Architectural Requirements and Scalability of the
NAS Parallel Benchmarks

Frederick C. Wong, Richard P. Martin, Remzi H. Arpaci-Dusseau,
and David E. Culler

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley

Abstract

We present a study of the architectural requirements and scalability of the NAS Parallel Benchmarks. Through direct
measurements and simulations, we carefully identify the factors which affect the scalability of benchmark codes on
two relevant and distinct platforms; a cluster of workstations and a CC-NUMA SGI Origin 2000.

We find that the benefit of increased global cache size is pronounced in certain applications and often offsets the
communication cost. By constructing the working sets of the benchmarks, we are able to visualize the improvement
of computational efficiency through CPS scaling.

We also find that, while the Origin MPI has better point-to-point performance, our cluster MPI layer is more scalable
with communication load. Communication performance within the applications is often much lower than what would
be expected from micro-benchmarks. We show that the communication protocols used by MPI runtime library are
influential to the communication performance in applications.

1 Introduction

The NAS Parallel Benchmarks (NPB) are widely used to evaluate parallel machines [12]. To date, every vendor of
large parallel machines has presented NPB results, at least with the original “paper and pencil” version 1.0 [3]. Those
reports provide a comparison of execution time as a function the number of processors, from which execution rate,
speedup, and efficiency are easily computed. While extremely valuable, these results only provide an understanding
of overall delivered performance. The fixed algorithm and standard MPI [8] programming model of NPB2 [2] make
it possible to use these benchmarks as a basis for an in-depth comparative analysis of parallel architectures. However,
the current reports still provide only a crude performance comparison because the only truly available independent
variable istotal execution time[9, 11].

When we measured the NPB2 on the Berkeley NOW [1], we were pleasantly surprised to find that the speedup was as
good as that of the Cray T3D, with better per-node performance, and better than that of the IBM SP-2, although with
lesser performance per processor. Neither the raw speed of our MPI over Active Messages [5, 6], nor the ratio of pro-
cessor performance to message performance, provided an adequate accounting of these differences. The lack of a
clear explanation motivated us to develop a set of tools to analyze the architectural requirements of the NPB in detail.
Given that a single pass through the class A benchmarks is roughly atrillion instructions, traditional simulation tech-
niques were intractable and therefore ruled out. Instead, we employed a hybrid method, combining direct measure-
ments from a real machine with parallel trace-driven simulations. Not only does this allow us to understand the
performance characteristics of an actual platform, but it also shows us how different architectural parameters affect
scaling.

This paper provides a detailed analysis of the architectural factors that determine the scalability of the NAS Parallel
Benchmarks (Version 2) on parallel machines. We use the Berkeley NOW cluster and the SGI Origin 2000, two rele-
vant and distinct platforms, as the basis of the study. Starting from the base performance and speedup curves, we
break down the benchmarks in terms of their inherent computation, communication, and synchronization costs, to
isolate the factors that determine speedup. This analysis shows that for machines with scalable communication per-
formance, improvements in memory system performance due to increasing cache effectiveness compensate for the
time spent in communication and the extra computational work, so much so that many applications exhibit perfect or



Berkeley NOW Cluster SGil Origin 2000

- Sp -~ Sp
-+ BT = BT
EP EP
LU LU
- MG - MG
~FT ~FT
1S —1S
— Ideal — Ideal

Figure 1 Speedup for NOW and SGI Origin on NPB2. This figure presents the speedup curves for the Berke-
ley NOW cluster and SGI Origin 2000 on the Class A problem size of the NAS Parallel Benchmarks, version 2.2.
The Origin attains super-linear speedup for most of the benchmarks, whereas the NOW achieves linear or
slightly above linear speedup for all but two programs.

Table 1: Single-Processor Execution time. This table presents single node runtimes on the Berkeley NOW
cluster and the SGI Origin 2000 for the Class A NPB. For most of the programs, the Origin has roughly twice
the processor performance.

even super-linear speedup for the machine sizes typically used for each class of data set (1 to 128 processors for Class
A). Thisbehavior isinherent to the constant problem size (CPS) scaling used in the benchmarks and can be character-
ized precisely by constructing working set graphs for any given input size.

The main contributions of this work are: (1) a characterization of the complex interactions of software and hardware
effects on speedup, (2) a methodology for understanding speedup in the CPS domain, (3) a quantitative analysis of
the architectural requirements of the NAS Parallel Benchmark suite version 2.2, including the first detailed study of
NAS working set behavior under scaling, and (4) an evaluation on communication efficiency of applications with dif-
ferent MPI communication protocols.

2 Speedup

Figure 1 and Table 1 show the speedup and single-processor execution time, respectively, that we measured on the
Berkeley NOW cluster and the SGI Origin 2000 on the class A problem sizes of the NPB 2.2. Although we have also
run Class B, the class A problem size is the most useful basis for this study because Class B cannot be run on asingle
processor of most parallel machines before 1998. Observe that the NOW obtains near perfect speedup for the bench-
marks besides FT and IS, where it obtains about 2/3 efficiency. Indeed, for a few of the benchmarks, speedup is



LU Runtime on Cluster LU Runtime on Origin 2000
3000 - 3000 -
2500 - Ideal 2500 -
] Total ]
, 2000 © , 2000
T 1 Computation T 1
% 1500i % 1500i Ideal
n ] 0 ] Total
1000 - . 1000 1 Computation
] Communication ]
500 500 1 _—
] ] Communication
0+ T T T 0+ T T T
0 8 16 24 32 0 8 16 24 32
Processors Processors
SP Runtime on Cluster SP Runtime on Origin 2000
3000 — Ideal 3000
2500 - Total 2500 -
@ 2000 Computation |1/ 5000 -
o ] o ]
5 ] 5 ]
% 1500 % 1500 e Ideal
1000 - 1000 - Total
] ] Computation
500 A L 500 A
] Communication ] _
] ] Communication
() — N T T 0+ T T IS
0 8 16 24 32 0 8 16 24 32
Processors Processors

Figure 2 Time Breakdown for the LU and SP. This figure breaks down the total execution time, summed
across all processors, for both LU and SP, on both the NOW and Origin. The communication and computation
time are shown as separate (non-cumulative) lines; total time (the sum of communication and computation time)
is presented as well. Note that where the total time decreases, super-linear speedup is observed.

slightly super-linear for certain machine sizes. The behavior is far more complex on the SGI Origin. The performance
of several of the benchmarks is substantially super-linear in this range, while the performance of FT and MG falls off
to 2/3 efficiency. The reason, as we shall see, has to do with cache effects. These effects are most pronounced on the
Origin, even though the NPB use message passing as the communication paradigm, as opposed to shared memory.
The cache effects are also pronounced on the larger class B sizes aswell. Moreover, this behavior would not appear in
systems of a generation ago; it only occurs with the large second-level caches that are present in today's machines.

3Wherethe Time Goes

The first step in understanding NPB behavior is to isolate the components of application execution time. Of course,
these are parallel programs, so we need to work with the time spent by all the processors. The NPB are so well bal-
anced (within 5% across processors) and have good enough efficiency that we adopt an unusual perspective. We will
examine the sum of the execution time across all of the processors, as a function of the number of processors. The
curves labeled “Total” in Figure 2 show this for the LU and SP benchmarks on our two machines. (The full paper has
the remaining applications.) By this metric, ideal speedup corresponds to a horizontal line, with a y-axis value of the
single processor execution time. Indeed, in the four examples of Figure 2 there are regimes where the total time curve
decreases!



Figure 3 Working Set Profiles for LU and SP. The working sets of the class A input for LU (left) and SP
(right) are presented. In both cases, at large cache sizes, increasing the number of processors working on the
problem decreases the per-processor miss rate by a noticeable amount. At smaller cache sizes, scaling either
makes no difference in cache performance (LU), or increases the miss rate (SP). The traces were collected with
the Shade instruction-set simulator, and processed with the Dinero cache simulator.

We can isolate components of the execution time by instrumenting portions of the program. Although we have
obtained detailed breakdowns, here we consider only the overall time spent inside the MPI library and outside. The
lowest curves (labeled “Communication™) in Figure 2 show the total time spent in MPI for communication and syn-
chronization (including send, receive, and wait time). The full paper will give a detailed assessment of the communi-
cation characteristics, which shows that the message frequency increases by more than an order of magnitude, the
message sizes decrease, and the total communication volume increases slowly or is constant, depending on the appli-
cation. (The communication is also well balanced across destinations.) The main point is that the time spent in com-
municating and synchronizing increases with the number of processors. The total amount of computation also
increases due to redundant work. Nonetheless, the speedup is perfect. The extra time spent in communicating and
synchronizing is more than compensated for by the improvement in computational efficiency as the number of pro-
cessors increases. The curves labeled “Computation” in Figure 2 show the time spent in computation (outside the
MPI library) as the processor count increases. This time decreases substantially in most cases. Using hardware
counters, we have shown that this reduction in computational time corresponds to areductionin missrate and in CPl.
All benchmarks except FT exhibit similar behavior.

Notice that these benchmarks are not embarrassingly parallel; LU spends more than 25% of its execution time in
communication on 32 processors. The difference in communication costs between the Origin and Cluster is also
interesting. Despite it's much greater raw communication performance, the Origin spends more total time in commu-
nication on SP than does NOW. We have explored protocol design trade-offs within the MPI layer on NOW and
demonstrated that these can yield over a 100% performance improvement in communication performance on certain
NPB applications.

4 Working Sets

To gain better insight into the memory access characteristics of the benchmarks under scaling, we obtained a per-pro-
cessor memory address trace for each application at each machine size of interest. We then ran the trace for one pro-
cessor through a cache simulator for a range of cache sizes.

The top curve of Figure 3 shows the data cache miss rate (with fully associative caches to capture the true working
set) on one of four processors as a function of cache size for sizes between 1 KB and 4 MB. For LU, we see the
smooth decrease in miss rate (following the general rule that doubling the cache eliminates one third of the misses)
out to 32 KB. The miss rate is flat to 256 KB, and then it drops from above 4% to below 1% and levels off. These
“knees” of the working set correspond to that described in [10] to shared address space programs and measured for



(@ (b) (©)

Figure 4 Message Scaling. This figure shows how the number of messages sent normalized to the 4 processor
case (left), number of bytes sent (center) and average size of a message (right) scale as a function of processors.

SPLASH-2 [13]. The key observation is that with CPS scaling, the working set curve is different for each machine
size. With eight processors, the kneein LU starts at 128 KB, with 16 processorsit is at 64 KB, and with 32 processors
it is at 32 KB. In all cases, the sharp drop occurs as the amount of global cache (i.e., the sum of the local caches)
expands from 2 MB to 4 MB. As algorithms are tuned to be more cache friendly, like LU [14], this phenomenon will
be more pronounced.

The important point in examining cache effects is they can have significant results on the scalability of benchmarks
under CPS scaling. While not a novel result, the increase in memory-system efficiency due to cache-effect is often
overlooked or, in the case with the NPB, are often dismissed because it is assumed that the working sets far exceed
the cache size. However, our work demonstrates that with the combination of large caches (1-4MB per node) and
more cache-friendly codes [14] cache effects can play a significant role in the scalability of a machine under CPS
rules. Indeed, in the case of the NPB the cache “boost” can mask poor performance in other areas, such as communi-
cation.

5 Communication Perfor mance

Figure 4 shows the communication scaling of the NPB. Figure 4 (a) plots the change in total message count per pro-
cessor as a function of the number of processors, normalized to the message count on 4 processors. The figure shows
that the number of messages for all programs increases dramatically as the machine scales. Figure 4 (b) shows the
byte count per processor as a function of scaling. The byte count per processor for all benchmarks decreases. Finally,
Figure 4 (c) shows the resulting average size message per processor.

Within the realm of interest, there is an order of magnitude difference in the average size of a message. Interestingly,
the smallest messages are still on the order of 1000 bytes, which is a substantially larger grain than found in many
other parallel benchmarks [7, 13].

For LU, and SP, the amount of total communication follows surface to volume ratio as we scale the number of pro-
cessors. For example, in SP, each processor owns ./p cubes of space in the physical domain. Since the number of
messages is constant for each face of the cube, the number of messages per processor grows with p, and thus the
total number of messages increases as O(p./p) - The total volume of communication grows with o(.p) , and thus the

volume per-processor decreases as O(.J/p) . For the range of processors of interest, the scaling of communication along
these lines does not unduly limit speedup. The spatial decomposition keeps communication in the nearest-neighbor
regime for these benchmarks as well.

The message characteristics imply that total communication costs should increase under CPS as we scale the machine
size. Figure 2 shows that indeed, total communication costs rise, however, there are sizable differences in how each
platform handles the increased communication load. Combining the message characteristics with microbenchmark
performance, we find that the NOW platform handles the load better than the Origin, i.e. the total time spent in com-



1000 1 45 5

i 40
2 é’ 35%
£ 100 g1
g — MPLAM g 25 —MPI-AM
= g
- ] AW 820 — AM-II
= ] > E
I 104 g 154
S ] ¢ 107

] S

4 5?

1 LR e e ] LN BN n a e S S SO o: —— T T
1 10 100 1000 10000 1 100 10000 1000000
Message Size Message Size

Figure 5 MPI Performance These figures show the performance of our MPI implementation in a dedicated
environment. Left figure shows the one-way latency of small to medium messages using Dongarra’s echo test

[4]. Right figure shows the one-way bandwidth with message size up to 1 MB. Active Messages latency and
bandwidth are shown for comparison.

@ (b)

Figure 6 Communication Efficiency These figures shows the percentage of micro-benchmark peak band-
width delivered by the MPI layer vs. the total time spent in sends and waiting for each application as afunction
of the number of processors on the cluster. Left figure shows the communication efficiency using the three-
way handshake protocol in the MPI layer. Right figure shows the communication efficiency using the eager
protocol in the MPI layer.

munication is closer to the predicted value. however, both show a significant drop from the microbenchmark perfor-
mance.

The cause of this anomaly is presumably the implementation of the MPI layer and how it interacts with the underly-
ing architecture. The evaluation of NPB drove the development of MPI layer on the NOW, because the total time pre-
dicted by combining the microbenchmark performance with the message profile data was significantly less than the
time actually spent in communication (Figure 5 shows the microbenchmark performance of our MPI implementation
using Active Messages, and figure 6 (a) shows the communication efficiencies of the NPB codes using our original
MPI implementation). Further investigation revealed that the source of the problem was the internal protocol of the
MPI layer. Our initial implementation of MPI used a conservative three-way handshake protocol. Since we were
using low-latency Active Messages as a building block, using a handshake protocol simplified both the receive code
and the message format. The short Round Trip Time (RTT) is easily amortized by a large impending bulk transfer.
Under micro-benchmarking conditions, this design does deliver near optimal performance. In practice, however,
gueueing delays at the source M Pl-to-network interface exacerbate the RTT on real applications. We revised the MPI
implementation to use a more aggressive eager protocol. This has significantly increased code complexity to re-
sequence out-of-order messages and has slightly worse microbenchmark performance, but communication perfor-



mance in the context of real applications improved by as much as 100% in certain benchmarks. Figure 6 (b) shows
the MPI communication efficiency of NPB2 using the eager protocol. On the Origin we are using vendor supplied
MPI libraries and so are unable to find the source of the Origin performance anomaly.

6 Conclusion

A detailed analysis of the architectural requirements of the NPB shows that while several of the benchmarks perform
a non-trivial amount of communication, a reasonably scalable communication system can in principle handle the
communication load. The dominant factor in base performance and in scalability is the sequential node architecture,
including the CPU, caches, and the local memory system. What is particularly important is how the node architecture
interacts with the application requirements under CPS scaling.

For communication, we found that even though the applications are carefully designed to perform coarse-grained
communication, the efficiency of communication is lower than expected. Interestingly, the Origin, in spite of the
availability of fine-grained shared memory for data transport, achieves fairly low communication efficiency, in some
cases spending more time in communication than the NOW.

One result of our work is a word of caution with regards to common assumptions about machine architecture and
scalability. One may be tempted to judge the communication ability of a machine based on speedup of the NPB: good
speedup implies good communication and conversely poor speedup implies poor communication. However, an
important lesson from examining communication performance of the two platforms is that the scalability results of
the NPB are not necessarily defined by the scalability of the communication system. For example, the Origin has
super-linear speedups, but relatively poor communication scalability. Rather, one must examine both the computation
and communication scaling of a parallel machine in order to judge a machine's effectiveness in these areas.

Understanding the scaling and performance characteristics of large parallel machinesis a difficult problem. The NAS
Parallel Benchmarks are a critical step towards this goal, providing a set of common benchmarks for comparison
among platforms. However, the current output of the benchmarks is only execution time under scaling (plotted as
time, speedup, or efficiency), which does not begin to reveal the complexities of the benchmarks on different proces-
sor counts. Lightweight instrumentation should be added to the standard MPI libraries, and minimally should report
the time spent in computation versus communication. This simple breakdown would give users better insight as to the
nature of processor versus network performance for a given machine.

Although constant problem size scaling certainly appeals to common sense (a faster machine solves the given prob-
lem more quickly), it may not represent how machines are used in practice. An alternate view (that faster machines
are for solving larger problems), generally complicates the performance comparison. However, it can reduce the
interactions caused by changes in per-processor load as the machine scales. Thus, we are currently exploring alterna-
tive scaling rules for the NPB. Our preliminary results use a memory-constrained scaling paradigm, which more
clearly distinguishes the NOW and Origin architectures. These results will be presented in the final version of the

Reference

[1] T.E. Anderson, D. E. Culler, D. A. Patterson, and the NOW Team. A Case for NOW (Networks of Worksta-
tions). |IEEE Micro, February, 1995.

[2] David H. Bailey, T. Harris, Rob Van der Wigngaart, William Saphir, Alex Woo, and Maurice Yarrow. The
NAS Parallel Benchmarks 2.0. Technical Report NAS-95-010, NASA Ames Research Center, 1995.

[3] Leonardo Dagum, David H. Bailey, Eric Barszcz and Horst D. Simon. NAS Parallel Benchmarks Results.
Technical Report RNR-93-016, NASA Ames Research Center, 1993.

[4] Dongarra, and T. Dunnigan. Message Passing Performance of Various Computers. University of Tennessee
Technical Report CS95-299, May 1995.

[5] T.vonEicken, D. Culler, S. Goldstein, and K. Schauser, “*Active Messages: a M echanism for Integrated Com-
munication and Computation", In Proceedings of the 19th International Symposium on Computer Architec-
ture, May 1992, Gold Coast, Qld., Australia, pp.256-266.



(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

A. Mainwaring. Active Message Application Programming Interface and Communication Subsystem Organi-
zation. University of California at Berkeley, Computer Science Department, Technical Report UCB CSD-96-
918, October 1996.

Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson. The Effects of Latency, Over-
head and Bandwidth in a Cluster Architecture. In Proceedings of the 24th International Symposium on Com-
puter Architecture, June 1997.

M essage Passing I nterface Forum. The MPI Message Passing Interface Standard. Technical Report, University
of Tennessee, Knoxville, April 1994.

NASA Ames Research Center. NPB 2 Detailed Results, 1997.
http://science.nas.nasa.gov/Software/NPB/NPB2Resullts.

Edward Rotherberg, Jaswinder Pal Singh, and Anoop Gupta. Working Sets, Cache Sizes and Node Granuarity
Issues for Large Scale Multiprocessors. In Proceedings of the 20th International Symposium on Computer
Architecture, pages 14-25, May 1993.

William Saphir, Alex Woo, and Maurice Yarrow. NAS Parallel Benchmark 2.1 Results. Technical Report
NAS-96-010, NASA Ames Research Center, 1996.

Elisabeth Wechsler. NAS Parallel Benchmarks Set The Industry Standard for MPP Performance. NAS News,
Jan - Feb, Volume2, Number 8, 1995.
http://science.nas.nasa.gov/Pubs/NAnews/98/01/Benchmark.htm

Steven Cameron Woo, Moriwoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-
2 Programs: Characterization and Methodological Considerations. In Proceedings of the 22nd International
Symposium on Computer Architecture, pages 24--36, June 1995.

Maurice Yarrow and Rob Van der Wijngaart. Communication Improvement for the LU NAS Parallel Bench-
mark: A Model for Efficient Parallel Relaxation Schemes. Technical Report NAS-97-032, NASA Ames
Research Center, November 1997.



