Scalable, Distributed Data Structures
for Internet Service Construction

Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler
The University of California at Berkeley
{gribble,brewer,jmh,culler } @cs.berkeley.edu

Abstract

This paper identifies a new persistent data management
layer specifically designed to simplify cluster-based Inter-
net service construction. This self-managing layer, called
a distributed data structure (DDS), presents a conventional
single-site data structure interface to service authors, but
partitions and replicates the data across the cluster. We
have designed, implemented, and analyzed a distributed hash
table DDS that has properties necessary for Internet services
(incremental scaling of throughput and data capacity, fault
tolerance and high availability, high concurrency, and con-
sistency and durability of data). The hash table uses two-
phase commits to present a coherent view of its data across
all nodes of the cluster, allowing any mnode in the cluster
to service any task. The distributed hash table is shown to
simplify Internet service construction by decoupling service-
specific logic from the complexities of persistent, consistent
state management, and allowing services to inherit the nec-
essary service properties from the DDS rather than having
to implement the properties themselves. We have scaled the
hash table to a 128 node cluster, achieving a read throughput
of 61,432 operations per second, and a write throughput of
18,582 operations per second.

1 Introduction

Internet services are successfully bringing infrastruc-
tural computing to the masses. Millions of people de-
pend on Internet services for applications like search-
ing, instant messaging, directories, and maps, but also
to safeguard and provide access to their personal data
(such as email, calendar entries, and recently, arbitrary
application code and files). As a direct consequence
of this increasing user dependence, today’s Internet
services must possess many of the same properties as
the telephony and power infrastructures. These service
properties include the ability to scale to large, rapidly
growing user populations, high availability in the face
of partial failures, the maintenance of strict consistency
of users’ data, and operational manageability.

It is challenging for a service to achieve all of

these properties, especially when it must manage large
amounts of persistent state, as this state must remain
available and consistent to the end-user even if indi-
vidual disks, processes, or processors crash. Unfortu-
nately, the consequences of failing to achieve the prop-
erties are harsh, including lost data, angry users, and
perhaps financial liability. Even worse, there appear to
be few reusable Internet service construction platforms
(or data management platforms) that successfully pro-
vide all of the properties.

Using clusters of workstations as a platform for In-
ternet services helps to address these challenges. Many
projects and products propose using software plat-
forms on clusters to simplify Internet service construc-
tion [1, 2, 12, 24]. These platforms either rely on
commercial databases or distributed file systems for
persistent data management, or they do not address
data management at all, forcing service authors to im-
plement their own service-specific data management
layer. We argue that databases and file systems have
not been designed with Internet service workloads or
cluster environments specifically in mind, and as a re-
sult, they fail to provide the right scaling, consistency,
or availability guarantees that services require.

In this paper, we bring scalable, available, and
consistent data management capabilities to cluster
platforms by designing and implementing a reusable,
cluster-based storage layer, called a distributed data
structure (DDS), specifically designed for the needs
of Internet services. A DDS presents a conventional
single site in-memory data structure interface to ap-
plications, and durably manages the data behind this
interface by distributing and replicating it across the
cluster. Services inherit the aforementioned service
properties by using a DDS to store and manage all
persistent service state, shielding service authors from
the complexities of scalable, available, persistent data
storage, thus simplifying the process of implementing
new Internet services. We believe that given a small
class of DDS types (such as a hash table, a tree, and



an administrative log), authors will be able to build
a large class of interesting and sophisticated servers.
This paper describes the design, architecture, and im-
plementation of a distributed data structure (in par-
ticular, a distributed hash table built in Java). We
evaluate its performance, scalability and availability,
and its ability to simplify service construction.

1.1 Clusters of Workstations

In [12], it is argued that clusters of workstations
(commodity PC’s with a high-performance intercon-
nect) are a natural platform for building Internet ser-
vices. Each node in the cluster represents an indepen-
dent failure boundary, which means that replication of
computation and data can be used to provide fault tol-
erance. A cluster permits incremental scalability: if a
service runs out of capacity, a good software architec-
ture will allow administrators to add additional nodes
to the cluster, linearly increasing the capacity of the
service. There is also natural parallelism in a cluster:
if appropriately balanced, all CPUs, disks, and net-
work links can be used simultaneously, increasing the
throughput of the service as the cluster grows. Clus-
ters have high throughput, low latency redundant sys-
tem area networks (SAN); modern SANs can achieve
1 Gb/s throughput with 10 to 100 us latency.

1.2 Internet Service Workloads

Popular Internet services must process hundreds of
millions of tasks per day. Each task is usually “small”,
in that it causes a small amount of data to be trans-
ferred and computation to be performed. For exam-
ple, according to recent press releases, Yahoo (http:
//www .yahoo.com) serves 625 million page views per
day. Randomly sampled pages from the Yahoo direc-
tory average TKB of HTML data and 10KB of image
data. Similarly, AOL (http://www.aol.com) handles
5.2 billion web requests per day from their web proxy
cache, with an average size of 5.5 KB per response. Ser-
vices often take hundreds of milliseconds to process a
given task, and their responses can take many seconds
to flow back to clients over what are predominantly low
bandwidth last-hop network links [16]. Given this high
task throughput and non-negligible latency, a service
may handle thousands of tasks simultaneously. Hu-
man users are typically the ultimate source of tasks;
because users usually generate a small number of con-
current tasks (e.g. 4 parallel HTTP GET requests are
typically spawned when a user requests a web page),
the large set of tasks being handled by a service are
largely independent.

cluster

Figure 1: High-level view of a DDS: a DDS is a self-
managing data repository running on a cluster of worksta-
tions. All service instances (S) in the cluster see the same
consistent image of the DDS; as a result, any WAN client
(C) can communicate with any service instance.

2 Distributed Data Structures

A distributed data structure (DDS) is a self-
managing storage layer designed to run on a cluster of
workstations [2] and to handle Internet service work-
loads. A DDS has all of the previously mentioned ser-
vice properties: high throughput, high concurrency,
availability, incrementally scalability, and strict consis-
tency of its data. Service authors see the interface to a
DDS as a conventional data structure, such as a hash
table, a tree, or a log. Behind this interface, the DDS
platform hides all of the the mechanisms used to ac-
cess, partition, replicate, scale, and recover the data in
the DDS. Because of this decoupling of complex mech-
anisms behind a simple interface, authors only need to
worry about service-specific logic when implementing
a new service. All of the difficult issues of managing
persistent state are handled by the DDS platform.

Figure 1 shows a high-level illustration of a DDS. All
cluster nodes have access to the DDS and see the same
consistent image of the DDS. As long as services keep
all persistent state in the DDS, any service instance
in the cluster can handle requests from any client, al-
though we expect clients will have affinity to particular
service instances to allow session state to accumulate.!

The idea of having a storage layer to manage durable
state is not new, of course; databases and file systems
have done this for many decades. The novel aspects
of a DDS are the level of abstraction that it presents
to service authors, the consistency model it supports,
the access behavior (concurrency and throughput de-
mands) that it presupposes, and its many design and

1This assumes that session state is “soft-state” and can be
recomputed by or retransmitted to the new service instance if
the old service instance handling client failures.



implementation choices that are made based on its ex-
pected runtime environment (namely a cluster) and the
types of failures that it can withstand. A direct com-
parison between databases, distributed file systems,
and DDS’s helps to show this.

Relational database management systems
(RDBMS): an RDBMS offers extremely strong dura-
bility and consistency guarantees, namely ACID prop-
erties derived from the use of transactions [15], but
these ACID properties can come at relatively high cost
in terms of complexity and overhead. RDBMS’s offer a
high degree of data independence. This independence
is powerful, but it also comes with complexity and per-
formance overhead. The many layers of an RDBMS
(such as SQL parsing, query optimization, access path
selection, etc.) permit users to conceptually decouple
the logical structure of their data from its physical lay-
out. This decoupling allows users to dynamically con-
struct and issue queries over the data that are limited
only by what can be expressed in the SQL language.

From the perspective of the service properties, an
RDBMS always chooses consistency over availability;
if there are media or processor failures, an RDBMS
can become unavailable until the failure is resolved,
which is unacceptable for Internet services. Further-
more, scaling a database is difficult; parallel and dis-
tributed databases have had success in this arena, but
the data independence offered by an RDBMS makes
parallelization (and therefore scaling) hard in the gen-
eral case. Given the arbitrary queries that SQL per-
mits, it is difficult to predict how a given partitioning
of data will affect performance. Internet services that
rely on RDBMS backends typically go to great lengths
to reduce the workload presented to the RDBMS, using
techniques such as query caching in front ends [12].

Distributed file systems: file systems have much
less strictly defined consistency models. Some (such
as NFS [23]) have poor consistency guarantees, while
others (such as Frangipani [25] or AFS [9]) guaran-
tee a coherent filesystem image across all file system
clients, with locking typically done at the granularity
of files. The scalability of distributed file systems sim-
ilarly varies; some use centralized file servers, and thus
do not scale. Others such as xFS [3] are completely
serverless, and in theory can scale up to arbitrarily
large capacities. File systems expose a relatively low
level interface with little data independence; a file sys-
tem is organized as a hierarchical directory of files,
and files are variable-length arrays of bytes. These el-
ements (directories and files) are directly exposed to
file system clients; clients are responsible for logically
structuring their application data in terms of directo-

ries, files, and bytes inside those files.

Distributed data structures (DDS): a DDS has
a strictly defined consistency model: all operations on
elements inside a DDS are atomic, in that any oper-
ation completes entirely, or not at all. DDS’s have
one-copy equivalence, so although data elements in a
DDS are replicated, clients see a single, logical data
item. Two-phase commit is used to keep all replicas
coherent, i.e. all clients of a DDS see the same image
of that DDS through its interface. Transactions across
multiple elements or operations are not currently sup-
ported: as we will show later, many of our current
protocol design decisions and implementation choices
exploit the lack of transactional support for greater
efficiency and simplicity. There are Internet services
that require transactions (e.g. for e-commerce); we
can imagine building a transactional DDS, but it is
beyond the scope of this paper, and we believe that
the atomic consistency provided by our current DDS
is strong enough to support interesting services.

The interface to a DDS is more structured and at a
higher level than a file system: the granularity of an
operation is a complete data structure element rather
than an arbitrary byte range. The set of operations
over the data in a DDS is fixed by a small set of meth-
ods exposed by the DDS API, unlike an RDBMS in
which operations are defined by the set of expressible
declarations in SQL. The positive implication of this is
that the query parsing and optimization stages of an
RDBMS are completely obviated in a DDS. The nega-
tive implication of this is that the DDS interface is less
flexible than that of an RDBMS, and that there is less
data independence than in an RDBMS.

In summary, by choosing a level of abstraction some-
where in between that of an RDBMS and a file system,
and by choosing a well-defined and simple consistency
model, we have been able to design and implement a
DDS that has all of the service properties (scalability,
availability, consistency, and manageability). Further-
more, it has been our experience that the DDS inter-
faces, although not as general as SQL, are rich enough
to successfully build sophisticated services.

3 DDS Design Principles and Assumptions

In this section of the paper, we present design prin-
ciples that guided us while building our distributed
hash table DDS. We also state a number of key as-
sumptions we made regarding our cluster environment,
failure modes that we can handle, and the workloads
that the DDS will receive.



Separation of concerns: the clean separation of
service code from storage management simplifies the
overall architecture of the system by decoupling the
complexities of state management from service con-
struction. Because all persistent service state is kept
inside the DDS, service instances can be shut down and
restarted without a complex recovery process. Crashes
become incidental: only session state needs to be re-
generated after a crash. Authoring a service is greatly
simplified, since service authors need only worry about
service-specific logic (such as parsing HT'TP in the case
of a web server) rather than the complexities of data
partitioning, replication, and recovery.

Appeal to properties of clusters: in addition
to the properties listed in section 1.1 of this paper, we
require that our cluster is physically secure and is well-
administered to reduce the probability of component
failures. Given all of these properties, a cluster repre-
sents a carefully controlled environment in which we
have the greatest chance of being able to provide all
of the service properties. For example, the low latency
nature of the cluster (10-100 us instead of 10-100 ms
for the wide-area Internet) means that two-phase com-
mits are not prohibitively expensive in terms of latency.
Similarly, a highly redundant network means that the
probability of a network partition can be made arbi-
trarily small, and thus we do not consider the case of
partitions in our protocols. Having a reliable uninter-
ruptible power supply (UPS) and good system admin-
istration implies helps ensure that the probability of a
system-wide simultaneous hardware failure is negligi-
ble, and thus we can rely on data being available in
more than one failure boundary in the cluster (i.e., in
the physical memory or disk of more than one node)
while designing our recovery protocols. We do have
a checkpoint mechanism that permits us to recover in
the case that any of these cluster properties fail, but
all state changes that happen after the checkpoint will
potentially be lost should this occur.

Design for high throughput and high concur-
rency: given the workloads presented in section 1.2,
the control structure used within the DDS to effect
concurrency is critical. Typical techniques found in
web servers such as process-per-task or thread-per-task
cannot scale to this magnitude of concurrency. Op-
erating system overhead (such as thread scheduling)
and thread-specific overheads (such as per-thread stack
space and lock acquisition times) cause performance to
degrade as concurrency increases, as seen in figure 2.

To achieve both high concurrency and high through-
put, we use an asynchronous, event-driven style of con-
trol flow in our DDS implementation, similar to that
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Figure 2: Thread-per-task vs. asynchronous state
machines: this microbenchmark has a simple network
server that receives a pipeline of many concurrent 150 byte
request packets over a single TCP connection, and responds
with 150 byte packets over a second TCP connection. In
the “threads” case, a thread is dispatched to service each
request, and in the “async” case, an event-driven state ma-
chine is created to handle the request. Both cases are run
on a 167 Mhz UltraSparc running Solaris 5.6, and in both
cases the per-task service latency is set to 10 ms.

espoused by the Harvest web cache project [6]. A con-
venient side-effect of this style of control flow is that
layering is inexpensive and flexible, as layers can be
constructed by chaining together event handlers. Such
chaining also greatly facilitates interposition—a “mid-
dleman” event handler can be simply patched between
two existing handlers. A second important character-
istic of this control flow style is that if a server ex-
periences a burst of traffic, the burst is absorbed in
event queues, providing graceful degradation by pre-
serving the throughput of the server but temporarily
increasing latency. By contrast, thread-per-task sys-
tems degrade in both throughput and latency if bursts
arrive and are absorbed by additional threads.

3.1 Assumptions

If one node in the hash table cannot communicate
with another, we assume it is because this other node
has stopped executing (due to a planned shutdown or
a crash). We thus assume that network partitions do
not occur inside our cluster, and that software com-
ponents in the cluster are fail-stop. The need for no
network partitions is addressed by the high redundancy
of our network, as mentioned in the previous section.
We have attempted to induce fail-stop behavior in our
software by having it terminate its own execution if it
encounters an unexpected condition, rather than at-



tempting to gracefully recover from such a condition.

These strong assumptions have been valid in prac-
tice; we have never experienced an unplanned network
partition in our cluster, and our software has always
behaved in a fail-stop manner. We further assume that
software failures in the cluster are independent. We
replicate all durable data at more than one place in
the cluster, but we assume that at least one of these
replicas is active (i.e. has not failed) at all times.

Our next assumption concerns the workload pre-
sented to our distributed hash tables. Each table’s
key space is the set of 64-bit integers; we assume that
the population density over this space is even (i.e. the
probability that any key has a value associated with
it is a function of the number of values in the table,
and not of the particular key). We don’t assume that
all keys are accessed equiprobably, but rather that the
“working set” size of accessed keys is much larger than
the number of nodes in our cluster. We then assume
that a partitioning strategy that maps fractions of the
keyspace to cluster nodes based on the nodes’ relative
processing speed will induce a balanced workload. It is
up to service authors to adhere to these assumptions;
failing to do so can result in imbalances across the clus-
ter, leading to a reduction in throughput. Automat-
ically tuning the hash table to smooth imbalances or
hotspots is a topic of future work.

Finally, we assume that tables are large and long
lived. Hash table creations and destructions are rela-
tively rare events: the common case is for hash tables
to serve read, write, and remove operations.

4 Distributed Hash Tables:
and Implementation

Architecture

In this section, we present the architecture and im-
plementation of a fully functional distributed hash ta-
ble DDS. Figure 3 illustrates the architecture of the
distributed hash table. The complete system is com-
prised of the following components:

Client: the client consists of service-specific soft-
ware running on a client machine. It communicates
across the wide area with one of many service in-
stances running in the cluster. The mechanism by
which the client selects a service instance is beyond the
scope of this work, but it typically involves DNS round
robin [5], a service-specific protocol, or a transport or
application-level multiplexing router on the edge of the
cluster. An example of a client is a web browser, in
which case the service would be a web server. Note
that clients are completely unaware of DDS’s—no part
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Figure 3: Distributed hash table architecture: each
box in the diagram represents a software process. In the
simplest case, each process runs on its own physical ma-
chine, however there is nothing preventing processes from
sharing machines.

of the DDS system runs on a client.

Service: a service is composed of a set of cooper-
ating software processes, each of which we call a ser-
vice instance. These service instances perform some
application-level function and communicate with wide-
area clients. Service instances perform computation
and may optionally have soft state (state which may
be lost and recomputed if necessary), but they rely on
the hash table to manage all persistent state.

Hash table API: the boundary between the ser-
vice and the “DDS library” component of the architec-
ture is the hash table interface. This interface provides
services with put (), get (), remove(), create(), and
destroy() operations on hash tables. Each of these
operations is atomic, and all services see the same co-
herent image of all existing hash tables through this
interface. Hash tables are named by strings, and hash
table keys are 64 bit integers. Hash table values are
opaque byte arrays, and each hash table operation
atomically affects a hash table value in its entirety.

DDS library: the DDS library is a Java class li-
brary that presents the hash table interface to services.
This class library accepts hash table operations, and
cooperates with the “brick” components of the hash
table to realize those operations. The DDS library
contains only soft state; this soft state includes meta-
data about the current configuration of the cluster,
and the current partitioning of data in the distributed



hash tables across the “bricks”. This library acts as
the two-phase commit coordinator for state-changing
operations on the distributed hash tables.

Brick: bricks are the only system components that
manage durable data. Each brick manages a set of
network-accessible single node hash tables. A brick
consists of a buffer cache, a single-site lock manager, a
persistent chained hash table implementation, and net-
work stubs and skeletons for remote communication.
Typically, we run one brick per CPU in the cluster,
and thus a 4-way SMP will house 4 bricks.

4.1 Partitioning,
Consistency

Replication, and Replica

A distributed hash table provides incremental scal-
ability as more nodes are added to the cluster; this
scalability is both in terms of the throughput of oper-
ations that the distributed hash table can sustain, and
also the amount of data that it can contain. In order
to achieve this scalability, operations and data must be
spread across the nodes in the cluster. This spreading
is done by horizontally partitioning each table across
the cluster. Each brick in the cluster thus stores some
number of partitions of each table in the system, and
when new nodes are added to the cluster, this parti-
tioning is altered so that data is spread onto the new
node. Because of our workload assumptions (section
3.1), this horizontal partitioning evenly spreads both
load and data across the cluster.

Availability is a second goal of the distributed hash
table. Given that the data in the hash table is spread
across multiple nodes, if any of those nodes fail, then a
portion of the hash table will become unavailable. For
this reason, each partition in the hash table is repli-
cated on more than one physical node in the cluster.
The set of replicas for a partition form a replica group;
all partitions in the replica group are kept strictly co-
herent with each other. Any partition in the replica
group can be used to service a get (), and all partitions
in the replica group must be synchronously updated
for put () or remove() operations. If a cluster node
fails, the data from partitions on that node is avail-
able on the surviving members of its replica groups.
Replica group membership is thus dynamic; when a
node fails, all of its partitions are removed from their
replica groups. When a node joins the cluster, it may
be added to the replica groups of some partitions (such
as in the case of recovery, as described later).

A third goal of the distributed hash table is con-
sistency. When state changing operations (put () and
remove () ) are issued against a partition in the hash ta-

ble, all replicas of that partition must be synchronously
updated. We use an optimistic form of the two-phase
commit protocol to achieve consistency, with the DDS
library serving as the two-phase commit coordinator,
and the replicas serving as the participants. In our sys-
tem, if the DDS library crashes after prepare messages
are sent, but before any commit messages are sent, the
replicas will time out and abort.

If the DDS library crashes after sending out any
commit messages, then all replicas must commit; be-
cause we want the hash table to be highly available,
we cannot rely on the DDS library recovering after a
crash and issuing pending commits. Thus, our repli-
cas store short in-memory logs of recent state changing
operations and their outcomes. If a replica times out
while waiting for a commit from the DDS library, that
replica communicates with its peers to find out if any
of them have received a commit, and if so, the replica
commits as well. If not, the replica aborts.

Any replica may abort an operation in the first
phase of the two-phase commit (for example, if the
replica cannot obtain a write lock on the key it needs
to change). If the DDS library receives any abort mes-
sages at the end of the first phase, it sends aborts to all
replicas in the second phase. Replicas do not commit
side effects unless they receive a commit message in the
second phase of the operation.

If a replica crashes during a two-phase commit,
the DDS library simply removes that replica from
its replica group, and continues the two-phase com-
mit. Thus, in the face of crashes, all replica groups
will shrink over time. We rely on a recovery mecha-
nism (described later) for crashed replicas to rejoin the
replica group. Because we have assumed that brick
failures are independent (section 3.1), we made a sig-
nificant optimization by requiring the image of each
replica to be consistent only through its brick’s cache,
rather than having a consistent on-disk image. This
allows us to have a purely conflict-driven cache evic-
tion policy, rather than having to force cache elements
out in a manner that ensures on-disk consistency. An
important implication of this optimization is that if
all members of a partition’s replica group crash, that
partition is lost. We rely on nodes in a cluster to be in-
dependent failure boundaries; for this to be true, there
must be no systematic software failure in the cluster,
and the power supply to the cluster must be uninter-
ruptible.

Our two-phase commit mechanism gives us atomic
updates to the hash table. It does not, however, give
us transactional updates. If a service wishes to update
more than one element atomically, our DDS does not
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Figure 4: Distributed hash table metadata maps: this
illustration highlights the steps taken to discover the set of
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hash table key.
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provide any help. Adding transactional support to our
DDS infrastructure is a topic of future work.

We do have a checkpoint mechanism in our dis-
tributed hash table that allows us to force the on-disk
image of all partitions to be consistent; the disk im-
ages can then be backed up for disaster recovery. This
checkpoint mechanism is extremely heavyweight, how-
ever; during the checkpointing of a hash table, no state-
changing operations are allowed.

4.2 Metadata maps

To select a partition that is responsible for a partic-
ular key of a hash table, and to determine the replicas
that are currently in the replica group of that partition,
the DDS libraries consult two metadata maps that are
replicated on each node of the cluster. Each hash table
in the cluster has its own pair of metadata maps.

The first map is called the data partitioning (DP)
map. Given a hash table key, the DP map returns the
name of the partition that this key belongs to. The
DP map thus controls the horizontal partitioning of
data across the bricks. As shown in figure 4, the DP
map is a trie on the least-significant bits of hash table
keys; to find a key’s partition, key bits are used to walk
down the trie, starting from the least significant key bit
until a leaf node is found. As the cluster grows, the
DP trie subdivides in a “split” operation. For example,
partition 10 in the DP trie of figure 4 could split into
partitions 010 and 110; when this happens, the keys
in the old partition are shuffled across the two new
partitions. The opposite of a split is a “merge”; if
the cluster is shrunk, two partitions with a common
parent in the trie can be merged into their parent. For
example, partitions 000 and 100 in figure 4 could be
merged into a single partition 00.

The second map in the system is called the replica

group (RG) membership map. Given a partition name
returned from the DP map, the RG map returns a list
of bricks that are currently serving as replicas in the
replica group associated with that partition. The RG
maps are dynamic: if a brick fails, it is removed from
all RG maps that contained it. During recovery, if a
brick joins a replica group for a table, it is added to
that replica group after finishing recovery. An invari-
ant that must be preserved is that the replica group
membership maps for all partitions in the hash table
must have at least one member; for the sake of fault
tolerance, they should always have multiple members.

The maps are replicated on each node of the cluster,
in both the DDS libraries and the bricks. The maps
must be kept consistent, otherwise operations may be
applied to the wrong bricks. Instead of enforcing con-
sistency synchronously, we allow the maps on the li-
braries to drift out of date, but they are lazily updated
when a DDS library uses them to perform operations.
The DDS library piggybacks hashes of both maps on
operations sent to bricks; if a brick detects that either
map used is out of date, the brick fails the operation
and returns a “repair” to the library. Thus, all maps
become eventually consistent as they are used. An im-
plication of this repair mechanism is that the libraries
can be restarted with out of date maps, and as the
library gets used its maps become consistent.

To put() a key and value into a hash table, the
DDS library servicing the operation first consults its
DP map in order to determine the appropriate parti-
tion for the key. Then, it looks up that partition name
in its RG map to determine the current set of bricks
serving as replicas for the key. The DDS library then
performs a two-phase commit across these replicas.

To do a read () of a key, a similar process is used, ex-
cept that the DDS library can select any of the replicas
listed in the RG map to service the read. We use the
locality-aware request distribution (LARD) technique
[11] to select a read replica—LARD further partitions
keys across replicas, in effect aggregating the physi-
cal cache size of all the replicas. If hotspots become
an issue for a particular workload, we could instead
randomly select a replica and increase the size of the
replica group to sufficiently absorb the hotspot, but we
have not needed to do this as of yet.

4.3 Recovery

If a brick fails, all of the partition replicas on that
brick become unavailable. Rather than making the
entire partition available, we remove the failed brick
from all replica groups and allow operations to con-



tinue. When the failed brick recovers (or an alterna-
tive brick is selected to replace it), the recovering brick
must “catch up” to all of the operations it missed. In
many RDBMS’s and file systems, recovery is a complex
process that involves replaying logs, but in our system
we use properties of clusters and our DDS design to
vastly simplify recovery.

First, we allow our hash table to “say no”—bricks
may return a failure for an operation, such as when a
two-phase commit cannot obtain locks on all bricks (as
would happen if two puts() to the same key are simul-
taneously issued), or when replica group memberships
change during an operation. The freedom to say no
greatly simplifies the hash table logic, since we don’t
worry about correctly handling operations in these rare
operational situations. Instead, we rely on the DDS
library (or, ultimately, the service perhaps even the
WAN client) to retry the operation.

Second, we don’t allow any operation to finish unless
all participating components agree on the metadata
maps. If any component has an out-of-date map, the
operation will fail until the maps are reconciled.

Finally, we make our partitions relatively small
("100MB), but we have many of them for large ta-
bles. This relatively small partition size means that we
can transfer an entire partition over a fast system-area
network (typically 100 Mb/s to 1 Gb/s) within 1 to 10
seconds. Thus, during recovery, we can incrementally
copy entire partitions to the recovering node, obviating
the need for the undo and redo logs that are typically
maintained by databases for the sake of recovery.

When a node initiates recovery, it grabs a write
lock on one replica group member from the partition
that it is joining; this write lock means that all state-
changing operations on that partition will start to fail.
Although these locks are very coarse grained, we don’t
expect failures to occur often. Next, the recovering
node copies the entire replica over the network. Then,
it sends updates to the RG map to all other replicas in
the group, which means that DDS libraries will start to
lazily receive this update. Finally, it releases the write
lock, which means that the previously failed operations
will succeed on retry. The recovery of the partition is
now complete, and the recovering node can begin re-
covery of other partitions as necessary.

There is an interesting choice of the rate at which
partitions are transferred over the network during re-
covery. If this rate is fast, then the involved bricks will
suffer a loss in read throughput during the recovery. If
this rate is slow, then the bricks won’t lose throughput,
but the partition’s mean time to recovery is increased.
We chose to recover as quickly as possible, since in a

large cluster only a small fraction of the total through-
put of the cluster will be affected by the recovery.

A similar technique is used for DP map split and
merge operations, except that all replicas must be
modified and both the RG and DP maps are updated
at the end of the operation.

4.4 Asynchrony

All components of the distributed hash table are
built using an asynchronous, event-driven program-
ming style. Each hash table layer is designed so that
only a single thread ever executes in it at a time. This
greatly simplified the implementation by eliminating
the need for data locks and race conditions due to
threads. The layers of the hash table are separated by
FIFO queues, into which I/O completion events and
I/0 requests are placed. The FIFO discipline of these
queues ensures fairness across requests, and the queues
act as natural buffers that absorb bursts of requests
that exceed the throughput capacity of the system.

All interfaces in the system, including the DDS li-
brary interfaces, are split-phase asynchronous inter-
faces. This means that a hash table get () operation
doesn’t block, but rather immediately returns with an
identifier that can be matched up with a completion
event that is delivered to a caller-specified upcall han-
dler. This upcall handler can be application code, or
it can be a queue that is polled or blocked upon.

5 Distributed Hash Table Performance

In this section of the paper, we present some per-
formance metrics of the distributed hash table imple-
mentation. All of the performance benchmarks were
gathered on a cluster of 28 2-way SMPs and 38 4-way
SMPs (a total of 208 CPUs, each of which is a 500
MHz Pentium). The 2-way SMPs have 500 MB each
of physical memory, and the 4-way SMPs have 1 GB
each of physical memory. All are connected with either
100 Mb/s switched Ethernet (2-way SMPs) or 1 Gb/s
switched Ethernet (4-way SMPs). The benchmarks
are run using the Blackdown port of Sun’s JDK 1.1.7
v3, using the OpenJIT 1.1.7 JIT compiler and “green”
(user-level) threads on top of Linux v2.2.5. We ran at
most one brick per CPU.

5.1 Throughput Scalability

This benchmark demonstrates that our hash table
throughput scales linearly with the number of bricks.
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Figure 5: Throughput scalability: this benchmark

shows the linear scaling of throughput as a function of the
number of bricks serving in a distributed hash table; note
that both axis have logarithmic scales. As we added more
bricks to the DDS, we increased the number of clients using
the DDS until throughput saturated.

The benchmark consists of a number of services that
each maintain a pipeline of 100 operations (either
gets() or puts()) to a single distributed hash table.
We vary the number of bricks in the hash table; for
each configuration, we slowly increase the number of
services interacting with the hash table, measuring the
completion throughput flowing from the bricks. All
configurations have 2 replicas per replica group, and
each benchmark iteration consists of reads or writes of
150 byte values. We restrict the keys accessed by the
benchmarks so that the working set of hash table val-
ues fits in the aggregate physical memory of all bricks;
this is thus an in-core benchmark. The benchmark
is closed-loop: a new operation is immediately issued
with a random key for each completed operation.

Figure 5 shows the maximum throughput sustained
by the distributed hash table as a function of the num-
ber of bricks. Throughput scales linearly up to 128
bricks; we didn’t have enough processors to scale the
benchmark further. The read throughput achieved
with 128 bricks is 61,432 reads per second (5.3 billion
per day), and the write throughput with 128 bricks
is 13,582 writes per second (1.2 billion per day); this
performance is adequate to serve the hit rates of most
popular web sites on the Internet.

5.1.1 Graceful Degradation for Reads

Bursts of traffic are a common phenomenon for all
Internet services. If a traffic burst exceeds the ser-
vice’s capacity, the service should have the property of
“sraceful degradation”: the throughput of the service
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Figure 6: Graceful degradation of reads: this graph
demonstrates that the read throughput from a distributed
hash table remains constant even if the offered load exceeds
the capacity of the hash table.

should remain constant, with the excess traffic either
being rejected or absorbed in buffers and served with
higher latency. Figure 6 shows the throughput of a
distributed hash table as a function of the number of
simultaneous read requests issued to it; each service
instance has a closed-loop pipeline of 100 operations.
Each line on the graph represents a different number
of bricks serving the hash table. Each configuration is
seen to eventually reach a maximum throughput as its
bricks saturate. This maximum throughput is success-
fully sustained even as additional traffic is offered. The
overload traffic is absorbed in the FIFO event queues of
the bricks; all tasks are processed, but they experience
higher latency as the queues drain from the burst.

5.1.2 Ungraceful Degradation for Writes

An unfortunate performance anomaly emerged when
benchmarking the put () throughput of the hash ta-
ble. As the write throughput approached the maxi-
mum capacity of the hash table bricks, the total write
throughput suddenly began to drop. On closer exam-
ination, we discovered that most of the bricks in the
hash table were nearly idle, but one brick in the hash
table was completely saturated and had become the
bottleneck in the closed-loop benchmark.

Figure 7 illustrates this imbalance. To generate fig-
ure 7, we issued write traffic to a hash table with a sin-
gle partition and two replicas in its replica group. Each
put () operation caused a two-phase commit across
both replicas, and thus each replica saw the same set of
network messages and performed the same computa-
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degradation: the bottom curve shows the throughput of a
two-brick partition under overload, and the top two curves
show the CPU utilization of those bricks. One brick is sat-
urated, the other becomes only 30% busy.

tion, but perhaps slightly out of order from each other.
We thus expected both replicas to perform identically,
but instead one replica became more and more idle,
and the throughput of the hash table dropped to match
the CPU utilization of this idle replica.

Investigation showed that the busy replica was
spending all of its time garbage collecting. As more
live objects populated that replica’s heap, more time
needed to be spent garbage collecting to reclaim a fixed
amount of heap space since more objects would be
examined before a free object was discovered. Ran-
dom fluctuations in arrival rates and garbage collec-
tion behavior would cause one of the two replicas to
spend more time garbage collecting than the other.
This replica became the performance bottleneck of the
system, and more operations would “pile up” in its
queues, further amplifying this imbalance.

Write traffic particularly exacerbates the situation,
as objects created by the “prepare” phase must wait
for at least one network round-trip time before a com-
mit or abort command in the second phase is received.
The number of live objects in each bricks’ heap is thus
proportional to the bandwidth-delay product of hash
table put () operations. For read traffic, there is only
one phase, and thus objects can be garbage collected
immediately after read requests are satisfied.

We experimented with many JDKs, but saw the
same issue with all of them. Some JDKs (such as
Sun’s JDK 1.2.2 on Linux 2.2.5) developed this im-
balance for read traffic as well as write traffic. We
are exploring using admission control or early discard
from bricks’ queues to keep the bricks within their op-
erational range, ameliorating this imbalance.
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Figure 8: Throughput vs. read size the X axis of this
graph represents the size of values read from the hash table,
and the Y axis shows the maximum throughput sustained
by an 8 brick hash table serving these values.

5.1.3 Throughput Bottlenecks

In figure 8, we fixed the number of bricks in the sys-
tem at 8, but varied the size of elements that we read
out of the hash table. The throughput of the hash
table remained fairly flat from 50 bytes through 1000
bytes, but then began to degrade. From this we de-
duced that per-operation overhead (such as object cre-
ation, garbage collection, and system call overhead)
saturated the bricks’ CPUs for elements smaller than
1000 bytes, and per-byte overhead (byte array copies,
either in the TCP stack or in the JVM) saturated the
bricks’ CPUs for elements greater than 1000 bytes. At
8000 bytes, the throughput in and out of each 2-way
SMP (running 2 bricks) was 60 Mb/s. For larger sized
hash table values, the 100 Mb/s switched network be-
came the throughput bottleneck.

5.2 Availability and Recovery

To demonstrate the availability of the hash table in
the face of node failures, and the ability for the bricks
to recover after a failure, we repeated the read bench-
mark for a hash table full of 150 byte elements. The ta-
ble was configured with a single 100 MB partition and
three replica bricks in that partition’s replica group.
Figure 9 shows the throughput of the hash table over
time as we induced a fault in one of the bricks, and also
as we initiated recovery of that brick. During recovery,
the rate at which the recovered partition is copied was
limited to 12 MB/s; this number was chosen to match
the maximum sequential bandwidth we could obtain
from the disk on which the partition resided.

At point (1), all three bricks were operational and
the throughput sustained by the hash table was 450
operations per second. At point (2), one of the three
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Figure 9: Awvailability and Recovery: this benchmark
shows the read throughput of a 3-brick hash table as a de-
liberate single-node fault is induced, and afterwards as re-
covery is performed.

bricks was killed. Performance immediately dropped
to 300 operations per second (two-thirds of the origi-
nal capacity); the fault detection was immediate, and
the performance overhead of the replica group map
updates could not be observed. At point (3), recov-
ery was initiated, and recovery completed at point (4).
Between points (3) and (4), there was no noticeable
performance overhead of recovery; this is because there
was ample excess bandwidth on the network, and the
CPU overhead of transferring the partition during re-
covery was negligible.

After recovery completed, performance briefly
dropped at point (5). This performance degradation
corresponds to the warming of the buffer cache on the
recovered node. Once the cache became warm, perfor-
mance resumed to its previous throughput of 450 oper-
ations per second at point (6). An interesting anomaly
at point (6) is the presence of noticeable oscillations in
throughput; these oscillations were traced to garbage
collection triggered by the “extra” activity of recovery.
When we repeated our measurements, we would occa-
sionally see this oscillation at other times besides im-
mediately post-recovery. Performance unpredictabil-
ity due to garbage collection seems to be a pervasive
problem; probabilistic admission control at the DDS
libraries is a potential fix to this problem, but we have
yet to implement this.

6 Example Services

We have implemented a number of interesting ser-
vices that make use of our distributed hash table. In
all cases, the implementation of the service was greatly
simplified by using the DDS; the service logic was sim-
plified, and the service trivially scaled by adding more

service instances. One aspect of scalability not covered
by using the hash table was in routing and load bal-
ancing of WAN client requests across service instances;
this issue is beyond the scope of this work.

Sanctio: Sanctio is an instant messaging gateway
that provides protocol translation between popular in-
stant messaging protocols (such as Mirabilis’ ICQ and
AOL’s AIM), conventional email, and voice messaging
over cellular telephones. Sanctio acts as a middleman
between all of these messaging protocols, routing and
translating messages between the networks. In addi-
tion to protocol translation, Sanctio also can trans-
form the content of messages. We have built a “web
scraper” that allows us to compose AltaVista’s Ba-
belFish natural language translation service with Sanc-
tio. We can thus perform language translation (such
as English to French) as well as protocol translation;
a Spanish speaking ICQ user can send a message to
an English speaking AIM user, with Sanctio providing
both language and protocol translation.

A wuser of the service may be reached on a number of
different addresses, one for each of the networks that
Sanctio can communicate with. The Sanctio service
must therefore keep a large table of bindings between
users and their current transport addresses on these
networks. We used the distributed hash table for this
purpose. The expected workload on the DDS includes
significant write traffic as users change networks or log
in and out of a network, and the data in the table must
be kept consistent (otherwise messages will be routed
to the wrong address).

Sanctio took approximately 1 person-month to de-
velop, and most of that time was spent authoring the
protocol translation code. The code that interacts with
the distributed hash table took less than a day to write.

Scalable web server: we have implemented a scal-
able web server using the distributed hash table. The
server speaks HTTP to web clients, hashes requested
URLs into 64 bit keys, and requests those keys from the
hash table. The server takes advantage of the event-
driven, queue-centric programming style to interpose
on the URL resolution path in order to introduce CGI-
like behavior. This web server was written in 900 lines
of Java, 750 of which deals with HTTP parsing and
URL resolution, and only 50 of which deals with inter-
acting with the hash table DDS.

Others: We built many other interesting services as
part of the overall Ninja project?. The “Parallelisms”
service recommends related web sites to user-specified
URLs by looking up ontological entries in an inversion

*http://ninja.cs.berkeley.edu/



of the Yahoo web directory. We built a collaborative
filtering engine for a digital music jukebox service [13];
this engine stores all of its users’ music preferences in
a distributed hash table. Similarly, we implemented
a private key store and a composable user preference
service, both of which use the distributed hash table
for persistent state management.

7 Discussion

Our experience with the distributed hash table im-
plementation has taught us many lessons about us-
ing it as a storage platform for scalable services. The
hash table was a resounding success in simplifying the
construction of interesting services, and these services
inherited the scalability, availability, and data consis-
tency of the hash table. Exploiting properties of clus-
ters also proved to be remarkably useful. In our experi-
ence, most of the assumptions that we made regarding
properties of a clusters and component failures (specif-
ically the fail-stop behavior of our software and the
probabilistic lack of network partitions in the cluster)
were valid in practice.

One of our assumptions was initially problematic:
we observed a case where there was a systematic fail-
ure of all replica group members inside a single replica
group. This failure was caused by a software bug that
enabled service instances to deterministically crash re-
mote bricks by inducing a null pointer exception in the
JVM. After fixing the associated bug in the brick, this
situation never again arose. However, it serves as a re-
minder that systematic software bugs can in practice
bring down the entire cluster at once. Careful soft-
ware engineering and a good quality assurance cycle
can help to ameliorate this failure mode, but we be-
lieve that this issue is fundamental to all systems that
promise both availability and consistency.

As we scaled our distributed hash table, we noticed
scaling bottlenecks that weren’t associated with our
own software. As we scaled to 128 bricks, we ap-
proached the point at which the 100 Mb/s Ethernet
switches would saturate; upgrading to 1 Gb/s switches
throughout the cluster would delay the onset of sat-
uration. We also noticed that the combination of our
JVM’s user-level threads and the Linux kernel began to
induced poor scaling behavior as each node in the clus-
ter opened up a reliable TCP connection to all other
nodes in the cluster. The brick processes began to sat-
urate due to a flood of interrupts associated with TCP
connections that had data waiting to be read.

7.1 Java as a Service Platform

We found that Java was an adequate platform from
which to build a scalable, high performance subsystem.
However, we ran into a number of serious issues with
the Java language and runtime. The garbage collector
of all JVMs that we experimented with inevitably be-
came the ultimate performance bottleneck of the bricks
and also a source of high throughput and latency vari-
ation. Whenever the garbage collector became active
on a brick, it had a serious impact on all other system
activity; unfortunately, current JVMs do not provide
adequate interfaces to allow systems to control garbage
collection behavior.

The type safety and array bounds checking features
of Java vastly accelerated our software engineering pro-
cess, and helped us to write stable, clean code. How-
ever, these features got in the way of writing efficient
code, especially when dealing with multiple layers of a
system each of which wraps some array of data with
layer-specific metadata. We found ourselves needing to
perform copies of regions of byte arrays, whereas in a
C implementation we would have been able to exploit
pointers into malloc’ed memory regions to the same
effect without needing copies.

Java also lacks asynchronous I/O primitives, which
necessitated the use of a thread pool at the lowest-layer
of the system. This thread pool is much more efficient
than a thread-per-task system, since the number of
threads in the system is equal to the number of out-
standing I/O requests rather than the number of tasks.
Nonetheless, it introduced performance overhead and
scaling problems, since the number of TCP connections
required per brick node increased with the cluster size.
We are working on introducing high-throughput asyn-
chronous I/O completion mechanisms into the JVM
using the JNI native interface feature.

7.2 Future Work

In the future, we plan on investigating more inter-
esting data-parallel operations on a DDS (such as a
hash table iterator, or the maplist() operator from
Lisp). We also plan on building other distributed data
structures, including a B-tree and an administrative
log; in doing so, we hope to reuse many of the compo-
nents of the distributed hash table (such as the brick
storage layer, the RG map infrastructure, and the two-
phase commit code). We also have yet to explore au-
tomatic caching in the DDS libraries, but instead rely
on services to build their own application level caches.
Finally, we are currently exploring adding other inter-



esting single-element operations to the hash table such
as testandset () in order to provide global lock leases
to services that may have many service instances com-
peting to write to the same hash table element.

8 Related Work

Litwin et al.’s families of scalable, distributed data
structures (SDDS) such as RP* [17, 21] helped to mo-
tivate our own work. The RP* work focuses on al-
gorithmic properties, while we focused on the systems
issues of implementing a persistent distributed hash
table that satisfies the concurrency, availability, and
incremental scalability needs of Internet services.

Our work has a great deal in common with database
research. The problems of partitioning and replicating
data across shared-nothing multicomputers has been
studied extensively in both the distributed and paral-
lel database communities [7, 14, 20]. We make use of
mechanisms such as horizontal partitioning and two-
phase commits, but we do not need an SQL parser or
a query optimization layer since we have no general-
purpose queries in our system.

We also have much in common with distributed and
parallel file systems [3, 18, 23, 25]. Our DDS’s present
a higher level interface than a typical file system, and
DDS operations are data-structure specific and atom-
ically affect entire elements. Our research has focused
on achieving scalability, availability, and consistency
under high throughput and highly concurrent traffic,
which is a different focus than these systems. Our work
is perhaps most similar to the Petal [19] distributed
virtual disk project, in that a Petal virtual disk can
be thought of as a simple hash table with fixed sized
elements; our hash tables have variable sized elements,
have an additional name space (the set of hash tables),
and focus on Internet service workloads and properties
as opposed to file system workloads and properties.

The CMU etwork attached secure disk (NASD) stor-
age architectures [8] explore variable-sized object inter-
faces as an abstraction to allow storage subsystems to
optimize on-disk layout. This philosophy is similar to
our own data structure interface, which is deliberately
higher level than the block or file interfaces of Petal
and parallel or distributed file systems.

Distributed object stores [10] attempt to solve a
related problem, namely transparently adding persis-
tence to distributed object systems. The persistence of
(typed) objects in such systems is typically determined
by reachability through the transitive closure of object
references, and the removal of objects is handled by

garbage collection. A DDS has no notion of pointers
or object typing, and applications must explicitly use
API operations to store and retrieve elements from a
DDS store. Distributed object stores are also usually
built with the wide-area in mind, and thus do not fo-
cus on the scalability, availability, and high throughput
requirements of cluster-based Internet services.

Many projects have explored the use of clusters of
workstations as a general-purpose platform for build-
ing Internet services [1, 4, 12]. To date, these plat-
forms rely on file systems or databases for persistent
state management; our DDS’s are meant to augment
such platforms with a state management platform that
is better suited to the needs of Internet services. The
Porcupine project [22] includes a storage platform built
specifically for the needs of a cluster-based scalable
mail server, but they are attempting to generalize their
storage platform for arbitrary service construction.

9 Conclusions

This paper presents a new persistent data manage-
ment layer that enhances the ability of clusters to sup-
port Internet services. This self-managing layer, called
a distributed data structure (DDS), fills in an impor-
tant gap in current cluster platforms by providing a
data storage platform specifically tuned for services’
workloads and for the cluster environment.

This paper focused on the design and implemen-
tation of a distributed hash table DDS, empirically
demonstrating that it has many properties necessary
for Internet services (incremental scaling of throughput
and data capacity, fault tolerance and high availabil-
ity, high concurrency, and consistency and durability
of data). These properties were achieved by carefully
designing the partitioning, replication, and recovery
techniques in the hash table implementation to exploit
features of cluster environments (such as a low-latency
network with a lack of network partitions). By doing
so, we have “right-sized” the DDS to the problem of
persistent data management for Internet services.

The hash table DDS simplifies Internet service con-
struction by decoupling service-specific logic from the
complexities of persistent state management, and by
allowing services to inherit the necessary service prop-
erties from the DDS rather than having to implement
the properties themselves.
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