idle,and the throughput of the hash table dropped tomath the CPU utilization of this idle replia.Investigation showed that the busy replia wasspending a signi�ant amount of time in garbageolletion. As more live objets populated thatreplia's heap, more time needed to be spent garbageolleting to relaim a �xed amount of heap spae, asmore objets would be examined before a free objetwas disovered. Random utuations in arrival ratesand garbage olletion aused one replia to spendmore time garbage olleting than the other. Thisreplia beame the system bottlenek, and moreoperations piled up in its queues, further amplify-ing this imbalane. Write traÆ partiularly ex-

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0 0 0

hash table value siz e (bytes)

m
ax

 th
ro

u
g

p
u

t (
re

ad
s/

s)

Figure 7: Throughput vs. read size the X axis showsthe size of values read from the hash table, and the Yaxis shows the maximum throughput sustained by an 8brik hash table serving these values.aerbated the situation, as objets reated by the\prepare" phase must wait for at least one networkround-trip time before a ommit or abort ommandin the seond phase is reeived. The number of liveobjets in eah briks' heap is thus proportional tothe bandwidth-delay produt of hash table put()operations. For read traÆ, there is only one phase,and thus objets an be garbage olleted immedi-ately after read requests are satis�ed.We experimented with many JDKs, but onsis-tently saw this e�et. Some JDKs (suh as JDK1.2.2 on Linux 2.2.5) developed this imbalane forread traÆ as well as write traÆ. This sort of per-formane imbalane is fundamental to any systemthat doesn't perform admission ontrol; if the taskarrival rate temporarily exeeds the system's abil-ity to handle them, then tasks will begin to pileup in the system. Beause systems have �nite re-soures, this inevitably auses performane degra-dation (thrashing). In our system, this degradation�rst materialized due to garbage olletion. In othersystems, this might happen due to virtual memorythrashing, to pik an example. We are urrently ex-ploring using admission ontrol (at either the briksor the hash table libraries) or early disard frombriks' queues to keep the briks within their oper-ational range, ameliorating this imbalane.5.1.4 Throughput BottleneksIn �gure 7, we varied the size of elements thatwe read out of an 8 brik hash table. Throughputwas at from 50 bytes through 1000 bytes, but thenbegan to degrade. From this we dedued that per-operation overhead (suh as objet reation, garbageolletion, and system all overhead) saturated thebriks' CPUs for elements smaller than 1000 bytes,and per-byte overhead (byte array opies, either inthe TCP stak or in the JVM) saturated the briks'CPUs for elements greater than 1000 bytes. At 8000bytes, the throughput in and out of eah 2-way SMP(running 2 briks) was 60 Mb/s. For larger sized



hash table values, the 100 Mb/s swithed networkbeame the throughput bottlenek.5.2 Out-of-ore BenhmarksOur next set of benhmarks tested performanefor workloads that do not �t in the aggregate phys-ial memory of the briks. These benhmarks stressthe single-node hash table's disk interation, as wellas the performane of the distributed hash table.5.2.1 A Terabyte DDSTo test how well the distributed hash tablesales in terms of data apaity, we populated a hashtable with 1.28 terabytes of 8KB data elements. Todo this, we reated a table with 512 partitions in itsDP map, but with only 1 replia per replia group(i.e., the table would not withstand node failures).We spread the 512 partitions aross 128 brik nodes,and ran 2 briks per node in the luster. Eah brikstored its data on a dediated 12GB disk (all lusternodes have 2 of these disks). The briks eah used10GB worth of disk apaity, resulting in 1.28TB ofdata stored in the table.To populate the 1.28TB hash table, we designedbulk loaders that generated writes to keys in an or-der that was arefully hosen to result in sequentialdisk writes. These bulk loaders understood the par-titioning in the DP map and implementation detailsabout the single-node tables' hash funtions (whihmap keys to disk bloks). Using these loaders, ittook 130 minutes to �ll the table with 1.28 terabytesof data, ahieving a total write throughput of 22,015operations/s, or 1.4 MB/s per disk.Comparatively, the in-ore throughput benh-mark presented in Setion 5.1.1 obtained 13,582 op-erations/s for a 128 brik table, but that benh-mark was on�gured with 2 replias per repliagroup. Eliminating this repliation would doublethe throughput of the in-ore benhmark, result-ing in a 27,164 operations/s. The bulk loading ofthe 1.28TB hash table was therefore only marginallyslower in terms of the throughput sustained by eahreplia than the in-ore benhmarks, whih meansthat disk throughput was not the bottlenek.5.2.2 Random Write and Read ThroughputHowever, we believe it is unrealisti and unde-sirable for hash table lients to have knowledge ofthe DP map and single-node tables' hash funtions.We ran a seond set of throughput benhmarks onanother 1.28TB hash table, but populated it withrandom keys. With this workload, the table took319 minutes to populate, resulting in a total writethroughput of 8,985 operations/s, or 0.57 MB/s per

disk. We similarly sustained a read throughput of14,459 operations/s, or 0.93 MB/s per disk.3This throughput is substantially lower than thethroughput obtained during the in-ore benhmarksbeause the random workload generated results inrandom read and write traÆ to eah disk. In fat,for this random workload, every read() issued tothe distributed hash table results in a request for arandom disk blok from a disk. All disk traÆ isseek dominated, and disk seeks beome the overallbottlenek of the system.We expet that there will be signi�ant loalityin DDS requests generated by Internet servies, andgiven workloads with high loality, the DDS shouldperform nearly as well as the in-ore benhmark re-sults. However, it might be possible to signi�antlyimprove the write performane of traÆ with lit-tle loality by using disk layout tehniques similarto those of log-strutured �le systems [29℄; we havenot explored this possibility as of yet.5.3 Availability and ReoveryTo demonstrate availability in the fae of nodefailures and the ability for the briks to reover af-ter a failure, we repeated the read benhmark witha hash table of 150 byte elements. The table wason�gured with a single 100MB partition and threereplias in that partition's replia group. Figure 8shows the throughput of the hash table over timeas we indued a fault in one of the replia briksand later initiated its reovery. During reovery, therate at whih the reovered partition is opied was12 MB/s, whih is maximum sequential write band-width we ould obtain from the briks' disks.At point (1), all three briks were operationaland the throughput sustained by the hash table was450 operations per seond. At point (2), one of thethree briks was killed. Performane immediatelydropped to 300 operations per seond, two-thirdsof the original apaity. Fault detetion was imme-diate: lient libraries experiened broken transportonnetions that ould not be reestablished. Theperformane overhead of the replia group map up-dates ould not be observed. At point (3), reov-ery was initiated, and reovery ompleted at point(4). Between points (3) and (4), there was no no-tieable performane overhead of reovery; this isbeause there was ample exess bandwidth on thenetwork, and the CPU overhead of transferring thepartition during reovery was negligible. It shouldbe noted that between points (3) and (4), the reov-3Write throughput is less than read throughput beause ahash buket must be read before it an written, in ase thereis already data stored in that buket that must be preserved.There is therefore an additional read for every write, nearlyhalving the e�etive throughput for DDS writes.



0

100

200

300

400

500

600

0 50000 100000 150000 200000 250000 300000

time (ms)

th
ro

u
g

h
p

u
t 

(r
e

a
d

s/
s)

��

�� �� �� ��

��

Figure 8: Availability and Reovery: this benh-mark shows the read throughput of a 3-brik hash tableas a deliberate single-node fault is indued, and after-wards as reovery is performed.ering partition is not available for writes, beause ofthe write lease grabbed during reovery. This parti-tion is available for reads, however.After reovery ompleted, performane brieydropped at point (5). This degradation is due to thebu�er ahe warming on the reovered node. Onethe ahe beame warm, performane resumed tothe original 450 operations/s at point (6). An inter-esting anomaly at point (6) is the presene of notie-able osillations in throughput; these were traed togarbage olletion triggered by the \extra" ativityof reovery. When we repeated our measurements,we would oasionally see this osillation at othertimes besides immediately post-reovery. This sortof performane unpreditability due to garbage ol-letion seems to be a pervasive problem; a bettergarbage olletor or admission ontrol might ame-liorate this, but we haven't yet explored this.6 Example ServiesWe have implemented a number of interestingservies using our distributed hash table. The ser-vies' implementation was greatly simpli�ed by us-ing the DDS, and they trivially saled by addingmore servie instanes. An aspet of salability notovered by using the hash table was the routing andload balaning of WAN lient requests aross servieinstanes, but this is beyond the sope of this work.Santio: Santio is an instant messaging gate-way that provides protool translation between pop-ular instant messaging protools (suh as Mirabilis'ICQ and AOL's AIM), onventional email, and voiemessaging over ellular telephones. Santio is a mid-dleman between these protools, routing and trans-lating messages between the networks. In additionto protool translation, Santio also an transformthe message ontent. We have built a \web sraper"that allows us to ompose AltaVista's BabelFishnatural language translation servie with Santio.We an thus perform language translation (e.g., En-glish to Frenh) as well as protool translation; a

Spanish speaking ICQ user an send a message toan English speaking AIM user, with Santio provid-ing both language and protool translation.A user may be reahed on a number of di�erentaddresses, one for eah of the networks that Santioan ommuniate with. The Santio servie musttherefore keep a large table of bindings betweenusers and their urrent transport addresses on thesenetworks; we used the distributed hash table for thispurpose. The expeted workload on the DDS in-ludes signi�ant write traÆ generated when usershange networks or log in and out of a network. Thedata in the table must be kept onsistent, otherwisemessages will be routed to the wrong address.Santio took 1 person-month to develop, mostwhih was was spent authoring the protool trans-lation ode. The ode that interats with the dis-tributed hash table took less than a day to write.Web server: we have implemented a salableweb server using the distributed hash table. Theserver speaks HTTP to web lients, hashes requestedURLs into 64 bit keys, and requests those keys fromthe hash table. The server takes advantage of theevent-driven, queue-entri programming style tointrodue CGI-like behavior by interposing on theURL resolution path. This web server was writtenin 900 lines of Java, 750 of whih deals with HTTPparsing and URL resolution, and only 50 of whihdeals with interating with the hash table DDS.Others: We have built many other serviesas part of the Ninja projet4. The \Parallelisms"servie reommends related sites to user-spei�edURLs by looking up ontologial entries in an inver-sion of the Yahoo web diretory. We built a ollab-orative �ltering engine for a digital musi jukeboxservie [16℄; this engine stores users' musi prefer-enes in a distributed hash table. We have also im-plemented a private key store and a omposable userpreferene servie, both of whih use the distributedhash table for persistent state management.7 DisussionOur experiene with the distributed hash tableimplementation has taught us many lessons aboutusing it as a storage platform for salable servies.The hash table was a resounding suess in simpli-fying the onstrution of interesting servies, andthese servies inherited the salability, availability,and data onsisteny of the hash table. Exploitingproperties of lusters also proved to be remarkablyuseful. In our experiene, most of the assumptionsthat we made regarding properties of a lusters andomponent failures (spei�ally the fail-stop behav-4http://ninja.s.berkeley.edu/



ior of our software and the probabilisti lak of net-work partitions in the luster) were valid in pratie.One of our assumptions was initially problem-ati: we observed a ase where there was a system-ati failure of all replia group members inside asingle replia group. This failure was aused by asoftware bug that enabled servie instanes to deter-ministially rash remote briks by induing a nullpointer exeption in the JVM. After �xing the as-soiated bug in the brik, this situation never againarose. However, it serves as a reminder that sys-temati software bugs an in pratie bring downthe entire luster at one. Careful software engi-neering and a good quality assurane yle an helpto ameliorate this failure mode, but we believe thatthis issue is fundamental to all systems that promiseboth availability and onsisteny.As we saled our distributed hash table, wenotied saling bottleneks that weren't assoiatedwith our own software. At 128 briks, we ap-proahed the point at whih the 100 Mb/s Ether-net swithes would saturate; upgrading to 1 Gb/sswithes throughout the luster would delay this sat-uration. We also notied that the ombination of ourJVM's user-level threads and the Linux kernel be-gan to indued poor saling behavior as eah nodein the luster opened up a reliable TCP onnetionto all other nodes in the luster. The brik proessesbegan to saturate due to a ood of signals from thekernel to the user-level thread sheduler assoiatedwith TCP onnetions with data waiting to be read.7.1 Java as a Servie PlatformWe found that Java was an adequate platformfrom whih to build a salable, high performanesubsystem. However, we ran into a number of seri-ous issues with the Java language and runtime. Thegarbage olletor of all JVMs that we experimentedwith inevitably beame the performane bottlenekof the briks and also a soure of throughput andlateny variation. Whenever the garbage olletorbeame ative, it had a serious impat on all othersystem ativity, and unfortunately, urrent JVMs donot provide adequate interfaes to allow systems toontrol garbage olletion behavior.The type safety and array bounds heking fea-tures of Java vastly aelerated our software engi-neering proess, and helped us to write stable, leanode. However, these features got in the way of odeeÆieny, espeially when dealing with multiple lay-ers of a system eah of whih wraps some array ofdata with layer-spei� metadata. We often foundourselves performing opies of regions of byte arraysin order to maintain lean interfaes to data regions,whereas in a C implementation it would be morenatural to exploit pointers into mallo'ed memory

regions to the same e�et without needing opies.Java laks asynhronous I/O primitives, whihneessitated the use of a thread pool at the lowest-layer of the system. This is muh more eÆientthan a thread-per-task system, as the number ofthreads in our system is equal to the number ofoutstanding I/O requests rather than the numberof tasks. Nonetheless, it introdued performaneoverhead and saling problems, sine the numberof TCP onnetions per brik inreases with theluster size. We are working on introduing high-throughput asynhronous I/O ompletion meha-nisms into the JVM using the JNI native interfae.7.2 Future WorkWe plan on investigating more interesting data-parallel operations on a DDS (suh as an iterator,or the Lisp maplist() operator). We also plan onbuilding other distributed data strutures, inlud-ing a B-tree and an administrative log. In doingso, we hope to reuse many of the omponents ofthe hash table, suh as the brik storage layer, theRG map infrastruture, and the two-phase ommitode. We would like to explore ahing in the DDSlibraries (we urrently rely on servies to build theirown appliation-level ahes). We are also exploringadding other single-element operations to the hashtable, suh as testandset(), in order to provideloks and leases to servies that may have many ser-vie instanes ompeting to write to the same hashtable element.8 Related WorkLitwin et al.'s salable, distributed data stru-tures (SDDS) suh as RP � [22, 26℄ helped to mo-tivate our own work. RP � fouses on algorithmiproperties, while we foused on the systems issuesof implementing an SDDS that satis�es the onur-reny, availability, and inremental salability needsof Internet servies.Our work has a great deal in ommon withdatabase researh. The problems of partitioningand repliating data aross shared-nothing multi-omputers has been studied extensively in the dis-tributed and parallel database ommunities [10, 17,25℄. We use mehanisms suh as horizontal parti-tioning and two-phase ommits, but we do not needan SQL parser or a query optimization layer sinewe have no general-purpose queries in our system.We also have muh in ommon with distributedand parallel �le systems [3, 23, 31, 33℄. A DDSpresents a higher-level interfae than a typial �lesystem, and DDS operations are data-struture spe-i� and atomially a�et entire elements. Our re-searh has foused on salability, availability, and



onsisteny under high throughput, highly onur-rent traÆ, whih is a di�erent fous than �le sys-tems. Our work is most similar to Petal [24℄, in thata Petal distributed virtual disk an be thought of asa simple hash table with �xed sized elements. Ourhash tables have variable sized elements, an addi-tional name spae (the set of hash tables), and fo-us on Internet servie workloads and properties asopposed to �le system workloads and properties.The CMU network attahed seure disk(NASD) arhiteture [11℄ explores variable-sized ob-jet interfaes as an abstration to allow storage sub-systems to optimize disk layout. This is similar toour own data struture interfae, whih is deliber-ately higher-level than the blok or �le interfaes ofPetal and parallel or distributed �le systems.Distributed objet stores [13℄ attempt to trans-parently adding persistene to distributed objetsystems. The persistene of (typed) objets is typi-ally determined by reahability through the transi-tive losure of objet referenes, and the removal ofobjets is handled by garbage olletion. A DDS hasno notion of pointers or objet typing, and applia-tions must expliitly use API operations to store andretrieve elements from a DDS. Distributed objetstores are often built with the wide-area in mind,and thus do not fous on the salability, availability,and high throughput requirements of luster-basedInternet servies.Many projets have explored the use of lustersof workstations as a general-purpose platform forbuilding Internet servies [1, 4, 15℄. To date, theseplatforms rely on �le systems or databases for per-sistent state management; our DDS's are meant toaugment suh platforms with a state managementplatform that is better suited to the needs of Inter-net servies. The Porupine projet [30℄ inludes astorage platform built spei�ally for the needs ofa luster-based salable mail server, but they areattempting to generalize their storage platform forarbitrary servie onstrution.There have been many projets that expoloredwide-area repliated, distributed servies [9, 27℄.Unlike lusters, wide-area systems must deal withheterogeneity, network partitions, untrusted peers,high lateny and low throughput networks, and mul-tiple administrative domains. Beause of these dif-ferenes, wide-area distributed systems tend to haverelaxed onsisteny semantis and low update rates.However, if designed orretly, they an sale upenormously.9 ConlusionsThis paper presents a new persistent data man-agement layer that enhanes the ability of lusters to

support Internet servies. This self-managing layer,alled a distributed data struture (DDS), �lls in animportant gap in urrent luster platforms by pro-viding a data storage platform spei�ally tuned forservies' workloads and for the luster environment.This paper foused on the design and implemen-tation of a distributed hash table DDS, empiriallydemonstrating that it has many properties neessaryfor Internet servies (inremental saling of through-put and data apaity, fault tolerane and high avail-ability, high onurreny, and onsisteny and dura-bility of data). These properties were ahieved byarefully designing the partitioning, repliation, andreovery tehniques in the hash table implementa-tion to exploit features of luster environments (suhas a low-lateny network with a lak of network par-titions). By doing so, we have \right-sized" the DDSto the problem of persistent data management forInternet servies.The hash table DDS simpli�es Internet ser-vie onstrution by deoupling servie-spei� logifrom the omplexities of persistent state manage-ment, and by allowing servies to inherit the ne-essary servie properties from the DDS rather thanhaving to implement the properties themselves.AknowledgementsWe are very grateful to Eri Anderson, Robvon Behren, Nikita Borisov, Mike Chen, ArmandoFox, Jim Gray, Ramki Gummadi, Drew Roselli, Ge-o� Voelker, the anonymous referees, and our shep-herd Bill Weihl for their very helpful suggestionsthat greatly improved the quality of this paper. Wewould also like to thank Eri Fraser, Phil Buon-adonna, and Brent Chun for their help in giving usaess to the Berkeley Millennium luster for ourperformane benhmarks.Referenes[1℄ E. Amir, S. MCanne, and R. Katz. An Ative Ser-vie Framework and its Appliation to Real-TimeMultimedia Transoding. In Proeedings of ACMSIGCOMM '98, pages 178{189, Ot 1998.[2℄ T. E. Anderson, D. E. Culler, and D. Patterson. ACase for NOW (Networks of Workstations). IEEEMiro, 12(1):54{64, Feb 1995.[3℄ T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.Patterson, D. S. Roselli, and R. Y. Wang. ServerlessNetwork File Systems. In Proeedings of the 15thACM Symposium on Operating Systems Priniples,De 1995.[4℄ D. Andresen, T. Yang, O. Egeioglu, O. H. Ibarra,and T. R. Smith. Salability Issues for High Per-formane Digital Libraries on the World Wide Web.In Proeedings of IEEE ADL '96, Washington D.C.,May 1996.



[5℄ G. Banga, J. C. Mogul, and P. Drushel. A Salableand Expliit Event Delivery Mehanism for UNIX.In Proeedings of the USENIX 1999 Annual Teh-nial Conferene, Monterey, CA, Jun 1999.[6℄ BEA Systems. BEA WebLogi Appliation Servers.http://www.bea.om/produts/weblogi/.[7℄ T. Briso. RFC 1764: DNS Support for Load Bal-aning, Apr 1995.[8℄ A. Chankhunthod, P. B. Danzig, C. Neerdaels,M. F. Shwartz, and K. J. Worrell. A HierarhialInternet Objet Cahe. In Proeedings of the 1996Usenix Annual Tehnial Conferene, Jan 1996.[9℄ A.D. Birrell et al. Grapevine: An Exerise in Dis-tributed Computing. Communiations of the ACM,25(4):3{23, Feb 1984.[10℄ D. DeWitt et al. The Gamma Database MahineProjet. IEEE Transations on Knowledge andData Engineering, 2(1), Mar 1990.[11℄ G. A. Gibson et al. A Cost-E�etive, High-Bandwidth Storage Arhiteture. In ASPLOS-VIII,San Jose, California, 1998.[12℄ J. H. Howard et al. Sale and Performane in a Dis-tributed File System. ACM Transations on Com-puter Systems, 6(1), Feb 1988.[13℄ P. Ferreira et al. PerDiS: Design, Implementation,and Use of a PERsistent DIstributed Store. In Re-ent Advanes in Distributed Systems, volume 1752of Leture Notes in Computer Siene, hapter 18,pages 427{452. Springer-Verlag, Feb 2000.[14℄ V. S. Pai et al. Loality-Aware Request Dis-tribution in Cluster-Based Network Servers. InASPLOS-VIII, San Jose, CA, Ot 1998.[15℄ A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,and P. Gauthier. Cluster-Based Salable NetworkServies. In Proeedings of the 16th ACM Sym-posium on Operating Systems Priniples, St.-Malo,Frane, Ot 1997.[16℄ I. Goldberg, S. D. Gribble, D. Wagner, and E. A.Brewer. The Ninja Jukebox. In The 2nd USENIXSymposium on Internet Tehnologies and Systems,Boulder, CO, Ot 1999.[17℄ G. Graefe. Enapsulation of Parallelism in the Vol-ano Query Proessing System. In ACM SIGMODConferene on the Management of Data, AtlantiCity, NJ, May 1990.[18℄ Jim Gray. The Transation Conept: Virtues andLimitations. In Proeedings of VLDB, Cannes,Frane, September 1981.[19℄ S. D. Gribble and E. A. Brewer. System DesignIssues for Internet Middleware Servies: Dedutionsfrom a Large Client Trae. In Proeedings of the1997 USENIX Symposium on Internet Tehnologiesand Systems (USITS 97), Monterey, CA, De 1997.[20℄ J. C. Hu, I. Pyarali, and D. C. Shmidt. Apply-ing the Proator Pattern to High-Performane WebServers. In Proeedings of the 10th InternationalConferene on Parallel and Distributed Computingand Systems, Ot 1998.

[21℄ A. Iyengar, J. Challenger, D. Dias, and P. Dantzig.High-Performane Web Site Design Tehniques.IEEE Internet Computing, 4(2), Mar 2000.[22℄ J. S. Karlsson, W. Litwin, and T. Rish. LH*LH:A Salable High Performane Data Struture forSwithed Multiomputers. In Proeedings of the 5thInternational Conferene on Extending DatabaseTehnology, pages 573{591, Avignon, Frane, Mar1996.[23℄ O. Krieger and M. Stumm. HFS: A Flexible FileSystem for Large-Sale Multiproessors. In Pro-eedings of the 1993 DAGS/PC Symposium, pages6{14, Hanover, NH, Jun 1993.[24℄ E. K. Lee and C. A. Thekkath. Petal: DistributedVirtual Disks. In ASPLOS-VII, Cambridge, MA,1996.[25℄ B. G. Lindsay. A Retrospetive of R*: A Dis-tributed Database Management System. Proeed-ings of the IEEE, 75(5):668{673, May 1987.[26℄ W. Litwin, M. Neimat, and D. A. Shneider. RP*:A Family of Order Preserving Salable DistributedData Strutures. In Proeedings of the TwentiethInternational Conferene on Very Large Databases,pages 342{353, Santiago, Chile, 1994.[27℄ P. V. Mokapetris and K. J. Dunlap. Developmentof the Domain Name System. In ACM SIGCOMMComputer Communiation Review, 1988.[28℄ V. S. Pai, P. Drushel, and W. Zwaenepoel. Flash:An EÆient and Portable Web Server. In Proeed-ings of the 1999 Annual Usenix Tehnial Confer-ene, Jun 1999.[29℄ M. Rosenblum and J. K. Ousterhout. The Designand Implementation of a Log-Strutured File Sys-tem. In Proeedings of the 13th ACM Symposiumon Operating Systems Priniples, 1991.[30℄ Y. Saito, B. Bershad, and H. Levy. Manageabil-ity, Availability and Performane in Porupine: aHighly Salable, Cluster-based Mail Servie. InProeedings of the 17th Symposium on OperatingSystem Priniples, Kiawah Island, SC, De 1999.[31℄ R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,and B. Lyon. Design and Implementation of theSun Network Filesystem. In Proeedings of theUSENIX 1985 Summer Conferene, El Cerrito, CA,Jun 1985.[32℄ J. Song, E. Levy, A. Iyengar, and D. Dias. DesignAlternatives for Salable Web Server Aelerators.In Proeedings of the 2000 IEEE International Sym-posium on Performane Analysis of Systems andSoftware (ISPASS-2000), Austin, TX, Apr 2000.[33℄ C. A. Thekkath, T. Mann, and E. K. Lee. Frangi-pani: A Salable Distributed File System. In Pro-eedings of the 16th ACM Symposium on OperatingSystems Priniples, St.-Malo, Frane, Ot 1997.


