
Tracking a Moving Object
with a Binary Sensor Network

Javed Aslam∗, Zack Butler†, Florin Constantin†, Valentino Crespi‡, George Cybenko§, Daniela Rus†

ABSTRACT
In this paper we examine the role of very simple and noisy
sensors for the tracking problem. We propose a binary sen-
sor model, where each sensor’s value is converted reliably to
one bit of information only: whether the object is moving
toward the sensor or away from the sensor. We show that
a network of binary sensors has geometric properties that
can be used to develop a solution for tracking with binary
sensors and present resulting algorithms and simulation ex-
periments. We develop a particle filtering style algorithm for
target tracking using such minimalist sensors. We present
an analysis of a fundamental tracking limitation under this
sensor model, and show how this limitation can be overcome
through the use of a single bit of proximity information at
each sensor node. Our extensive simulations show low error
that decreases with sensor density.

Categories and Subject Descriptors
ACM [C.2.1]: Network Architecture and Design

General Terms
Algorithms, Experimentation

Keywords
Sensor Networks, Tracking, Particle Filters, Minimalism

∗College of Computer and Information Science, Northeast-
ern University. This work partially supported by NSF Ca-
reer award CCR-0093131. Portions of this work were com-
pleted while the author was on faculty at the Department
of Computer Science, Dartmouth College.
†Department of Computer Science, Dartmouth College
‡Department of Computer Science, California State Univer-
sity Los Angeles. Part of this work was developed while the
author was in service at Dartmouth College.
§Thayer School of Engineering, Dartmouth College

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’03, November 5–7, 2003, Los Angeles, California, USA.
Copyright 2003 ACM 1-58113-707-9/03/0011 ...$5.00.

1. INTRODUCTION
Sensor networks are systems of many small and simple

devices deployed over an area in an attempt to sense and
monitor events of interest or track people or objects as they
move through the area. In general, the sensors used (both
the sensor itself as well as any associated computing) are
very simple so that their cost remains low. Different sensing
modalities including temperature, sound, light and seismic
vibrations may be used in such a system depending on the
targets of interest.
For several of these sensing modalities, the sensor may

generate as little as one bit of information at each point in
time. For example, if the sensors are obtaining sound lev-
els, instead of using the absolute sound level (which may
cause confusion between loud near objects and quieter close
objects), the sensor may simply report whether the sound is
getting louder or quieter. Similarly for the seismic sensor,
an increase or decrease in intensity can be used. In these
systems, using a single bit of information allows for inex-
pensive sensing as well as minimal communication. This
minimalist approach to extracting information from sensor
networks leads to a binary model of sensor networks.
In this paper we investigate the computational power of

sensor networks in the context of a tracking application by
taking a minimalist approach focused on binary sensors.
The binary model assumption is that each sensor network
node has sensors that can detect one bit of information and
broadcast this bit to a base station. We examine the
scenario in which the sensor’s bit is whether an object is ap-
proaching it or moving away from it. We analyze this min-
imalist binary sensor network in the context of a tracking
application and show that it is possible to derive analyti-
cal constraints on the movement of the object and derive
a tracking algorithm. We also show that a binary sensor
network in which sensors have only one bit of information
(whether the object they sense is approaching or moving
away) will give accurate predictions about the direction of
motion of the object but do not have enough information
content to identify the exact object location. For many ap-
plications predicting directional information is enough—for
example in tracking a flock of birds, a school of fish, or a
vehicle convoy. However, it is possible to pin down the exact
location by adding a second binary sensor to each node in
the net. If we include a proximity sensor that allows each
node to report detecting the object in its immediate neigh-
borhood we can determine the direction and location of the
moving target.
This minimalist approach to sensor networks gives us in-

150

sight into the information content of the tracking applica-
tion, because it gleans the important resources for solving
this task. By studying minimalist sensor networks we learn
that the binary sensor network model with one bit gives re-
liable direction information for tracking, but an additional
bit provided by a proximity sensor is necessary to pin down
exactly the object location. Minimalist approaches to un-
derstanding the information structure of tasks have been
used previously, for example in the context of robotics tasks
[6].
Our tracking algorithms have the flavor of particle filter-

ing [1] and make three assumptions. First, the sensors across
a region can sense the target approaching or moving away.
The range of the sensors defines the size of this region which
is where the active computation of the sensor network takes
place (although the sensor network may extend over a larger
area). The second assumption is that the bit of information
from each sensor is available in a centralized repository for
processing. This assumption can be addressed by using a
simple broadcast protocol in which the nodes sensing the
target send their id and data bit to a base station for pro-
cessing. Because the data is a single bit (rather than a
complex image taken by a camera) sending this information
to the base station is feasible. Our proposed approach is
most practical for applications where the target’s velocity is
slower than the data flow in the network, so that each bit
can actually be used in predictions. However, since the accu-
racy of our trajectory computation depends on the number
of data points, the predictions are not affected by the veloc-
ity of the target relative to the speed of communication. The
third assumption is that an additional sensor that supplies
proximity information as a single bit is available. Such a
sensor may be implemented as an IR sensor with threshold-
ing that depends on the desired proximity range, and can
also be derived from the same basic sensing element that
provides the original direction bit of information.

2. RELATED WORK
Target tracking is concerned with approximating the tra-

jectory of one or more moving objects based on some par-
tial information, usually provided by sensors. Target track-
ing is necessary in various domains such as computer vision
[7], sensor networks [13], tactical battlefield surveillance, air
traffic control, perimeter security and first response to emer-
gencies . A typical example is the problem of finding the
trajectory of a vehicle by bearings measurement, which is a
technique used by radars. Work in robotics has also con-
sidered tracking targets from moving platforms [11].
Several methods for tracking have been proposed. This in-

cludes Kalman filter approaches or discretization approaches
over the configuration space. A recent method that shows
great promise is particle filtering, which is a technique in-
troduced in the field of Monte Carlo simulations. The main
idea of particle filtering is to discretize the probability dis-
tribution of the object’s position rather than maintaining
the entire feasible position space. This is achieved by keep-
ing multiple copies (called “particles”) of the object each of
which has an associated weight. With every action (usu-
ally a sensor reading) a new set of particles is created from
the current one and the weights are updated. Any func-
tion about the object is then obtained as the weighted sum
of the function values at each particle. The seminal pa-
per in this domain is [9], which states the basic algorithm

and properties. Since then many papers have addressed this
topic; among the most important are the variance reduction
scheme [8] and the auxiliary particle filter [12]. A survey
of theoretical results concerning the convergence of particle
filter methods can be found in [5].
Probabilistic methods have also been used in robotics for

simultaneous localization and mapping (SLAM), in which
the robot attempts to track itself using the sensed position
of several landmarks. For example, in [10], particle filter
techniques were used for localization only when the tradi-
tional Kalman filter technique had failed. These algorithms
typically assume range and bearing information between the
landmarks and tracked vehicle, unlike the very simple sen-
sors considered here.
Sensor networks face two kinds of major problems. First,

efficient networking and energy-saving techniques are re-
quired. The sensors have to communicate with one an-
other or with a “base” to transmit readings or results of
the local computation. In [3], increasingly complex activa-
tion schemes are considered in an attempt to substantially
improve the network’s energy use with little loss in tracking
quality.
Second, we should be efficient in processing the informa-

tion gathered by sensors. In [2], Brooks, Ramanathan and
Sayeed propose a “location-centric” approach by dynami-
cally dividing the sensor set into geographic cells run by a
manager. In the case of multiple measurements, they com-
pare the data fusion (combine the data and then take a
single decision) versus the decision fusion (take many local
decisions and then combine them) approaches.
A distributed protocol for target tracking in sensor net-

works is developed in [4]. This algorithm organizes sensors
in clusters and uses 3 sensors in the cluster toward which
the target is headed to sense the target. The target’s next
location is predicted using the last two actual locations of
the target.
Our sensor model requires sending only one bit of informa-

tion to a central computer and thus the issues shown above
are not of capital importance. We rather focus on geometric
properties of the sensors configuration and on an algorithm
for solving this tracking problem.
We are inspired by this previous work and use the particle

filtering approach in the context of the binary sensor model.

3. THE BINARY SENSOR NETWORK MODEL
In the binary sensor network model, each sensor node con-

sists of sensors that can each supply one bit of information
only. In this section we assume that the sensor nodes have
only one binary sensor that can detect whether the object
is approaching (we will call such a sensor a plus sensor) or
moving away (we will call such a sensor a minus sensor).
We assume that the sensor range is such that multiple sen-
sors can detect this information and forward the bit to a
base station. We call this the active region of the sensor
network. Because the data is simple and consists of one
bit only, this assumption can be met through a protocol in
which the active sensors forward their id and data bit. The
sensor may be noisy and use thresholding and hysteresis to
detect movement and compute the direction bit. The ac-
tive region of the sensor network may change over time, but
since we assume that only the active sensors report data,
the computations are done relative to those sensors only.
We assume that the base station knows the location of each

151

sensor. Without loss of generality, we assume from now on
that all the sensors can sense the object movement over the
same space.
In this section we characterize the geometry of the plus

sensors and minus sensors instantaneously first, and then
over time, using history information. We then relate this
characterization to constraints on the trajectory of the ob-
ject they sense, which will lead to the tracking algorithm
developed in the next section.
The tracking problem can be formulated as follows. Sup-

pose a set of m binary sensors S = {S1, S2, . . . , Sm} are
deployed within a bounded 2D area. Assume now that
an object U is moving inside the area along a curve Γ and
let X(t) be one of its parametric representations. Finally,
let the sensors sample the environment at regular intervals
of time, thereby producing a sequence of binary m-vectors

s ∈ {−1, 1}m (with s
(j)
i = +1/− 1 meaning U is approach-

ing/going away from sensor i at time tj). Then we would
like to provide an estimate of the trajectory X of U for the
given placement of the sensors.

3.1 The Instantaneous Sensor Network Ge-
ometry

Consider a single sample s ∈ {−1, 1}m of data, produced
at time t. We would like to determine sufficient and nec-
essary conditions for the location X of the target and the
direction of its movement V = X ′.
The key result reported as Theorem 2 shows that the lo-

cation of the tracked object is outside the convex hull of the
plus sensors and also outside the convex hull of the minus
sensors. We first show an important property of the plus
and minus sensors relative to the instantaneous velocity and
position of the object.

Lemma 1. Let i and j be two arbitrary sensors located
at positions Si and Sj and providing opposite information

about U at time t. Without loss of generality, let s
(t)
i = +1

and s
(t)
j = −1 (object U is decreasing its distance from

sensor i and increasing its distance from sensor j). Then
it must be the case that

Sj · V (t) < X(t) · V (t) < Si · V (t) ,
where · denotes the scalar product in R2.

Proof. Consider the situation as depicted in Fig. 1. Since
U is going away from sensor Sj then it must be that α > π/2.
Analogously, since U is approaching sensor Si, it must also
be that β < π/2. These two conditions translate into

(Sj −X) · dl < 0 and (Si −X) · dl > 0 ,

or in integral form∫
Γ

(Sj −X) · dl strictly decreasing,

and ∫
Γ

(Si −X) · dl strictly increasing.

Replacing dl = X ′(τ)dτ our conditions become∫ t

0

(Sj −X(τ)) ·X ′(τ)dτ strictly decreasing,

Xdl

α
β

S − X S − X

SS

ji

i j

−+

Figure 1: Necessary and sufficient conditions on X.

and ∫ t

0

(Si −X(τ)) ·X ′(τ)dτ strictly increasing.

But this amounts to saying that

(Si −X(t)) ·X ′(t) > 0 and (Sj −X(t)) ·X ′(t) < 0 ,

from which the claim follows. ✷

An immediate corollary of this lemma is the following con-
dition for the feasibility of a pair (X,V):

max
j

{Sj · V | sj = −1} < X · V < min
i

{Si · V | si = +1}.

This velocity constraint can be used to derive a useful
sensor detection separation result that will result in further
object trajectory constraints.
Figure 2 shows the intuition behind the constraints com-

puted based on the sensor geometry. The current position
of the object is between the convex hull of the plus sensors
and the convex hull of the minus sensors and the object is
heading toward the convex hull of the plus sensors. History
information accumulated over time can be used to identify
the direction and position of the object within this region.
Next we present the theoretical results limiting the fea-

sible object-sensors configurations. Theorem 2 provides a
coarse approximation of the location of the tracked object,
namely that it has to be outside the minus sensors’ and plus
sensors’ convex hulls.

Theorem 2. Let s ∈ {+1,−1}m be a sample of the sen-
sor values at a time t. Let A = {Si | si = +1} and
B = {Sj | sj = −1} and C(A) and C(B) their convex hulls.
Then: C(A)∩C(B) = ∅ . Furthermore, X(t) 	∈ C(A)∪C(B).

Proof. Assume by contradiction that the first part of the
claim is false. Then C(A) ∩ C(B) 	= ∅. This implies that
there exists at least one sensor u ∈ B whose position Su falls
inside C(A). So Su must be a convex combination of the
vertices aj of C(A): Su =

∑
j αjaj , with αj ≥ 0,

∑
j αj =

1. Now, since su = −1, by Lemma 1 we must have:(∑
j

αjaj

)
· V (t) =

∑
j

αj(aj · V (t)) < X(t) · V (t) .

152

On the other hand it must also be that∑
j

αjaj ·V (t) ≥
∑

j

αj min
i

{ai·V (t)} ≥ ai0 ·V (t) > X(t)·V (t) ,

which is contradictory. We denote i0 = argmin
i

ai · V (t) .
To show the second part of the claim, assume that X(t) ∈

C(A). So, as before, X(t) can be expressed as a convex
combination of the vertices in C(A): X(t) =

∑
j αjaj and

by Lemma 1 it must be

X(t) · V (t) < min
j

{aj · V (t)}

or by substituting the convex combination∑
j

αjaj · V (t) < min
j

{aj · V (t)},

which is again contradictory. ✷

The approximation given by Theorem 2 can be further
refined using the following result. Theorem 3 states that the
plus and minus convex hulls are separated by the normal to
the object’s velocity.

Theorem 3. Let s ∈ {+1,−1}m be a sample of the sen-
sors values at a certain time t. Let A = {Si | si = +1} 	= ∅,
B = {Si | si = −1} 	= ∅ and C(A), C(B) their respective

convex hulls. Then the normal �N to the velocity separates
C(A) and C(B) and V points to C(A).

Proof. We can suppose modulo a translation of the plane
that the current location X of the object is X = (0, 0). Let

m be the slope of the velocity and let �V = (v,m·v) where v ∈
R and assume without loss of generality that m /∈ {0,∞}.
Then the equation of the normal �N is: y = − 1

m
· x

Let S+ = (a+, b+) be an arbitrary “plus” sensor and
S− = (a−, b−) an arbitrary “minus” sensor. Then we have
to show that (

a+

m
+ b+

)
·
(
a−

m
+ b−

)
< 0

i.e., any two opposite (i.e.,“plus” and “minus”) sensors lie on

different half-planes with respect to �N . What sensors report
can be translated as (S+−X) ·V > 0 or a+ ·v+b+ ·m ·v > 0
and respectively (S− −X) · V < 0 or a− · v+ b− ·m · v < 0.
By multiplying these relations we get that(

a− · v + b− ·m · v) · (a+ · v + b+ ·m · v) < 0

and, by factoring each parenthesis by m · v,

m2 · v2 ·
(
a−

m
+ b−

)
·
(
a+

m
+ b+

)
< 0

and the claim follows. For the remaining part of the claim,
note that V points to the “plus” convex hull if and only if
S+ · V > 0 or

(
a+, b+

) · (v,m · v) > 0 or further a+ · v+ b+ ·
m · v > 0, which is what the sensors read. ✷

In our model which assumes that sensors are not influ-
enced by noise the only correct sensor reports have to re-
spect the constraints in Theorem 2 and Theorem 3.

3.2 Linear Programming Perspective
In Section 3.1 we showed some instantaneous analytical

properties of trajectories tracked with binary sensors. The
proofs presented in that section are intuitive but not con-
structive. In this section we show how the tracking problem
can be formulated constructively in an equivalent fashion
using linear programming.
We wish to determine the current position of the tracked

object (denoted by (x0, y0)) and the slope of the normal
to its velocity (denoted by m0), based on the locations of
the plus and minus sensors. Unlike in classification theory,
we wish here to characterize the entire feasible region not
just one line (a separating hyperplane) in that region. We
know that the line of slope m0 passing through x0 (i.e., the
normal to velocity) separates the convex hulls of the “plus”
and “minus” sensors. Moreover the velocity points toward
the “plus” convex hull.

+
+

+

+

+

_

_
_

_

_

_

_

_
θ

X(x0,y0)

Si(xi,yi)

Sj(xj,yj)

Figure 2: This figure shows the intuition behind the
natural constraints on the velocity of the tracked ob-
ject that are grounded in the convex hull separation
result.

Let Si = (xi, yi) and Sj = (xj , yj) be, respectively, sensors
with information −, +. The constraints for the tracking
problem can be written as:

• −∞ < m0 < 0

✸ yi − y0 ≥ m0 · (xi − x0)

✸ yj − y0 ≤ m0 · (xj − x0)

• m0 = 0

✸ max yi ≤ y0 ≤ min yj

• ∞ > m0 > 0

✸ yi − y0 ≤ m0 · (xi − x0)

✸ yj − y0 ≥ m0 · (xj − x0)

• m0 = 0

✸ max xj ≤ x0 ≤ min xi

The above inequalities can be translated into linear inequal-
ities by introducing a new variable µ0 = m0 · x0. If m0

(the slope) is given then these cases can be reduced to case
m0 = 0 by a rotation of angle −θ where m0 = tan θ.
Case m0 = 0 is very convenient because of its simplicity.

The domain for y0 becomes an interval, the boundaries for
x0 being given by the bounded area between the convex
hulls.

153

Figure 3: The geometry of the next object position
given current sensor values. The future object posi-
tion has to be inside the shaded area.

3.3 Incorporating History
We now extend the instantaneous characterization of the

tracked object over time, using history. Consider Figure 3.
Intuitively, future positions of the object have to lie inside
all the circles whose center is located at a plus sensor and
outside all circles whose center is located at a minus sensor,
where the radius associated with each sensor S is d(S,X)
where X is the previous object location (by d(A,B) we will
denote the distance between points A and B). This obser-
vation can be formalized as follows.

Proposition 4. Let t0 be a certain time and t1 > t0 such
that sensors S− and S+ report − and + respectively at all
times t,∀t0 < t < t1. Then ∀t0 < t < t1

d(X(t), S−) ≥ d(X(t0), S
−) (1)

d(X(t), S+) ≤ d(X(t0), S
+)

Proof. We prove the claim only for the minus sensor. The
other inequality follows by duality. Let

(S −X2(t)) ·X ′
2(t) = (S −X1(t)− A) ·X ′

1(t) =

= (S −X1(t)) ·X ′
1(t)− A ·X ′

1(t)

= (S −X1(t)) ·X ′
1(t)

We have that f(t0) = 0 and f ′(t) = 2·(X(t)−S−)·X ′(t) ≥
0 because S− reports − at any time t between t0 and t1,
which means that f is nondecreasing. Since f(t0) = 0, it
also follows that f(t) ≥ 0 ∀t0 ≤ t ≤ t1. ✷

4. TRACKING WITH A BINARY SENSOR
NETWORK

Section 3 gives constraints on the movement of the tar-
geted object. By also assuming that the object’s trajectory
lies inside the convex hull of all sensors, a tracking algorithm
can be developed. The following subsections describe this
algorithm and its limitations.

4.1 The Tracking Algorithm
We derive a solution for tracking with binary sensors us-

ing the constraints in Section 3 to obtain an algorithm with
the flavor of particle filtering. The key idea of the particle

filtering method is to represent the location density function
by a set of random points (or particles) which are updated
based on sensor readings and to compute an estimation of
the true location based on these samples and weights. Al-
gorithm 1 is a variant of the basic particle filter algorithm.
Rather than keeping an equally weighted sample set (as [9]
proposes), we use the idea in [8] where each particle has its
own weight. The algorithm keeps at each step a set of parti-
cles (or possible positions) with weights updated according
to the probability of going from the location at time k − 1
(denoted by xk−1

j) to the location at time k (denoted by xk
j).

This probability is approximated by p̂(yk|xk
j). The first par-

ticle set is created by drawing N independent particles out-
side the convex hulls of the “plus” and “minus” sensors at
the time of the first sensor reading. Then, with each sensor
reading, a new set of particles is created as follows:

1. a previous position is chosen according to the “old”
weights

2. a possible successor is chosen for this position

3. if this successor respects acceptance criterion (which
is problem-specific and will be described in Subsec-
tion 4.2), add it to the set of new particles and com-
pute its weight.

The above sequence of steps is repeated until N new parti-
cles have been generated. The last step is to normalize the
weights so they sum up to 1.

Algorithm 1 Particle Filter Algorithm

Initialization: A set of particles (x1
j , w

1
j = 1

N
) for j =

1, . . . , N
k = 1
while yk (sensor readings) 	= ∅ (sensors still active) do
k = k + 1
repeat
choose j from (1, 2, . . . , N) ∼ (wk−1

1 , . . . , wk−1
N)

take xk
j = f̂k(x

k−1
j , yk)

if xk
j respects “goodness” criterion then

accept it as a new particle
end if

until N new particles have been generated
for j = 1 : N do
wk

j = wk−1
j ∗ p̂(yk|xk

j)
end for
Normalize vector (wk

1 , . . . , w
k
N)

end while

4.2 Implementation
In this section we describe some of the implementation

details behind Algorithm 1. The sensor readings are aggre-
gated as the bit vector reported by the sensors at time k
which is denoted by yk. The object’s movement f is ap-
proximated by taking xk

j (the new particle) inside the area
given by the following constraints:

• xk
j has to lie outside the “minus” and “plus” convex

hulls (from Theorem 2)

• xk
j has to lie inside the circle of center S+ and of radius

the distance from S+ to xk−1
j (from Proposition 4),

154

where S+ can be any “plus” sensor at sampling times
k − 1 and k

• xk
j has to lie outside the circle of center S− and of

radius the distance from S− to xk−1
j (from Proposi-

tion 4), where S− can be any “minus” sensor at sam-
pling times k − 1 and k

The probability of the movement from xk−1
j to xk

j is approx-
imated by

p̂(yk|xk
j) = pslope(x

k
j , yk) · pposition(x

k
j , yk)

where pslope is the ratio of possible slopes for the new posi-
tion xk

j and pposition is a number that quantifies the relative

location of the sensors, the old (xk−1
j) and new (xk

j) posi-
tions. More formally,

pposition = c ·
NS∏
i=1

ρ(Si, x
k−1
j , xk

j)

where c is a normalization constant, NS is the number of
sensors and

ρ(Si, x
k−1
j , xk

j) =




1, if s
(k−1)
i 	= s

(k)
i

1, if s
(k−1)
i = s

(k)
i and

Si, x
k−1
j and xk

j respect (1)
d(Si,xk

j)

d(Si,xk−1
j)

, if s
(k−1)
i = s

(k)
i = 1 and

threshold <
d(Si,xk

j)

d(Si,xk−1
j)

≤ 1

d(Si,xk−1
j)

d(Si,xk
j)

, if s
(k−1)
i = s

(k)
i = −1 and

threshold <
d(Si,xk−1

j)

d(Si,xk
j)

≤ 1

The acceptance criterion for xk
j in Algorithm 1 is pposition >

threshold. A small value for threshold increases the esti-
mation error, whereas a large value for threshold (i.e. close
to 1) increases the number of tries for finding a new particle
(and thus the running time). A typical value for threshold
in our simulation is 0.8.

4.3 Experiments
To evaluate our approach, we implemented Algorithm 1

in MATLAB and performed extensive simulations on our
implementation. All trajectories are taken inside the [0, 1]×
[0, 1] square and thus the error measurements are relative to
this square. Several types of trajectories have been consid-
ered: linear trajectories, trajectories with random turns and
trajectories with “mild” turns (at each sensor readings the
direction of the tracked object can vary from the previous
one with at most π/6). All trajectories are piecewise lin-
ear and the distance traveled by the object between sensor
readings is almost constant. A typical simulation example
for a linear trajectory (denoted by triangles) can be seen
in Fig. 5. The distance traveled between sensor readings is
N(0.12, 0.02), i.e. drawn from a normal distribution with a
mean of 0.12 and a standard deviation of 0.02.
In Figure 4 we describe the accuracy of our tracking algo-

rithm. The plots show the Root Mean Square Error (RMSE)
for three different layouts of sensor networks and trajecto-
ries. The two lines in each plot represent different error
calculations for the same experiments, namely whether the
particles are weighted in the error calculation as they are in
the filtering algorithm. For these experiments, the sensors

were placed in a grid for the first plot (with 16, 25, 36,. . . ,
196, 225 sensors) and randomly for the other two (with 16,
25, 36,. . . , 100 sensors). The trajectories are random walks
in the first two plots (with “mild” turns) and linear in the
last plot. In all plots the distance traveled by the object is
N(0.12, 0.02). A simulation example can be seen in Fig 5.
The experiments described in the first and second plots were
run N1 = 50 times with random trajectories generated at
each run. The third experiment was run N2 = 50 times
on 5 different linear trajectories. In all experiments 200
particles were sampled at each sensor reading.
The data shows a decreasing trend for the estimation er-

ror as the number of sensors increases, especially in the third
case, where the trajectories are linear. However the error
can not be made arbitrarily small even with a large number
of sensors. The reason for this effect is explained graphi-
cally in Fig. 5, where three parallel trajectories are shown,
all of which are consistent with the obtained sensor readings.
Theorem 7 shows that certain sets of trajectories (including
trajectories on parallel lines that respect the conditions in
the theorem) can not be discerned by a binary sensor, re-
gardless of its placement. In Fig. 5, the real trajectory is
denoted by triangles and the trajectories parallel to it are
denoted by stars. The snapshots are taken at the time of
the last sensor reading, corresponding to the last point of
the trajectory. The “plus” sensors are given as squares and
the “minus” sensors as circles. The dots represent the cloud
of particles at each step. The second example illustrates the
major limitation of our model: binary sensors can only give
information about the movement direction of an object but
not about its’ position as it will be shown in Section 4.4. In
this example the actual trajectory starts and ends at point
0.75, 0.933 (up, at right). The direction of the estimated
trajectory gets approaches the actual movement direction,
but the estimated location is far from the actual location.

4.4 Model Limitation
Our simulation results suggest a natural limitation for the

binary sensor model. The information provided by a binary
sensor network can only be used to obtain reliable informa-
tion about the motion direction of the tracked object. The
results in this section show that certain pairs of trajectories
are indistinguishable for any binary sensor. We also de-
scribe such pairs of trajectories by presenting a constructive
method for producing them. In particular, we show that two
trajectories which always have parallel velocities obeying a
given constraint and are always a constant distance apart
cannot be differentiated under the binary sensor model.
Suppose two points, X(t) and Y (t), are moving so that

they are indistinguishable for all possible binary sensors in
the plane according to our binary sensor model.
Lemma 5 shows that the velocity vectors, X ′(t) and Y ′(t),

have to be parallel to each other and perpendicular to the
difference vector X(t)− Y (t).

Lemma 5. For all times, t, X ′(t) = dX(t)
dt

= γ(t)Y ′(t)
for some scalar function γ(t) > 0. Moreover, (X(t)−Y (t)) ·
X ′(t) = 0 for all times t.

Proof. Consider X(t) and X ′(t). The two half spaces
determined by the line going through X(t) and orthogonal
to X ′(t) partition sensors into two groups: the half space
into which X ′(t) points contains sensors that will detect X

155

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Real trajectory and two other possible trajectories for same sensor reading

minus sensors
plus sensors
real trajectory
another trajectory
particles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Real trajectory, estimated trajectory and sensor readings

minus sensors
plus sensors
actual trajectory

Figure 5: Simulation examples for Algorithm 1. The plus sensors are denoted by squares and the minus
sensors are denoted by circles. Also, the plus and minus convex hulls are figured. In the first example the
two trajectories figured by / are other possible trajectories consistent with sensor readings. In the second
example the estimated trajectory is figured by /.

approaching while the other half space of sensors will detect
X(t) moving away.
Consider the two half spaces thus partitioned by the other

point, Y (t) at time t as well. If the half spaces do not coin-
cide, the region R depicted in Fig. 6 a. will contain sensors
which detect X as moving away but Y as approaching at
time t, or vice versa. Therefore the half spaces must coincide

and so X ′(t) = dX(t)
dt

= γ(t)Y ′(t) for some scalar function
γ(t) > 0. The assertion that (X(t)−Y (t)) ·X ′(t) = 0 clearly
follows as well. ✷

Lemma 6, which is a corollary of Lemma 5, shows that
X(t) and Y (t) must be at a constant distance from each
other at all times. Let X(t) = Y (t) + a(t).

Lemma 6. ||a(t)||2 = a(t) · a(t) = constant.

Proof. By definition, X(t) = Y (t) + a(t) so that

a(t) ·X(t) = a(t) · (Y (t) + a(t)) = a(t) · Y (t) + ||a(t)||2.
Now differentiate both sides with respect to t to get (drop-
ping the time dependence of all vectors for simplicity)

a′ ·X + a ·X ′ = a′ · Y + a · Y ′ +
d||a||2
dt

.

Using the fact that a · X ′ = a · Y ′ = 0 from Lemma 1, we
get

a′ · (X − Y) + a · (X ′ − Y ′) = a′ · a = d||a||2
dt

= 2a′ · a.

Thus d||a||2
dt

= a′ ·a = 0 at all times and so ||a|| is a constant.
✷

Theorem 7 puts together the results in the precedent lem-
mas and shows that the necessary indistinguishability con-
ditions are also sufficient.

Theorem 7. Two trajectories X(t) and Y (t) are indis-
tinguishable for all possible binary sensors in the plane if
and only if both the following conditions hold:

• X ′(t) = γ(t)Y ′(t), where γ(t) > 0 ∀t is a scalar func-
tion

• (X(t)−Y (t)) ·X ′(t) = 0 (or (X(t)−Y (t)) ·Y ′(t) = 0)

Proof.
If X(t) and Y (t) are indistinguishable for all possible bi-

nary sensors then Lemma 5 and Lemma 6 show that the two
conditions hold.
Suppose the above conditions hold. Let S be an arbitrary

sensor in the plane. S reports sgn((S − X(t)) · X ′(t)) for
X(t) and sgn((S − Y (t)) · Y ′(t)) for Y (t). We have

(S −X(t)) ·X ′(t) = (S − Y (t)− (X(t)− Y (t))) · (γ(t)Y ′(t))

= γ(t)((S − Y (t)) · Y ′(t)− (X(t)− Y (t)) · Y ′(t))

= γ(t)(S − Y (t)) · Y ′(t).

Because γ(t) > 0 at all times t we get that

sgn((S −X(t)) ·X ′(t)) = sgn((S − Y (t)) · Y ′(t))

which shows that X(t) and Y (t) are indistinguishable for
sensor S. As S is arbitrarily chosen we get that the two
trajectories are indistinguishable for any sensor. ✷

Theorem 7 implies that the two points must be moving
along a path determined by a radius of some circle at all
times, although the circle’s radius can change over time as
long as it is larger than ||a|| and even be infinite (which is
the degenerate case of moving along parallel lines). Fig. 6 b.
shows the transition from a straight, parallel trajectory to
following an arc of a circle. The transitions can happen
smoothly since the points can come to rest at the point of
transition and then start again.

156

0 50 100 150 200 250
0.1

0.15

0.2

Number of sensors (Sensor Network: Grid. Trajectory: Random)

R
M

S
E

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

Number of sensors (Sensor Network: Random. Trajectory: Random)

R
M

S
E

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

Number of sensors (Sensor Network: Random. Trajectory: Linear)

R
M

S
E

Figure 4: Root Mean Square Error (RMSE) of
tracking with different sensor network layouts and
number of sensors. The RMSE is based on the error
of all particles at a given time. The squares in each
plot denote the error based on weighting the parti-
cles equally in the error calculation while the circles
denote the error when the particles are weighted in
the error calculation according to their probabilities.

The following result shows that, under mild conditions,
given a parametric curve we can easily identify another curve
at arbitrary distance that is indistinguishable in our sensor
model. Before engaging in the proof we need to recall some
basic facts of the differential geometry of plane curves.

Definition 1. Let X(t) = (x1(t), x2(t)) be a twice dif-
ferentiable parameterized plane regular curve. The (signed)
curvature of X(t) at t is given by

k(t) =
x′

1x
′′
2 − x′′

1x
′
2

‖X ′‖3
.

Theorem 8. Let X(t) = (x1(t), x2(t)) be a parameter-
ized plane regular curve at least twice differentiable. Then,
for all α ∈ R+ such that k(t) < 1/α, there exists a param-
eterized plane curve Y (t) = (y1(t), y2(t)) indistinguishable
from X(t), such that ∀t ‖X(t) − Y (t)‖ = α.

Moreover, for all such α there exist at most two indistin-
guishable curves Y (t) from X(t) such that ‖X(t)− Y (t)‖ =
α.

Proof. We’ll first prove the existence of such a plane curve
by constructing it.
Since X is regular, i.e., X ′(t) 	= 0 for all t, the following

curve is well defined:

Y (t) = (x1(t), x2(t)) +
α

‖X ′(t)‖ (−x
′
2(t), x

′
1(t)) .

We can immediately observe that a(t) = Y (t) − X(t) =
α

‖X′(t)‖ (−x′
2(t), x

′
1(t)) verifies

• a(t) ·X ′(t) = α
‖X′(t)‖ (−x′

2(t), x
′
1(t)) · (x′

1(t), x
′
2(t)) = 0,

and

• ∀t ‖a(t)‖ = α.

Figure 6: An illustration of the indistinguishability
properties of our sensor model. Part a. shows that
the two velocities X ′(t) and Y ′(t) have to be paral-
lel and X(t) − Y (t) must be perpendicular to them.
Otherwise sensors in the shaded region R would give
different reports for X(t) and Y (t). Part b. shows an
example of two piecewise linear or circular trajecto-
ries that are indistinguishable by any binary sensor.

So it will be enough to show that Y ′(t) = γ(t) · X ′(t), for
some scalar function γ(t) > 0 or, equivalently, that

1. a(t) · Y ′(t) = 0, and

2. X ′(t) · Y ′(t) > 0.

In fact, condition 1 will tell us that X ′ and Y ′ lie along
parallel directions, whereas, condition 2 will ensure that the
two velocity vectors are not antiparallel. After dropping the
dependence upon t for convenience of notation we can write:

Y ′ = (x′
1, x

′
2)+

α

‖X ′‖ (−x
′′
2 , x

′′
1)− α

‖X ′‖2

X ′

‖X ′‖X
′′(−x′

2, x
′
1) .

Let us first show the validity of condition 1 on the orthogo-
nality. We have:

a(t) · Y ′(t) = a(t) · (X ′(t) + a′(t)) = a(t) ·X ′(t) + a(t) · a′(t).
We already know that a(t) · X ′(t) = 0. As ||a(t)|| = α we
get that a(t) · a′(t) = 0. Hence, a(t) · Y ′(t) = 0.
Let us now verify the validity of condition 2 that depends

upon our constraint on the curvature. Expanding X ′Y ′ we
obtain:

X ′ · Y ′ = X ′ ·X ′ +X ′ · α

‖X ′‖ (−x
′′
2 , x

′′
1)

−X ′ · α

‖X ′‖3
X ′X ′′(−x′

2, x
′
1)

= ‖X ′‖2 +
α

‖X ′‖X
′(−x′′

2 , x
′′
1)

= ‖X ′‖2 − α
x′

1x
′′
2 − x′′

1x
′
2

‖X ′‖
= ‖X ′‖2(1− αk) .

157

And finally we can see that X ′Y ′ > 0 if and only if k < 1/α
as assumed1.
Let’s prove now that the curve constructed above is the

only twice differentiable curve Y at constant distance α from
X such thatX and Y are indistinguishable. Let Y be a plane
curve at constant distance α from X such that X and Y are
indistinguishable under our sensor model. By Theorem 7 we
get that (X(t)− Y (t)) ·X ′(t) = 0.
Let’s denote the unit normal vector to X at time t by

NX (t). From the definition of NX(t) we get that NX(t) ·
X ′(t) = 0. This means that the directions of vectors X(t)−
Y (t) and NX(t) are the same or, equivalently, that there ex-
ists a scalar function γ(t) such thatX(t)−Y (t) = γ(t)NX(t).
We also assumed that ||X(t) − Y (t)|| = α. Using this

we get ||γ(t)NX(t)|| = α or |γ(t)|||NX (t)|| = α or further
|γ(t)| = α because ||NX (t)|| = 1. As X and Y are twice
differentiable, X ′ 	= 0 and γ(t) = (X(t) − Y (t))/||X ′(t)||
we get that γ(t) is a constant, equal in absolute value with
α. We conclude our proof with the observation that we can
have at most two different curves Y (t). We have exactly two
curves if k(t) < −1/α also holds.
We may observe the following. Let α(s) be a curve pa-

rameterized by Arc Length and be n(s) the unit vector or-
thogonal to α′(s) at s. Then, by requiring that the basis
(α′(s), n(s)) is oriented as the canonical basis (e1, e2) we can
give a sign to the curvature by defining α′′(s) = k(s) · n(s).
Thus the sign of k provides information about whether

the curve is turning towards the normal vector n(s) (k > 0)
or away from it (k < 0). So, we need to be careful with
the interpretation of k < 1/α for if k < 0 the constraint
will be always verified. However this fact means that Y (t)
can be at arbitrary distance from X(t) only if it lies on the
positive direction of the normal vector n(s) (away from the
direction of the turn of X). In other words, our constraint
on the curvature says that the distance between the two
curves must always be lower than the largest of the two rays
of curvature. ✷

5. TRACKING WITH A PROXIMITY BIT
As Theorem 7 shows, there exist pairs of trajectories that

can not be distinguished by any binary sensor. We con-
clude that additional information is needed to disambiguate
between different trajectories and to identify the exact loca-
tion of the object. This can be realized by adding a second
binary sensor capable of providing proximity information
(such as an IR sensor) to each sensor node in the network.
If the object is detected within some set range of the prox-
imity sensor, that node broadcasts a message to the base
station. The range of the proximity sensor may be different
and much smaller than the range of the movement direction
sensor. It is useful to set the proximity range so that the sen-
sors are non-overlapping (this can be done by appropriate
thresholding) but this is not necessary. The base station will
approximate the location of the object in the region covered
by all the sensors reporting object detection. For simplicity
of presentation we assume for the rest of the session that
the detection range can be calibrated so that at most one
sensor detects the object at a time.

1The ray of curvature is by definition R = 1/|k|.

5.1 Algorithm and Implementation
Algorithm 2 describes the solution to tracking that uses

a motion direction bit and a proximity bit in each sensor
node. Algorithm 2 extends Algorithm 1 using the proximity
information. When a sensor node detects the object, the
ancestors of every particle which is not inside the range are
shifted as far as the last time the object was spotted by
proportional amounts. Note that this algorithm reduces to
Algorithm 1 when no proximity sensor is triggered, so it is
not necessary for the proximity sensors to cover the entire
region.

Algorithm 2 Algorithm for Binary Sensors with Range

Use Algorithm 1 as basis.
if sensor S sees the object then
for all accepted particles P not inside the range of S
do
Let P ′ (a new particle) be the intersection between
the range of S and semi-line (PS]
Let P1, . . . , Pk be the ancestors of P since the last
time the object was spotted.
for i = 1 to k do
Pi = Pi − (P − P ′)/(k + 1)

end for
end for

end if

5.2 Experiments
If we assume the sensors have the ability to report the

presence of the object in their proximity, then the metric
for the performance of the algorithms should be the rel-
ative error after the object is first spotted. Because we
expect trajectories to be winding over the area covered by
the sensor network we first ask how efficient the proximity
sensing is at detecting the object. More specifically, this
can be formulated as “After how many time steps is the ob-
ject first spotted given a sensor layout?”. Some simulation
results are shown in Fig. 7, that show how many trajectories
out of 100000 randomly generated trajectories have entered
a sensor range after k steps, where k goes from 1 to 800.
The total number of trajectories for each subplot is: 46111
(top, left), 83425 (top, right), 61173 (down, left) and 90235
(down, right). In each graph the remaining trajectories were
not spotted at all or were spotted after more than 800 read-
ings. The average length of a trajectory is about 146. The
trajectories were generated as follows: the distance traveled
between sensor readings is N(0.02, 0.001) and the changes
in direction are “mild” (that is, the direction can change
at most π/6 between sensor readings). The results are for
25 and 100 sensors. The starting position is randomly cho-
sen. Fig. 7(right) shows the results for a small range value
(where the ranges cover less than 10% of the whole area).
Fig. 7(left) shows the results for a large range value, (where
the ranges cover about 70% of the whole area). The graphs
suggest that the distribution of the amount of time that
passes until an object is first spotted is exponential.
Two simulation examples of Algorithm 2 are shown in

Fig. 9. On the first example, the object gets in the proximity
range of a sensor at readings time t = 5 (when all particles
can be seen to reset very close to the true object position)
and t = 11 (the last reading, near the top of the plot).
On the second example, the object gets in the proximity

158

0 200 400 600 800 1000
0

100

200

300

400

500

600

700
Range = 1.4142/(2*(5−1)* 9) Grid: 25 sensors

N
um

be
r o

f t
ra

je
ct

or
ie

s
Number of turns until object is first spotted

0 200 400 600 800 1000
0

500

1000

1500

2000
Range = 1.4142/(2*(5−1)* 3) Grid: 25 sensors

N
um

be
r o

f t
ra

je
ct

or
ie

s

Number of turns until object is first spotted

0 200 400 600 800 1000
0

200

400

600

800

1000

1200
Range = 1.4142/(2*(10−1)* 9) Grid: 100 sensors

N
um

be
r o

f t
ra

je
ct

or
ie

s

Number of turns until object is first spotted
0 200 400 600 800 1000

0

500

1000

1500

2000

2500

3000
Range = 1.4142/(2*(10−1)* 3) Grid: 100 sensors

N
um

be
r o

f t
ra

je
ct

or
ie

s

Number of turns until object is first spotted

Figure 7: The graphs show on the x-axis the number of readings until the object gets first time in a sensor
range and on the y-axis the number of trajectories for a given number of readings elapsed.

range of a sensor at reading time t = 3 (near the center
of the plot). The real trajectory is denoted by triangles
and the estimated trajectory is marked with a thick dashed
line. The snapshot is taken at the time of the last sensor
reading, corresponding to the last point of the trajectory.
The “plus” sensors are given by squares and the “minus”
sensors by circles. The dots represent the particles after
the shifting step in Algorithm 2. We have repeated this
simulation over 200 example trajectories computed by 16 to
64 node sensor networks (1000 runs in total). The trajectory
approximated by the sensor network is very good, and has
root mean square error ranging between 0.15 (for a 16 node
sensor network) and 0.02 (for a 64 node sensor network). We
believe that for field tracking applications involving animals,
people, or cars, these are practical approximations. The
tracking performance after the proximity bit was added to
the model is shown the picture on the right in Figure 8. The
simulation conditions are similar to the ones for the picture
on the left, considering sensors placed in a grid or randomly
with random or linear trajectories.
Two error models were considered and they are explained

below.
Suppose r(k) is the actual position of the object, pi(k)

is the i-th particle generated by the algorithm and wi its
weight at reading time t out of n reading times.
First error model is the Root Mean Square Error RMSE

(denoted by squares), which calculates at each time step the
distance between the particle cloud centroid (regarded as an
estimator for the actual position) and the actual position of

the object. More precisely, RMSE calculates
√

1
n

∑
k E

2
k,

where

Ek = ||r(k)−
∑

i

wipi(k)||.

The other error model (what we call “average error”) cal-
culates at each time step the average distance from the par-
ticles in the cloud to the true position. In other words, the

average error is equal to 1
n

∑
k E

′
k where

E′
k =

∑
i

wi||r(k) − pi(k)||

Second error model gives a bigger error showing a signif-
icant variance within the particle cloud. The second error
model is more relevant if we think of each particle instead
of the particle cloud centroid as an estimator of the true
position of the object. In extreme cases such as all particles
being on a circle around the true position, RMSE can be 0
while the other error provides a better interpretation of the
tracking performance.
The data shows the same decreasing trend for the estima-

tion error as in the one-bit model, but the error is lower and
has a faster decreasing rate.

6. CONCLUSIONS AND FUTURE WORK
In this paper we studied the computational power of bi-

nary sensor networks with respect to the tracking applica-
tion. We take a minimalist stance and ask what can a simple
binary sensor compute given two different types of sensed
data. We assume that the nodes in the network have sen-
sors that can give one bit of information only. We derive
a geometric characterization for the tracking problem when
the sensor nodes provide one bit of information about the
object: is the object approaching or moving away from the
sensor? We show that this problem setup leads to a tracking
algorithm that gives good information about the direction
of movement of the object but that additional information
is needed to provide the exact location of the object. A
proximity sensor bit can provide this information and the
tracking algorithm can be extended to use this information.
The resulting error in trajectory prediction is low. Thus,
since broadcasting single bits over a network is feasible, and
the computation performed by the base station in response
to the sensor values is fast, we conclude that the binary
sensor model is a practical solution to certain tracking ap-
plications.

159

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: Simulation examples for Algorithm 2.
In the first run, the object gets in a sensor range at sampling times 5 (position (0.3971, 0.5495)) and 11 (position
(0.5341, 0.9091)).
In the second run, the object gets in a sensor range only at sampling time 3 (position (0.495, 0.632)). The
plus sensors are denoted by squares and the minus sensors are denoted by circles. The actual trajectory is
denoted by triangles (the thin line) and the estimated trajectory by stars (the thick dashed line). In both
runs the sensor readings shown are taken at last step and only the sensors on the boundary of the minus and
plus convex hulls are shown.

Several important aspects of the binary model sensor model
remain open, and we plan to consider these in our future
work.
First, real world sensors are influenced by noise. We can

incorporate noise in our model by adding a Gaussian vari-
able ε to the signal strength gradient d

dt
Si(t) at sensor Si

and then quantize it as -1, 0 or 1. A 0 report at a cer-
tain time means that the sensor’s signal strength gradient
is below a certain threshold and thus not reliable enough,
which can also be regarded as a temporarily shutdown of the
sensor. The Gaussian variable ε has zero mean, but its vari-
ance should be determined from real data reflecting sensors’
characteristics.
Another way of dealing with noise is to ignore the informa-

tion given by “untrustworthy” sensors. We can decide which
sensors are not reliable at a certain time t by approximating
a sensor’s reading based on the sensors’ geometry.
One possible approach is to consider a snapshot of the

sensors at time t. Let V+ be the set of plus sensors visible
from the minus convex hull and V− the set of minus sensors
visible from the plus convex hull. Let G+ and G− be respec-
tively their centroids. Take E+ and respectively E− be the
points where line G+G− enters the plus and minus convex
hulls. Finally let M be the middle point of segment E+E−.
We take M as a very rough approximation of the object’s

location and the line E+E− as an approximation of the ob-
ject’s direction. Then we can write the measure of a plus
sensor’s S+ reliability as:

µ(S+) = d(S+,M) · cos(S+MG+),

where d(A,B) is the Euclidean distance between A and B.

For a minus sensor the measure is

µ(S−) = d(S−,M) · cos(S−MG−).

The measure approximates the sensor-dependent part of the
scalar product (S −X(t)) ·X ′(t), which can be written as

||S −X(t)|| · ||X ′(t)|| · cos (∠ (S −X(t),X ′(t)
))

A first observation is that for a sensor S+ the angle S+MG+

is rarely greater than π/2. Even then, it has to be that S+ is
close to the minus convex hull and the possible directions for
the object’s movement are very limited. In the presence of
noise one might want to discard such sensors anyway. This
measure only uses the frontier sensors, i.e. the ones that are
visible from the other convex hull. The non-frontier sensors
do not matter if the frontier sensor reports are accurate.
An interior sensor, for example, to the minus convex hull
cannot report + because then the plus and minus convex
hulls would be no longer disjoint, contradicting Theorem 2.
Considering the non-frontier sensors too would change the
centroid’s position without adding extra information. Fi-
nally, the measure is symmetric for plus and minus sensors.
So we can ignore (do not trust) a sensor if its measure is
below a certain threshold.
Another open question is the effectiveness of tracking rel-

ative to the amount of data available.
In the paper we start with the one-bit model and then

add a second bit for proximity. One would naturally be
concerned about how adding extra bits influences the track-
ing accuracy. If k bits are available, an interesting problem
is to find the best way to allocate these bits with respect to
direction and proximity. If the sensor density is high and
proximity is sampled often enough then direction can be
inferred from those two and so velocity and proximity are

160

0 20 40 60 80
0

0.05

0.1

0.15

0.2

E
rr

or

Number of sensors

Sensor Network:Random. Trajectory:Linear

Average error
Weighted average

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

E
rr

or

Number of sensors

Sensor Network:Random. Trajectory:Random

Average error
Weighted average

0 20 40 60 80
0

0.05

0.1

0.15

0.2

E
rr

or

Number of sensors

Sensor Network:Grid. Trajectory:Random

Average error
Weighted average

0 20 40 60 80
0

0.05

0.1

0.15

0.2

E
rr

or

Number of sensors

Sensor Network:Grid. Trajectory:Linear

Average error
Weighted average

Figure 8: Tracking error for various network layouts
and number of sensors for systems with a proximity
bit at each sensor node. The squares represent the
RMSE error based on all the particles separately,
while the circles represent the average error calcu-
lated based on the weighted average of all particles.

not independent variables. This suggests that a compress-
ing scheme could be used to send more information over the
network. We thus get a new optimization problem having
as parameters the number of bits used, the sensor density
and the bits’ allocation scheme.
A possible drawback of our method is the centralized com-

putational structure. An approach for a decentralized solu-
tion is to have every sensor run a local particle filter using
only a subset of the information read by the other sensors.
The basic idea is that at each time step t every sensor S

requests information (the bits) only from the sensors that
are likely to flip based on its local information. S assumes
that the object moved on the same direction and traveled
the same distance between times t− 2 and t− 1 as between
times t − 1 and t (thus the predicted position at time t is
on the same line as the positions at time t − 2 and t − 1)
and only requests information from the sensors that would
flip based on this trajectory. In addition to this informa-
tion, the sensor requests information from a fixed number
of sensors randomly chosen. This is useful in order to have
control on trajectories that are not close to linear. The re-
maining sensors are assumed to remain unchanged. If the
sensor readings available at sensor S do not respect the nec-
essary conditions in Theorem 2 then the sensor updates its
information by requesting data from all the sensors. In the
beginning each sensor is assigned a different area as possible
starting location of the object. At first two time steps every
sensor gets the readings from all sensors so that the starting
information is accurate.
In the near future we will investigate how to implement

this algorithm using our Mote network testbed and how to
extend our algorithms to support multiple target tracking.

7. REFERENCES
[1] S. Arulampalam, S. Maskell, N. J. Gordon, and T.

Clapp, A Tutorial on Particle Filters for On-line

Nonlinear/Non-Gaussian Bayesian Tracking, IEEE
Transactions of Signal Processing, Vol. 50(2), 174-188,
February 2002.

[2] R. R. Brooks, P. Ramanathan, and A. Sayeed,
Distributed Target Tracking and Classification in
Sensor Networks, Proceedings of the IEEE, September
2002

[3] B. Krishnamachari, Energy-Quality Tradeoffs for
Target Tracking in Wireless Sensor Networks, IPSN
2003, 32-46.

[4] H. Yang and B. Sikdar, A Protocol for Tracking
Mobile Targets using Sensor Networks, Proceedings of
IEEE Workshop on Sensor Network Protocols and
Applications, 2003.

[5] D. Crisan and A. Doucet. A survey of convergence
results on particle filtering for practitioners, 2002.

[6] Bruce R. Donald, James Jennings, and Daniela Rus.
Information invariants for distributed manipulation.
International Journal of Robotics Research,
16(5):673–702, 1997.

[7] W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee.
Using adaptive tracking to classify and monitor
activities in a site. In Proc. of IEEE Int’l Conf. on
Computer Vision and Pattern Recognition, 22–29,
1998.

[8] P. Clifford, J. Carpenter and P. Fearnhead. An
improved particle filter for non-linear problems. In
IEE proceedings - Radar, Sonar and Navigation,
I46:2–7, 1999.

[9] D. Salmond, N. Gordon and A. Smith. Novel approach
to nonlinear/non-gaussian bayesian state estimation.
In IEE Proc.F, Radar and signal processing,
140(2):107–113, April 1993.

[10] Eduardo Nebot, Favio Masson, Jose Guivant, and
Hugh Durrant-Whyte. Robust simultaneous
localization and mapping for very large outdoor
environments. In Experimental Robotics VIII, 200–9.
Springer, 2002.

[11] Lynne E. Parker. Cooperative motion control for
multi-target observation. In Proc. of IEEE
International Conf. on Intelligent Robots and Systems,
pages 1591–7, Grenoble, Sept. 1997.

[12] Michael K. Pitt and Neil Shephard. Filtering via
simulation: Auxiliary particle filters. Journal of the
American Statistical Association, 94(446), 1999.

[13] F. Zhao, J. Shin, and J. Reich. Information-driven
dynamic sensor collaboration for tracking applications.
IEEE Signal Processing Magazine, 19(2):61–72, March
2002.

Acknowledgments
We thank the reviewers for many insightful comments on
early drafts of the paper and especially thank Gaurav Sukhatme
for assistance with improving the paper based on these com-
ments.
Support for this work was provided through NSF awards

0225446, EIA-9901589, IIS-9818299 and IIS-99812193, ONR
award N00014-01-1-0675, NSF Career award CCR-0093131,
the DARPA TASK program and also by the Institute for
Security Technology Studies at Dartmouth. We are grateful
for it.

161

