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Abstract
This paper presents the experience of a real de-
ployment of Calamari, an ad-hoc localization
system for sensor networks. It provides a prac-
tical evaluation of many ideas from the literature,
serving as a proof-of-concept in some cases and
revealing tacit assumptions or unexpected prob-
lems in others.

1 Introduction
An Ad-hoc localization system can position
nodes without requiring each one to be in contact
with at least three anchor nodes. In the past sev-
eral years, many ad-hoc localization algorithms
have proved effective in simulation [6, 9, 8, 10]
and several ranging technologies have been em-
pirically shown to provide reasonable distance es-
timates [7, 9, 11, 5]. However, complete systems
that successfully combine the two are scarce.
This paper first demonstrates this disconnect by
using real ranging data in a simulation to show
that results are worse than those obtained with
simulated ranging data. Then, the concept of
effective rangeis proposed to explain this phe-
nomenon and methods of altering the effective
range are discussed.

2 Empirical Ranging Measurements
The ranging estimates were collected using ultra-
sound technology developed for Calamari [10],
an ad-hoc localization system designed specifi-
cally for sensor networks and based on the Berke-
ley mica hardware platform [4]. Ultrasound is
the default ranging technology for those localiza-
tion systems that do exist [7, 9]. It was chosen in
this experiment because radio signal strength [3]
does not match the noise requirements assumed
by the majority of existing ad-hoc localization al-
gorithms and RF time of flight [5] is not practical
to implement on a small scale ad-hoc network.

2.1 Ultrasound Ranging
The ultrasound ranging board uses a 45 degree
reflective cone was placed above each ultrasonic
transducer to transform its normal 20 degree con-
ical emittance pattern into a 10 degree radial
emittance. This board used a combination of a
Prowave 25KHz ultrasonic transducer [1] and an
Atmel Atmega8 1MHz microcontroller. The out-
put of the transducer was wired to the analog
comparator on the microcontroller for detecting
a signal via a simple threshold, which could be
controlled in software. The input of the trans-
ducer was wired to a PWM line on the Atmega8,
which directly keyed the 25KHz signal through
software. Both devices resided in a daughter
board that was mounted on a Mica2Dot, which
conists of a ChipCon CC1000 FSK 433Mhz ra-
dio and a Atmel Atmega128 4MHz microcon-
troller. The two microcontrollers could commu-
nicate through a UART interface and a single PW
line that was wired from one of the Atmega128’s
PWMs to a hardware interrupt on the Atmega8
[2].

When the Atmega128 wanted to transmit, it
would send a UART signal with atransmitcom-
mand to the Atmega8. This would put the At-
mega8 in transmit mode. When the Atmega128
sent a radio packet, it triggered an interrupt on
the Atmega8, which signalled it to send immedi-
ately. After transmission, the Atmega8 went back
into receivemode. In this way, the ultrasound sig-
nal was coordinated exactly with the sending of a
radio message. Notice that it was also always en-
veloped in a radio message to prevent collisions,
as demonstrated in [7].

When the Atmega128 was receiving a radio
message, it would trigger the same interrupt on
the Atmega8. Since the Atmega8 is by default in
receive mode, this triggered the Atmega8 to en-
able the analog comparator and set the Timer0
value to zero. If an ultrasound signal was de-
tected, the Timer0 value was read again and sent
over the UART to the Atmega128. Thus, a the
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Figure 1:

receive time of the radio message and the ultra-
sound message was coordinated via a hardware
interrupt. After the signal is detected, of if no ul-
trasound signal was detected, the Atmega8 again
disabled the analog comparator.

2.2 Experimental Setup
Most ad-hoc localization algorithms use simu-
lated ranging data instead of real, empirical rang-
ing measurements, and for a good reason: to have
robust results, simulations must average results
over many random topologies. However, each
random topology will have different distances be-
tween the different nodes. It is much easier to in-
terpolate what a ranging technologywould prob-
ably generate at each of those distances than it is
to actually measure them for each random topol-
ogy.

In order to generate ranging estimates that
could be reused in any simulation, a special
topology was generated and used to collect dis-
tance estimates once. The topology, shown in
Figure 1, was generated using rejection sam-
pling by generating random topologies until a
histogram of measured distances included at least
two measurements in each ten centimeter bin.
The histogram for this topology is shown in Fig-
ure 2. The random topology therefore measured
all distances between .7m and 5m with a spacing
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Figure 2:

of on average 3cm, which is less than the nominal
errors that were observed. Because every possi-
ble distance is measured, these distance estimates
can then be reused in a simulation of any random
topology.

Of course, the measurement of each distance
is affected by the idiosyncrasies of the pair of
nodes that was used to measure it. To amelio-
rate this effect, distance estimates were taken five
times, each time with a different random mapping
of nodes onto the topology locations. Ten mea-
surements were collected over each distance at
each mapping. Since each distance appears in the
topology at least twice, each one was estimated
with at least ten different pairs of nodes and was
sampled about one hundred times.

This entire routine of experiments was then re-
peated four times in four different environments:
on carpet, in the grass, about 30 centimeters
above the grass, and on pavement, for a total of at
most 400 samples at each distance. All resulting
distance estimates generated during this experi-
ment are shown in Figure 3, after uniform cali-
bration [11].

2.3 Calibration and Filtering
The noise in the raw ultrasound ranging data is
unacceptable, even after calibration. This can be
fixed by using all ranging estimates between a
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pair to eliminate outliers and better estimate the
true distance. Because of the nature of the noise
in an ultrasound ranging estimate, a non-linear
filter must be used.

First of all, we notice that there are many out-
liers. This can be due to the transducer being in
an undefined state during the reception, or ran-
dom noise in the signal, such as automobile traf-
fic or a door slamming. The easiest way to elim-
inate these outliers is to remove all readings that
fall outside of some range of the median. In this
case, the range was chosen to be about 20 cen-
timeters, but it could be varied with the value of
the median. This non-linear filter is calledme-
dianTube. Second, we notice that all readings
within the medianTube are greater than or equal
to the true distance due to the nature of time of
flight. We therefore choose the minimum value
within the median tube.

A sample of the filter at work on a real data
sequence (from audible range data) is shown in
Figure 4. The resulting error estimates are much
better than those without filtering, and are shown
in Figure 5. As one can see, this data has a low
error rate of 3.5% average error. As shown in
Figure 6, this error is also gaussian distributed.
The error rate changes, though not significantly,
between different environments. Figure 7 shows
the error rate for each environment as it changes

0 20 40 60 80 100 120 140 160 180 200
0

15

30

45

60

75

90

105
Filtered Time of Flight Estimates

Time (sec)

D
is

ta
nc

e 
E

st
im

at
e 

(c
m

)

Raw Distance Estimates
Filtered Distance Estimates

False positives 

Outliers 

Normal Noise 

Figure 4:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12

14

16

18

20

Filtered Distance Estimates: 3.3% error

True Distance (m)

E
st

im
at

ed
 D

is
ta

nc
e 

(m
)

Figure 5:

3



−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

6

7

8

9

10
Ranging Error PDF

P
ro

ba
bi

lit
y

Error (m)

Figure 6:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

50
Expected Error

Distance (m)

E
rr

or
 (

cm
)

grass
grasscups
carpet
pavement

Figure 7:

with distance.

3 Localization Simulations
While many ad-hoc localization algorithms have
been proposed, this paper evaluates theDV-
distancedistance-vector based algorithm [6] be-
cause of its simplicity and influence on other al-
gorithms [10, 8]. The algorithm works by hav-
ing each node estimate its distance to each base
station to be the shortest path distance to that
base station. This can be done simply using a
distributed distance vector algorithm. Once the
node has at least three of these distance estimates,
they can be used with multi-lateration, a standard
least-squares method of estimating position given
distance estimates to three known positions.

To evaluate this algorithm, 100 random topolo-
gies in a 15m x 15m area were generated at each
of ten densities ranging from 0.07 nodes/meter to
0.751 nodes/meter. Simulated ranging estimates
with 5 meter maximum range and 3.5% gaus-
sian noise were used, the same properties as the
empirical results found above. These simulated
ranging estimates were generated by choosing all
distancesd less than or equal to 5m and purturb-
ing the value with gaussian noiseN(0, d∗0.035).
All pairs of nodes greater than 5m apart were con-
sidered disconnected.

To incorporate the emprirical ranging esti-
mates into the simulation, each distance estimate
d less than or equal to 5m was paired with a dis-
tance in the topology shown in 1. All distances
were paired with other distances less than 3 cen-
timeters difference. Then, the distance estimate
for one random pair that was used to measure
that distance was chosen and inserted into the
simultion. This procedure was repeated for the
data collected in each of the four environments:
grass, free space, pavement, and carpet. For com-
parison, results with simulated ranging estimates
with 3.5% gaussian noise and maxmimum ranges
of 4m, 3.5m, 3m, 2,5m, 2m, and 1m were also
plotted. The results are all shown in Figure 8
(top).

Clearly, the empirical data is not performing as
well as the simulated data with the same charac-
teristics of 5m maximum range and 3.5% gaus-
sian error. In fact, most of the empirical data
seems to be performing around that quality of
3.25m. The grass data is the exception, which
performed extremely badly, more closely approx-
imating simulated data of about 2m. This is sur-
prising not only because of the bad performance,
but also because of the trend in bad performance
with environment; Figure 7 shows that the worse
error rates were in fact gotten in the carpet envi-
ronment, not the grass environment.

4 Effective Range
To understand why empirical ranging estimates
do more poorly than simulated estimates, Figure
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8 (bottom) re-plots the data from Figure 8 (top)
against average node degree. The average node
degree is the average number of nodes to which
each node has a distance estimate. Surprisingly,
this new plot shows that all types of ranging es-
timates behave similarly given node degree, in-
dicating that node degree mustnot be the same
between the empirical ranging estimates and the
simulated ranging estimates.

Figure 9 shows the probability of a ranging
success between two nodes given the distance
between them. Indeed, this graph explains why
the average degree given empirical estimates is
lower than with simulated estimates; many dis-
tance estimates fail in a real deployment and
these failures dramatically decrease degree. Un-
fortunately, none of the ad-hoc localization sim-
ulations in the literature [9, 8, 6] vary failure rate
as one of the ranging characteristics.

The failure rate of ranging is indeed some-
what surprising even in itself, especially given
the fact that most ranging technologies are char-
acterized in terms ofrange. As we can see in
Figure 9,range is actually ill-defined; similar to
radio-range, ultrasonic range is probabilistic and
no clear point-estimate of range exists.

One remaining question is, given that the car-
pet and the grass data seem to have roughly the
same probability mass, what explains why the

grass data did so poorly while the carpet data did
nearly as well as the other data? The answer,
lies in how this probability mass is converted into
node degree. Assuming the neighbor positions
are roughly uniformly distributed with densityD,
the average node degree can be calculated with∫ 5

r=0

Π ∗ r2 ∗ p(ranging|r)

with we will call the effective range. Figure 10
is a diagram illustrating the effective range of the
pavement and grass data, showing that the cov-
ered areas are significantly smaller than the orig-
inal estimate of 5m.

One further observation is that the carpet data
is not significantly worse than the pavement or
free space data despite its smaller probability
mass. This can be explained by the non-uniform
probability distribution of neighbor distances; al-
most no neighbors are right next to each other.
Therefore, the effective range could be calculated
even more accurately by estimatingp(n|r), the
probability of having a neighbor at distancer and
updating the equation above to be∫ 5

r=0

Π ∗ r2 ∗ p(ranging|r) ∗ p(neighbor|r)

which might be called the weighted effective
range.

4.1 Effective Range and Filtering
Effective range is a useful way of characterizing
ranging technologies such that localization simu-
lations can be compared with each other and pro-
jected onto real empirical results. However, the
knowledge that loss rates have such an extreme
effect on localization results also suggests that
we improve results greatly not by reducing aver-
age error but by increasing the probability mass
in Figure 9. One way to do that is to modify the
filters presented in Section 2.3.

Figure 11 shows the effect of various filter pa-
rameters on the effective range (y-axis) and error
(x-axis). The lower-left and top-right graphs are
most easily understood: as the minimum number
of readings accepted is increased in the lower-
left graph, the mean error gets smaller because
we have more samples and are more confident
of our result. However, the effective radius goes
down because we are eliminating valid ranging
estimates that simply do not have enough sam-
ples. As the number of samples initially collected
is increased in the top-right graph, the mean error
goes down while the effective radius increases.
Thus, obtaining more initial samples boosts rang-
ing overall, although not by very much. The top-
left graph is most difficult to interpret. Given
a particular value for minReadings and filter-
Length, as the width of the median tube increases,
both mean error and effective range increase.
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Finally, we notice that the mean error doesn’t
change significantly no matter what our filter
characteristics are, although our effective radius
can vary by up to 2.5 meters. Thus, we choose
parameters that give us the highest possible ef-
fective radius with the lowest mean error, which
are: filterLength=10, minReadings=2, and medi-
anTube=0.2. Surprisingly, the median tube is ex-
tremely narrow, probably because the minRead-
ings variable is so low.

5 Conclusion
We identified a property of ranging technologies
calledeffective rangeand showed that the effect
of effective range is much greater than the effect
of mean error. Effective range should therefore
by included in the tests for algorithmic robust-
ness in localization simulations. We also show
that there is in fact a trade-off between mean er-
ror and effective range, and that modifying our
filter can help us achieve a good balance of both.
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