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Abstract. We describe an ad-hoc localization system for sensor networks and explain why traditional calibration methods are inadequate
for this system. Building upon previous work, we frame calibration as a parameter estimation problem; we parameterize each device and
choose the values of those parameters that optimize the overall system performance. This method reduces our average error from 74.6%
without calibration to 10.1%. We propose ways to expand this technique to a method of autocalibration for localization as well as to other

sensor network applications.
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1. Introduction

Sensor networks present new challenges in calibration. Many
sensors today have an easy, built-in calibration interface, such
as police traffic radars that use a tuning fork [4]. Others are
factory calibrated and built to remain calibrated for long pe-
riods of time, such as industrial quality accelerometers [5].
Sensor systems have also traditionally used only a small num-
ber of sensors. In robotics, for example, even “Multi-sensor”
systems consist of only a handful of sensors [19]. Even cur-
rently deployed sensor “networks”, such as the SeaKeepers
Society Ocean Monitoring System, are of the macro variety,
where each sensor is individually managed [13].

As aresult of this, most sensor-systems are built for micro-
calibration, in which each device is individually tuned in a
carefully controlled environment.

Sensor networks, however, demand a new method of cal-
ibration. Individual calibration of hundreds or thousands
of devices can be problematic, especially when many small
or low-power devices have no calibration interface. Fur-
thermore, devices often need to be calibrated in partially
unobservable and dynamic environments, or may even be un-
observable themselves. They are also often general-purpose
devices that need to be calibrated differently for each applica-
tion.

The demand for macro-calibration has become real in our
ad-hoc localization system for sensor networks. The devices
we use are so integrated into the system that we cannot easily
observe them for calibration. Even if they could be observed,
there are too many devices to manage each one individually.
They do not have calibration interfaces and even if they did it
would be unclear how to use them to calibrate, for example,
an acoustic device for distance estimation.

We explore macro-calibration by framing calibration as
a general parameter estimation problem. For each device,
we choose calibration parameters that optimize the overall
system response, instead of the individual device responses.
There are many benefits to this technique. First, it frees us
from the need to directly observe and calibrate each and every
device; we only need to observe the overall system response.

Second, it provides a calibration interface to those devices
that do not already have one. This interface is specific to our
application instead of specific to the device. Finally, it sug-
gests a method of autocalibrating distance estimates without
actually knowing the true distances between the nodes.

The rest of this paper is organized as follows. Section 2
introduces our ad-hoc localization system and its calibration
problems. Section 3 formalizes calibration in the traditional
sense and explains why it is inadequate for localization. Sec-
tion 4 discusses two micro-calibration techniques for localiza-
tion while section 5 describes a method of macro-calibration.
Sections 6 and 7 evaluate and compare these three methods.
Section 8 describes an extension of this calibration technique
to an autocalibration method for localization. Section 9 sug-
gests ways to extend this work to other sensor network appli-
cations.

2. Ad-hoc localization and the calibration problem

Localization becomes a much more difficult problem in the
context of ad-hoc sensor networks. Almost all localization
systems existing today rely heavily on infrastructure to pro-
vide known positions and distances. GPS and Active Bats
from AT&T use known positions to anchor the system in co-
ordinate space [8,12]. Cricket from MIT uses known dis-
tances to automatically calibrate for temperature and humid-
ity, which affect the speed of sound [16]. Some localization
systems also leverage deployment time to help with calibra-
tion. For example, Microsoft’s RADAR [1] can use location
fingerprinting, which is the process of characterizing every lo-
cation in the environment for effects such as RF attenuation.
Many other localization systems also rely heavily on special-
ized hardware. GPS, for example, uses atomic clocks for time
synchronization while Active Bats uses an array of ultrasonic
receivers.

In contrast, ad-hoc localization systems have no infrastruc-
ture to provide known distances or positions. They also can-
not rely on having any deployment time and are limited to
using small, low-power components.
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To investigate ad-hoc localization, we have built an ad-hoc
localization system called Calamari [17] that aims to con-
sume as few resources as possible, including energy, com-
putational power, and componentry. Calamari estimates the
distance between nodes using a fusion of RF received sig-
nal strength information (RSSI) and acoustic time of flight
(TOF), both of which are relatively cheap in all regards.

In RSSI ranging, one node transmits a clean RF carrier fre-
quency of 916.5 MHz and another node samples the received
signal strength. Since the nodes already have radios for com-
munication, this is a low-power method of ranging at almost
no computational cost that requires no additional hardware.

TOF ranging in Calamari uses more power and requires
special hardware but yeilds more accurate distance estimates
than RSSI. The transmitter sends short simultaneous RF and
acoustic pulses while the receiver compares the time of ar-
rival of both pulses. Since light and sound travel at different
speeds, the time difference on arrival (TDOA) reveals the dis-
tance between the transmitter and receiver. By using a com-
pletely analog solution instead of digital signal processing,
this normally computationally intense ranging method is now
virtually free.

The mass-produced, analog components used in Calamari
provide a cheap, low-power solution but also introduce high
variability between nodes, which means that we need sophis-
ticated calibration in order to obtain reasonable results.

For example, a radio may transmit at up to twice the power
of another radio, leading to distance errors of up to 100%.
Variations in transmitter frequency also affect the observed
RSSI, as seen in figure 1 which shows the RSSI values of one
receiver as the transmission frequency was varied over the
range of transmitter frequencies. The variations in acoustic
hardware are similar. With all the different types of hardware
variation, the distance estimates from two different transmit-
ter/receiver pairs can vary by as much as 300%, as seen in
figure 4.

These figures are representative of the tradeoff between
needing to heavily engineer a system and needing to heavily
calibrate it. The rest of this paper shows how we solve these
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Figure 1. Received signal strength over frequency. All transmitters have
slightly different frequencies, which will affect received signal strength read-
ings as seen here.
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calibration problems instead of adding extra specialized hard-
ware, using expensive digital signal processing, or adding in-
frastructure. Unfortunately, as we see in the next section, tra-
ditional calibration is not an adequate solution and we need to
find more powerful techniques.

3. Traditional calibration

Device calibration is the process of forcing a device to con-
form to a given input/output mapping. This is often done by
adjusting the device internally but can equivalently be done
by passing the device’s output through a calibration function
that maps the actual device response to the desired response.
In this paper, we will focus on the latter method because it is
easily compared to the methods used in macro-calibration.

A more formal description of calibration is this: each de-
vice has a set of parameters § € R”. The purpose of cal-
ibration is to choose the correct parameters for each device
such that they, in conjunction with a calibration function, will
translate any actual device output r into the corresponding de-
sired output r*. The calibration function must therefore be of
the form

rt = f(r.B). (D

In traditional calibration, we observe the device in a con-
trolled environment and map its observed output r to the de-
sired output r*, perhaps using a form of regression or even
simply a lookup table.

To see why traditional calibration is inadequate for Cala-
mari, let us try to use it to calibrate our ranging system. As-
sume we have a transmitter and receiver that give distance
estimates dj, d», and d3 at known distances d{, d5, dj. Ac-
cording to the traditional calibration framework, we need to
generate a function with parameters 8 that map the estimates
to the true distances. Let us try doing this with linear regres-
sion. First, we assume that r* is a linear function of r, giving
us the following calibration function:

r* = B+ Bar. )

Plugging in our three distance estimates and their known
distances, we get a system of equations which we can easily
solve for our parameters 81 and $>:

di = B1 + Badi, 3)
dy = p1 + Bada, )
dy = p1+ Bads. )

These parameters, along with our linear calibration function,
can then be used with any future distance estimate d; to esti-
mate the true distance d;".

While traditional calibration does successfully give us a
mapping from our actual response to our desired response,
neither parameter belongs to either the transmitter or the re-
ceiver, but rather both belong to the transmitter/receiver pair.
We will call this pairwise calibration since we must repeat
this process for every such pair. This is clearly undesirable
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because the cost of pairwise calibration is order n> where n
is the number of nodes in the system. Furthermore, we must
manage n> sets of parameters.

We would prefer to calibrate each transmitter and each re-
ceiver individually as we would for, say, a thermometer or
magnetometer. That is, we would like to use an order n cal-
ibration method. The problem is that, under the traditional
calibration framework just described, we need to know both
the device response r and the desired response r*. However,
the values of r and r* in ranging are inherently tied to both
the transmitter and receiver.

In Calamari, as we can see, traditional calibration can do
pairwise calibration but cannot calibrate individual transmit-
ters or receivers; there is only one response from the system
and it cannot separate the effect of the transmitter from the
effect of the receiver. We will call this the separation prob-
lem. In the following sections, we discuss three methods to
overcome the separation problem: iterative, mean, and joint
calibration.

4. Towards avoiding the separation problem

The separation problem is not specific to Calamari, but to the
calibration of all sensor/actuator pairs. We realize the impor-
tance of it when we see that all calibration is between sen-
sor/actuator pairs. It is usually insignificant when calibrating
temperature sensors with room temperature, but might not be
when calibrating, for example, magnetometers with a set of
magnets.

4.1. Iterative calibration

The first attempt we see to circumvent the separation problem
comes from the ad-hoc localization literature. SpotON [9]
uses low-power radio transceivers in an RSSI ranging system
very similar to the RSSI component of Calamari. To cali-
brate, SpotON observes that the separation problem could be
avoided if we had at least one calibrated transmitter or re-
ceiver. As a solution, it simply declares one transmitter 7
to be the reference transmitter and uses it to calibrate all re-
ceivers. It then uses one reference receiver R; to be the refer-
ence receiver and calibrate all transmitters.

This procedure effectively iterates traditional calibration,
so we will call it iterative calibration. In both iterations there
is only one uncalibrated device in each pair. When a mea-
surement from the pair is in error, the error is attributed to the
uncalibrated device, thereby getting past the separation prob-
lem.

More precisely, let d; be the distance between receiver R;
and the reference transmitter and let 8; be that receiver’s cali-
bration parameters. For each such receiver, we have a system
of equations of the form

di = f(d;, B) (6)

which we can solve for §;. We now choose a reference re-
ceiver R; and the distance from it to each transmitter 7 is d;.
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For each such transmitter, we have a system of equations of
the form

a5 = f(dj, B, Br) (7

which we can solve for 8;, where Er is the set of parameters
for the reference receiver that was learned in the first itera-
tion. Note that the parameters of each receiver are derived
only from the distance estimates between it and the reference
transmitter, and vice versa for each transmitter.

An interesting part of the SpotON technique is that the re-
ceivers are not actually adjusted at all. Instead, each receiver
is parameterized in terms of the Seidel and Rappaport RF path
loss model. There are two main advantages to using this para-
meterization. First, the receiver sensitivity cannot be adjusted
in hardware anyway. Second, and more importantly, the pa-
rameterization can be arbitrarily accurate. In fact, Hightower
et al. take advantage of Gaussian noise in their data by effec-
tively using least-squares log-linear regression over 100 read-
ings. This technique is expanded upon in the present work.

There is one serious problem with iterative calibration as
applied to SpotON. RSSI is effected by the difference in fre-
quency of the transmitter and receiver, as seen in figure 1.
The farther the transmission frequency is from the center fre-
quency of the receiver, the more the incoming signal will be
attenuated by the receiver. This means that a receiver’s cali-
bration parameters are only valid for a single frequency: that
of the transmitter used to calibrate it. Iterative calibration
does not actually avoid the separation problem at all; cali-
bration parameters are only known to be valid for one trans-
mitter/receiver pair.

4.2. Mean calibration

Let us propose one more attempt to avoid the separation prob-
lem. Here, we assume that variations in the devices are
Gaussian distributed. By doing so, we can calibrate all re-
ceivers to the mean of the transmitters, or vice versa. Let us
call this method mean calibration. In mean calibration one
collects calibration data for each receiver using all transmit-
ters as calibrating devices. The parameters learned for the
receiver will not be coupled to any particular transmitter and
will also minimize the expected error for that receiver in the
least-squares sense, assuming that the sample of transmitters
used represents the true transmitter population.

More precisely, let d; ;j be the distance between receiver
R; and transmitter T;. For each receiver, we have a system of
equations of the form

di; = f(dij, Bi) (®)

which we can solve for B;. Notice that, unlike iterative cal-
ibration, the parameters 8; are not related to any particular
transmitter. If we use least squares techniques to solve the
system of equations, we are in fact calibrating each receiver
to the mean of all transmitters.

Mean calibration trivially avoids the separation problem
by not calibrating the transmitters at all. While this system
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minimizes expected error for the receiver, however, it is un-
likely that it minimizes error for the system as a whole since
the transmitters have not been calibrated. In the next section,
we describe a method that directly minimizes the error of the
entire system.

5. Calibration in Calamari

Both methods that we have seen so far are micro-calibration

processes. They directly observe each device and build a

mapping from r to r* to directly optimize that device’s re-

sponse. In this section, we will describe a method of macro-

calibration that calibrates each device by optimizing the over-

all system response instead of the individual device responses.
The method has three steps:

1. Parameterize each individual device and model the sys-
tem response as a whole using these parameters.

2. Collect data from the system as a whole.

3. Choose the parameters for the individual devices such
that the behavior of the entire system is optimized.

How does this technique choose parameters for individ-
ual devices while only observing the system response? By
observing trends in the transmitter/receiver pairs, we can at-
tribute errors in the system to the individual nodes that are
likely to cause them. In other words, if all distance estimates
made with a particular transmitter are slightly high, we can
blame that transmitter. By looking at the entire system re-
sponse at once, we can allocate blame optimally amongst the
nodes.

5.1. The parameterization

We choose parameters for the devices based on our physical
understanding of their interactions. We focus here on TOF
ranging, although the parameterization is nearly identical for
RSSL

In Calamari, an acoustic pulse of roughly 15 ms is trans-
mitted along with a 25 ms radio packet. When the micro-
phone receives the acoustic pulse, the phase lock loop (PLL)
of the tone detector attempts to identify the signal. When the
PLL response and the microphone response are high enough
in combination, an interrupt is fired which is time-stamped
by the processor. This time stamp is compared with the time
stamp of the radio packet. The difference in time is multiplied
by the nominal speed of sound to obtain a distance estimate.

Several variations in the hardware strongly effect the TOF
readings:

Bias - the times for the sounder and microphone to start os-
cillating, Bt and Bgr, may vary due to variations in the
diaphragms.

Gain - the volume of the sounder and the sensitivity of the
microphone, Gt and GR, affect the speed with which the
PLL detects the signal.
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Frequency - the difference in sounder frequency and tone
detector center frequency, | Fr — FRr|, has a near-linear af-
fect on the effective received volume.

Orientation — the relative orientations of the sounder and
microphone, Ot and Og, will affect the volume with
which the acoustic tone is received through some non-
linear function fo(-).

We therefore arrive at the following complete model of the
system response for a transmitter/receiver pair:

d* =Bt + Br + G1d + Grd
+ |Fr — FrRld + fo(OT, ORr)d, 9

where d is the distance estimate and d™* is the true distance
between the pair.

5.2. Choosing the parameters

Assuming we have collected data from our system, we may
choose values for the device parameters such that our sen-
sor model above matches the data we collected. To simplify
the process, we will remove the non-linear parameters for fre-
quency and orientation and allow both of these factors to be
built into the error term. Our simplified but less accurate sen-
sor model becomes:

r* = Bt + Br + G1r + Ggr. (10)

Each pair of collected values r and r* together with this
model form an equation with four variables. We collect one
sample from each pair in our network, giving us 4n variables
inn?—n equations, where n is the number of nodes. This
system of equations will generally over-constrain the values
of all device parameters.

More precisely, let d; ; be the distance between receiver
R; and transmitter 7;. For each transmitter and receiver, we
have a system of equations of the form

di; = f(dij, Bi, B))- (11)

We cannot solve these equations for either 8; or 8; because
there is no unique solution; there is no way to know if error
should be attributed to the transmitter or receiver parameters.
However, we can use all pairs of nodes to create a system of
n*> — n equations, which we can solve for all 4n parameters.
Notice that, unlike iterative calibration and mean calibration,
we do not calibrate each device by solving a system of equa-
tions for that device. Instead, we calibrate the entire system at
once by solving a system of equations that relates that system.
No parameter of a receiver or transmitter is tied to any device
other than that particular receiver or transmitter.

We can use least-squares [2,15] to solve this system of
equations by converting it into matrix notation

Ax = b. (12)

Let x be an array of our device parameters and let each row
of A be the coefficients from our model of one data sample b.
For example, if our first two distance estimates were d; 2 and
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dy 3 coming from transmitter/receiver pairs (1, 2) and (1, 3),
the first two rows of the A and b matrices would be as follows:
10 ...010 ... da O 0 dip 0

A= o 001 ... ds 0 ...0 0 ds

*
d1,2
*
d1,3

where

Br,
BT,
BR,

X = Br,

Gr,

Gr,
GR,

GR,

Collecting k distance estimates from our system, we create
these matrices and solve for x, where A is a k x 4n matrix,
bis ak x 1 matrix and x is a 4n x 1 matrix.

As you can see, this method only uses the estimated dis-
tances given by the transmitter/reciever pairs. The actual re-
sponse of any particular transmitter or receiver was never ob-
served, yet every transmitter and receiver has its own parame-
ters. One big advantage to this method is that any new nodes
added to the network will not have to be pairwise calibrated
with each existing node but only with a sample of transmitters
and receivers.

In the next two sections we empirically evaluate this
method and compare it with the methods previously de-
scribed.

6. Experimental setup

In this section we describe the exact hardware and methodol-
ogy used to collect data and evaluate these calibration meth-
ods.

Calamari is built on the MICA sensor platform [10].
The MICA mote is essentially an Atmel 103 microcon-
troller in conjunction with a RFM TR1000 radio transceiver
and is about the size of two AA batteries, as seen in fig-
ure 3. Connected to each mote is a MICA sensor board
[18] which, among other things, contains a Sirius PS14T40A
4.3 kHz sounder and a Panasonic WM-62A microphone,
whose band-passed output is wired to a National Semicon-
ductor LMC567CM tone detector whose center frequency is
set to about 4.5 kHz.
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Figure 2. Experimental testbed consists of a 8 x 4 grid of 32 nodes at 30 cm
spacing.

Figure 3. MICA sensor board mounted on a mote.

In our experiments we use 32 nodes in a 30 cm x 30 cm
grid. The motes are situated atop a large table in an 8 x 4
formation spanning a total area of 210 cm x 90 cm, as seen
in figure 2. All motes are in the same orientation. Both the
sounder and microphone point directly upwards. The sounder
is located in the center of the board while the microphone is
in one corner, as seen in figure 3.

Although this experimental setup does not test all combi-
nations of paired distances and relative orientations, it does
provide a nice sampling of that space. A total of 24 distances
ranging from 30 cm to 210 cm are measured using this setup.
While all motes are in the same orientation on the table, they
are not all in the same orientation relative to each other. A to-
tal of 992 transmitter/receiver pairs are used, although each at
only one distance and orientation. The acoustic transmission
frequencies are distributed evenly from 4.2 kHz to 4.5 kHz
while the tone detector center frequencies are distributed be-
tween 4.4 kHz and 4.6 kHz.
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Figure 4. Uncalibrated TOF readings are always greater than the true distance
and are highly erroneous due to transmit- and receive-delays.

To generate the data, each transmitter sent several local-
ization beacons allowing all other nodes to make a single dis-
tance estimate. Each node therefore generated up to 31 dis-
tance estimates, all of which are plotted against their corre-
sponding true distances in figure 4. It is visually apparent that
the uncalibrated distance estimates are very poor; the average
error is 74.6%.

Note that all distance estimates are greater than or equal
to the true distance. This is because a signal will never be
received faster than the speed of sound although it may be
detected well after it initially arrives.

7. Evaluation

For comparative purposes, we use linear regression to map
the distance estimates to their true distances in what we call
uniform calibration since it characterizes all transmitters and
receivers in a uniform way with a single set of parameters,
not accounting for individual variations among the devices.
The average error is 21% with uniform calibration, as seen in
figure 5.

In this section we evaluate and compare the three methods
of parameter estimation: iterative calibration, mean calibra-
tion, and joint calibration. To make the evaluations compara-
ble, we use the same parameters and calibration function in
all cases and evaluate them using the same data. Recall that
our calibration function is

r* = By + BR + G1r + Ggr. (13)

By convention, we will assume an uncalibrated node has
parameters B = 0, G = 1/2. This gives us the reasonable
model of two uncalibrated nodes:

1 1
r*:O—}—O—}—Er—}—Er. (14)
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Distance Estimates with Uniform Calibration
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Figure 5. Uniform calibration is essentially linear regression. It accounts for
the fact that transmit- and receive-delay exists, but does not account for the
values of delay associated with each transceiver.

7.1. Iterative calibration

For iterative calibration we chose an arbitrary node to be the
reference transmitter, which we call transmitter A, that we
will use to calibrate all receivers. We assign it parameters
Bt = 0 and Gt = 1/2. Then, for each receiver R, we gener-
ate the matrices below with all distance estimates dj, ..., di
collected from transmitter A and receiver R. We then solve
for the receiver parameters Br and GR using least-squares:

0 1 4 1 4 d
1 1 d 1 d 3
x=| 21, A=|. . . .|, b= .
BR . . . . .
Gr 1 dv 1 di d;:

We then chose an arbitrary reference receiver which we
call receiver B and use it to calibrate all transmitters. This
iteration is identical to the first except that we solve instead
for Br and G using the x matrix below, where EB and GB
are values of the parameters learned for receiver B in the first
iteration:

Br
Gr
By
G

Now that all calibration parameters have been set, we use
these parameters along with our calibration function (13) to
calibrate all of our readings. The calibrated readings are
shown in figure 6, where the average error was reduced from
21% in uniform calibration to 19.7% in iterative calibration.
Notice in particular that, although the overall error was re-
duced, many estimates were not affected and that several oth-
ers actually got worse.

7.2. Mean calibration

Mean calibration is identical to the first iteration in iterative
calibration except that we use all transmitters instead of just
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Iterative Calibration
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Figure 6. Iterative calibration attempts to address differences in transceivers,
but suffers from error propagation.

Distance Estimates with Individual Calibration
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Figure 7. Mean calibration calibrates each receiver to the mean of all trans-

mitters or each transmitter to the mean of all receivers. This approach works

better than iterative calibration but does not allow one to calibrate both re-
ceivers and transmitters.

one standard transmitter. All transmitters are to remain uncal-
ibrated, so we assign them parameters Br = O and Gt = 1/2.
For each receiver R, we generate the same matrices as the
first iteration of iterative calibration above but use the dis-
tance estimates dj, . . ., di collected from all transmitters and
receiver R. We then solve for the receiver parameters Br and
GR using least-squares.

Having calibrated all receivers, we plot the calibrated dis-
tance estimates in figure 7, where the average error is reduced
from 19.7% in iterative calibration to 16.0% in mean calibra-
tion.

7.3. Joint calibration

Using the method of joint calibration as described in sec-
tion 5, we obtain the results in figure 8, where the average
error has been reduced from 16.0% in mean calibration to
10.1% in joint calibration.
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Distance Estimates with Joint Calibration
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Figure 8. Joint calibration assigns parameters to each device such that overall
system performance is optimized.

8. Parameter management

Calamari uses what we call a piggy-backing protocol in that
localization beacons are fundamentally tied to radio commu-
nication packets. When a node sends a radio packet, it op-
tionally also sends an acoustic pulse. There are three ad-
vantages to this system. First, all radio messages are already
timestamped on arrival, giving us a foundation for TOF read-
ings at no additional cost. Second, since the RF range is larger
than the acoustic range, we do not have beacon collision prob-
lems. If the beacon is accompanied by a radio packet, we can
identify the source; if it is not, there must have been a packet
collision and therefore potentially a beacon collision, so we
ignore all acoustic information. The third advantage to the
piggy-backing protocol is that we do not have to worry about
scheduling localization beacons. We essentially hand the
problem off to the wireless networking community; as they
increase the throughput of wireless networks, we automati-
cally see more efficient beacon scheduling. Notice that the
corresponding disadvantage is that a communication-starved
node is also location-starved.

Another benefit of using this piggy-backing protocol is ef-
ficient management of our calibration parameters. Each de-
vice maintains its own calibration parameters and sends them
in the payload of each localization beacon along with its cur-
rent position estimate. Storing the parameters in a distributed
manner allows the network to change and grow dynamically
with no overhead cost for management or infrastructure. Fur-
thermore, each node can autonomously adjust its own calibra-
tion parameters over time, perhaps using techniques such as
autocalibration as described in the next section.

9. Autocalibration

The reason why joint calibration is so much more successful
than iterative and mean calibration is that it used a more gen-
eral parameter estimation technique where regression in the
strict sense failed. This method can in fact be extended to
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arbitrarily complex parameter estimation. One such example
is proposed in this section, where we frame calibration as a
constrained optimization problem.

In the previous sections, we manually calibrated the de-
vices in the sense that we had a carefully controlled envi-
ronment; we knew the true distance between each node. Let
us define autocalibration as calibration in an uncontrolled en-
vironment; we do not know the true distance between each
node.

Many sensor systems have incorporated an automatic cal-
ibration mechanism, perhaps for the motors of a robotic arm
[14] or for an electronic compass. However, autocalibration
invariably requires specialized hardware, such as the use of
gyroscopes [11] or cameras.

Instead of using extra hardware in Calamari, we will use a
priori information about localization to try to infer our device
parameters.

The first peice of a priori information is that in Calamari
every transmitter/receiver pair is also a receiver/transmitter
pair. In other words, there are two distance estimates for each
pair of motes. One way to select parameters is to select those
that maximize the consistency of the responses between these
symmetric pairs. This is to say, for nodes i and j, we want:

df = d (15)

Jjiv

where d;kj = Br, + BRj + Gr,d;j + GRjd,'j.
The second peice of a priori information is that all distance

estimates must satisfy the triangle inequality. In other words,

for any three nodes i, j, and k that are all connected:

df +d%, — dj > 0. (16)

Together, these two hooks into the problem give us a con-
strained optimization problem: maximize consistency while
satisfying the triangle inequality. To prevent the degener-
ate case where all parameters equal zero, we must add two
more terms to the objective function: Y, (G, — 1) and
> . (GR, — 1)2. A quadratic programming formulation arises:

Minimize

S —d5)? + Y (Gt~ D+ Y (Gr, — 1)?

i<j i i

subjectto  dj; +dj, —dj} >0 Vtriangle; ;.

Notice that if we actually knew some distance c?,'j, the
known distance could easily replace the estimate d'; in the
quadratic program above. This would allow us to easily take
advantage of anchor nodes or pre-calibrated nodes.

Furthermore, if we knew all distances this quadratic pro-
gram would reduce to minimizing the squared error between
all distance estimates and their corresponding true distances.
This would effectively reduce the program to the least-squares
approach used in joint calibration.

It is worthwhile to note that distance-based constraints
were previously known to be useful in the localization litera-
ture [6]. However, that paper differs from this work in that it
maps out the convex set of feasible locations for localization
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purposes whereas the constraints above map out the convex
set of feasible distances for calibration purposes.

10. Future work

While joint calibration is a fine solution for manual calibra-
tion, work in autocalibration is clearly experimental. Cali-
bration as constrained optimization will probably only work
under certain network geometries where the device parame-
ters are actually over-constrained. There are also complexity
issues with this technique since each clique of size n in the
network has (’;) .23 constraints based on the triangle inequal-
ity alone. Further, numerical issues may prevent the program
from being solvable at all; a quadratic program is convex if
and only if the coefficient matrix is positive semidefinite [3,5].
Current work includes solving these issues as well as arriving
at a linear approximation to the quadratic program.
Frequency and orientation affect our distance estimates
enough that another natural extension of this work is to use
more sophisticated machine learning techniques that can han-
dle non-linear parameters. For example, we could build a be-
lief network using empirical data that describes the behavior
of the system over the entire parameter space. Then, we could
us any probabilistic reasoning method such as MCMC to infer
the bias, volume, frequency, and orientation of all the devices.

11. Generalizing calibration as parameter estimation

Calibration as parameter estimation can be generalized to
other sensor network applications. In fact, we have already
seen it used in once: time synchronization for sensor net-
works, which we view here as a method of calibrating time
sensors. The method proposed by Elson and Estrin [7] com-
pares clock values of different clocks upon the arrival of an
RF reference broadcast. The broadcast arrives at all clocks
simultaneously, allowing us to compare values from the same
time instance. This method, in fact, generalizes to the calibra-
tion of any sensors in the presence of a uniform yet constantly
changing stimulus. For example, reference broadcasts would
be useful for the relative calibration of temperature sensors in
the presence of perfectly uniform, constantly changing tem-
perature.

In this work, the clocks are not actually adjusted at all but
are parameterized in terms of skew and offset and a calibra-
tion function is used to translate between the values of differ-
ent clocks. Similar to Hightower et al. [9], Elson and Estrin
take advantage of Gaussian noise in their data by effectively
using least-squares linear regression over multiple readings.
This technique was expanded upon in joint calibration and is
generally useful when a higher degree of calibration is desired
than can be realized by the device.

Joint calibration might be useful to general applications
needing relative calibration. Iterative calibration is currently
the de facto standard for relative calibration, which is the
method of choosing one sensor as the standard and calibrat-
ing all other sensors against it. This method may cause prob-
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lems, for example, with light sensors that respond to each
light source differently, perhaps due to their different fre-
quencies. It also may be problematic when calibrating mag-
netometers to specific magnets whose orientations might be
slightly askew. Using joint calibration will prevent the spe-
cific device used for calibration from affecting the calibration
parameters of the light sensor or magnetometer.

Autocalibration as described in this paper may be most
useful to other sensor network applications. This is especially
true because autocalibration is often a requirement when us-
ing sensors with drift or when one needs to calibrate for an un-
known environment. For example, the drift of a temperature
sensor might be controlled by constraining its response rel-
ative to other nearby temperature sensors. The environment
of a field of magnetometers could be automatically calibrated
for if all devices were getting extra high or low readings.

Finally, constraint-based methods could serve as a mathe-
matical framework for finding faulty or malicous sensors or
anomolies in the sensor field. In such cases, the set of feasi-
ble solutions to the constrained optimization problem would
be the empty set. For example, if estimating the position of a
magnet in the presence of ambient magnetic anomolies, there
would be no position of the magnet that would give rise to
such a magnetic field. Similarly, there may be no set of cal-
ibration parameters that would cause a temperature sensor
to give a certain pattern of erroneous readings, so the sen-
sor must be either faulty or malicious. Finally, in the case
of localization, the triangle inequality can be used to identify
multi-path problems. The multi-path readings from a partic-
ular transmitter would violate the triangle inequalities used
in our constrained optimization program, and there would be
not set of calibration parameters that would explain why that
transmitter behaves well with some nodes and poorly with
others.

12. Summary and conclusions

Micro-calibration is inadequate for the calibration of hun-
dreds or thousands of general-purpose devices, perhaps with
no calibration interfaces, that may be in an uncontrolled
or unobservable environment or may even be unobservable
themselves. Sensor networks demand a method of macro-
calibration.

Calibration as generalized parameter estimation may be
taking one step in that direction. It gives us a calibration inter-
face to devices that do not already have one and allows us to
calibrate general-purpose devices for specialized tasks, such
as ranging.

Another advantage of calibrating in software is that we can
leverage the redundancy and distributed computational power
of sensor networks to have the network calibrate itself. This
makes it feasible to calibrate even very large networks.

Finally, the most important benefit of calibration as para-
meter estimation is that we can use arbitrarily sophisticated
parameter estimation techniques to take advantage of redun-
dancy and a priori knowledge about our application to cali-
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brate in otherwise impossible conditions. These include un-
known or unobservable environments, or even simply sepa-
rately calibrating a sensor and an actuator system where nei-
ther device is already calibrated.
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