
Fast Parallel Sorting under LogP:

Experience with the CM-5

Andrea C. Dusseau, David E. Culler, Klaus Erik Schauser, Richard P. Martin

Computer Science Division
University of California, Berkeley

fdusseau, culler, schauser, rmarting@CS.Berkeley.EDU

Abstract

In this paper, the LogP model is used to analyze four parallel sorting algorithms (bitonic, column,
radix, and sample sort). LogP characterizes the performance of modern parallel machines with a small
set of parameters: the communication latency (L), overhead (o), bandwidth (g), and the number of
processors (P ). We develop implementations of these algorithms in Split-C, a parallel extension to C,
and compare the performance predicted by LogP to actual performance on a CM-5 of 32 to 512 processors
for a range of problem sizes and input sets. The sensitivity of the algorithms is evaluated by varying the
distribution of key values and the rank ordering of the input.

The LogP model is shown to be a valuable guide in the development of parallel algorithms and a good
predictor of implementation performance. The model encourages the use of data layouts which minimize
communication and balanced communication schedules which avoid contention. Using an empirical
model of local processor performance, LogP predictions closely match observed execution times on
uniformly distributed keys across a broad range of problem and machine sizes for all four algorithms.
Communication performance is oblivious to the distribution of the keys values, whereas the local sort
performance is not. The communication phases in radix and sample sort are sensitive to the ordering of
keys, because certain layouts result in contention.

1 Introduction

Sorting is important in a wide variety of practical applications, is interesting to study from a theoretical

viewpoint, and offers a wealth of novel parallel solutions. The richness of this particular problem arises, in

part, because it fundamentally requires communication as well as computation. Thus, sorting is an excellent

area in which to investigate the translation from theory to practice of novel parallel algorithms on large

parallel systems.

Parallel sorting algorithms have generally been studied either in the context of PRAM-based models,

with uniform access to the entire data set, or in network-based models, with communication allowed only

between neighbors in a particular interconnection topology. In both approaches, algorithms are typically

developed under the assumption that the number of processors (P ) is comparable to the number of data

elements (N ), and then an efficient simulation of the algorithm is provided for the case where P � N .

1



In this paper, we study fast parallel sorting from the perspective of a new “realistic” parallel model,

LogP[1], which captures the key performance characteristics of modern large scale multiprocessors, such as

the Thinking Machines CM-5. In particular, the model reflects the technological reality that these machines

are essentially a collection of workstation-class nodes which communicate by point-to-point messages that

travel through a dedicated, high performance network. The LogP model downplays the role of the topology

of the interconnection network and instead describes its performance characteristics.

Because the individual processors of today’s multiprocessors have substantial computing power and

a substantial amount of memory, the most interesting problems, and the problems on which the machine

performs best, have many data elements per processor. One of the interesting facets of parallel sorting

algorithms is how they exploit this grouping of data within processors. In this context, fast sorting algorithms

tend to have three components: a purely local computational phase which exploits the grouping of elements

onto processors, an intermediate phase which determines the specific transformation, and a communication

phase which often involves a general transformation of the entire data set.

Our implementation language, Split-C [2], provides an attractive basis for this study, because it exposes

the capabilities modeled by LogP through a rich set of assignment operators in a distributed global address

space. Traditional shared memory models would force us to use only read/write as the access primitives;

traditional message passing models would impose some variant of send and receive, with its associated

protocol overhead; and data parallel languages would place a complex compiler transformation between the

written program and the actual executable. Split-C, like C, provides a straightforward machine independent

programming system, without attempting to hide the underlying performance characteristics of the machine.

We were strongly influenced in this study by a previous comparison of sorting algorithms, which

examined bitonic, radix, and sample sort implemented in microcode on the CM-2[3]. We augment the

comparison to include column sort, address a more general class of machines, formalized by LogP, and

implement the algorithms in a language that can be ported to a variety of parallel machines.

This paper is organized as follows. In Section 2, the LogP model is described. In Section 3, we describe

our experimental environment, consisting of our implementation language, Split-C, the input data set used in

our measurements, and the LogP characterization of the CM-5, as well as our model for the local processors.

In the next four sections, we examine four sorting algorithms: bitonic sort[4], column sort[5], radix sort[3, 6],

and sample sort[3]. The order in which we discuss the sorts is based on the increasing complexity of their

communication phases. We predict the execution time of each algorithm based on the four parameters

of the LogP model and a small set of parameters that characterize the computational performance of the

individual processing nodes, such as the time for a local sort. When discussing bitonic sort and radix sort,

special attention is paid to two of the most interesting communication phases: a remap and a multi-scan,

respectively. The predictions of the model are compared to measurements of the algorithms on the CM-5

for a variety of input sets. Finally, in Section 8, we compare the performance of the four algorithms.

2 LogP

The LogP model[1] reflects the convergence of parallel machines towards systems formed by a collection

of complete computers, each consisting of a powerful microprocessor, cache, and large DRAM memory,

2



connected by a communication network.

Since there appears to be no consensus emerging on interconnection topology — the networks of

new commercial machines are typically different from their predecessors and different from each other —

attempting to exploit a specific network topology is likely to yield algorithms that are not very portable. LogP

avoids specifying the structure of the network and instead recognizes three parameters of the network. First,

inter-processor communication involves a large delay, as compared to a local memory access. Secondly,

networks have limited bandwidth per processor, as compared to the local memory or local cache bandwidth.

This bandwidth may be further reduced by contention for the destination. Thirdly, there is a cost to the

processors involved at both ends of a communication event; this cost is independent of the transmission

latency between processors.

Specifically, LogP is a model of a distributed-memory multiprocessor in which processors communicate

through point-to-point messages and whose performance is characterized by the following parameters.

L: an upper bound on the latency, or delay, incurred in communicating a message containing a small, fixed

number of words from its source processor/memory module to its target.

o: the overhead, defined as the length of time that a processor is engaged in the transmission or reception

of each message; during this time, the processor cannot perform other operations.

g: the gap, defined as the minimumtime interval between consecutive message transmissions or consecutive

message receptions at a processor. The reciprocal of g is the available per-processor communication

bandwidth.

P : the number of processor/memory modules. The characteristics of the processor are not specified by the

model

P M P M P M

Interconnection network

P (processors)

L (latency)

g (gap)

limited capacity 
(L/g to or from 
a proccessor)

o (overhead) o

. . .

Figure 1: The LogP model describes an abstract machine configuration in terms of four performance
parameters: L, the latency experienced in each communication event, o, the overhead experienced by the
sending and receiving processors for each communication event, g, the gap between successive sends or
successive receives by a processor, and P , the number of processors/memory modules.

L, o, and g are specified in units of time. As will become clear in analyzing the sorting algorithms, the

parameters are not equally important in all situations; often it is possible to ignore one or more parameters

and work with a simpler model. The model assumes that all messages are of a “small size”, which we call

the communication word and denote by w.

3



The model is asynchronous, so processors work asynchronously and the latency experienced by any

message is unpredictable, but is bounded above by L in the absence of stalls. In estimating the running time

of an algorithm, we assume that each message incurs a latency of L. Furthermore, it is assumed that the

network has a finite capacity, such that at most dL�ge messages can be in transit from any processor or to

any processor at any time. If a processor attempts to transmit a message that would exceed this limit, it stalls

until the message can be sent without exceeding the capacity limit. No position is taken on how a processor

is notified of the arrival of a message, e.g., through an interrupt or by polling. However, if a processor

ignores the arrival of a message for some time, sending processors could stall as a result of exceeding the

capacity limit.

By charging for communication events, the model favors algorithms that minimize communication,

e.g., by exploiting the grouping of a large number of data elements on a processor. Where communication

does occur, its latency can be masked by simultaneous use of the processor. Although the model does

not explicitly specify the characteristics of the local processor, it assumes that optimizing local processor

performance is important. Our model of the local processor is presented in Section 3.3.

2.1 Use of the model

To demonstrate the use of the model, let us consider some simple inter-processor operations. As illustrated

in Figure 1, the simplest operation is the transfer of a communication word from one processor to another.

This operation requires a total time of L� 2o and each processor is busy for o units of time. A remote read

operation involves two such messages, so it has a total time of 2L � 4o, where the processor issuing the

read and the one servicing the read each spend time 2o interacting with the network.1

The more interesting case to consider is a sequence of messages; this illustrates pipelining of commu-

nication and the role of the bandwidth limit. We shall assume throughout that o � g, since otherwise a

processor cannot utilize the network bandwidth and g can be ignored. If one processor sends n messages to

another the total time is 2o��n� 1�g�L. The sending processor spends o units of time delivering the first

message into the network. It can then deliver each additional message at an interval of time g. These each

take time L to reach the destination, and then the destination processor is busy for time o after receiving

each. If n is large, then the 2o and L terms can be ignored.

The timing analysis is identical if one processor transfers n communication words to many others, except

that the receive overhead is distributed across the receivers; the sender still issues messages at a rate of g.

In the case where many processors are sending to a single processor, the total time for the operation is the

same, because the time is limited by the receive bandwidth of the destination. However, the cost to the

senders is greater, since processors stall as a result of exceeding the capacity constraint.

If pairs of processors exchange n messages each, then the analysis is more complicated. Assuming that

both processors begin sending at the same time, for L units of time each processor sends messages at an

interval of g. After time L, each processor both sends and receives messages, so their sending rate slows

to max�g� 2o�. After all messages have been sent, each processor receives messages at the sending rate.

1On machines with hardware for shared memory access, the remote end may be serviced by an auxiliary processor that is part
of the memory controller[7].

4



Therefore, the total time for this operation is 2L� 2o� �n� 1� L�g�max�g� 2o�. Note that this assumes

the processors alternate between sending and receiving after the first message arrives. If n is large this

equation can be approximated with n �max�g� 2o�.

In many cases, additional performance is achieved if w words are transferred in a single message. For

example, the time for pairs of processors to exchange n computational words with dn�we messages is

Texch�n� � 2L� 2o� �dn�we � 1� L�g�max�g� 2o��

The formula for Texch is used in several of the sorting algorithms.

3 Experimental Environment

In this section, we present our experimental environment. We begin by describing the relevant features of

our implementation language, Split-C. We then discuss the probability distribution of the input keys used in

our measurements. Next, we characterize the CM-5 in terms of the LogP parameters. Finally, we discuss

our model of the local computation, focusing on the local sort.

3.1 Split-C

Our sorting algorithms are written in Split-C[2], a parallel extension of the C programming language that

can express the capabilities offered by the LogP model. The language follows a SPMD (single program

multiple data) model. Processors are distinguished by the value of the special constant, MYPROC. Split-C

provides a shared global address space, comprised of the address space local to each processor. Programs

can be optimized to take advantage of the grouping of data onto processors by specifying the data layout

with spread arrays. Two forms of pointers are provided in Split-C: standard pointers refer to the region

of the address space local to the referencing processor, global pointers refer to an address anywhere in the

machine. The time to read or write the data referenced by a global pointer under LogP is 2L � 4o, since

a request is issued and a response returned. For the read, the response is the data, for the write it is the

completion acknowledgement required for consistency.

The unusual aspects of Split-C are the assignment operations that allow the programmer to overlap

communication and avoid unnecessary communication events. With split-phase assignment, expressed with

:=, the initiating processor does not wait for a response, so 2L� 2o cycles of useful work can be performed

during the remote operation. In particular, the processor can initiate additional communication requests.

With a signalling store, expressed with :-, an acknowledgement is not returned to the initiating processor,

so the operation only requires time L � 2o. Bulk transfer of multiple words is provided for all of the

described styles of communication.

5



3.2 Input Key Characterization

In this study, we focus on the expected performance of the algorithms when sorting random, uniformly-

distributed 31-bit keys.2 We compare the predicted time per key for the four algorithms to the measured time

per key with this distribution of keys on 32 through 512 processors and for 16K to 1M keys per processor.

Throughout the paper, N designates the total number of keys to be sorted, where each processor initially

has n � N�P keys.

We evaluate the robustness of the algorithms to variations in the input set by measuring their performance

on non-uniform data sets. This analysis is performed on a fixed number of processors (64) and a fixed number

of keys per processor (1M). For the sorting algorithms whose communication phases are oblivious to the

values of the input keys (i.e., bitonic and column sort), we do not evaluate the effect of the layout of keys

across processors on the performance; we only look at the effect of input sets with different probability

distributions.

The probability distribution of each input set is characterized by its Shannon entropy[8], defined as

�
NX
i�1

pi � lg pi�

where pi is the probability associated with key i. To generate input data sets with various entropies,

we produce keys whose individual bits have between 0 and 1 bits of entropy. Multiple keys from a

uniform distribution are combined into a single key having a non-uniform distribution, as suggested in [9].

For example, if the binary AND operator is applied to two independent keys generated from a uniform

distribution, then each bit in the resulting key has a 0.75 chance of being a zero and a 0.25 chance of being

a one. This produces an entropy of 0.811 for each bit; for 31-bit keys the resulting entropy is 25.1. By

AND’ing together more keys we produce input sets with lower entropy. Our test suite consists of input sets

with entropy 31, 25.1, 16.9, 10.4, 6.2, and 0 (a constant value) randomly distributed across processors.

For the sorting algorithms whose communication phases are dependent upon the values of the keys

(i.e., radix and sample sort), we also evaluate how the initial layout of the keys across processors affects

performance (e.g., keys sorted into a blocked layout versus keys sorted cyclically). We determine the

best and worst case initial layouts of keys, which are the layouts which produce, respectively, either no

communication between processors or the greatest amount of contention during communication.

3.3 CM-5 LogP Characterization

Our measurements are performed on the Thinking Machines CM-5, a massively parallel MIMD computer

based on the Sparc processor. Each node consists of a 33 MHz Sparc RISC processor chip-set and a

network interface. The nodes are interconnected in two identical disjoint incomplete fat trees, and a

broadcast/scan/prefix control network. The implementations of the sorting algorithms do not use the vector

accelerators.

In previous experiments on the CM-5[10, 1], we determined that o � 2�2�s and, on an unloaded

2Our random number generator produces numbers in the range 0 through 231
� 1.

6



network, L � 6�s. The communication word size, w, is equal to four (32-bit) processor words. The

bisection bandwidth3 is 5 MBytes/s per processor, so we take g to be 4�s.

3.4 CM-5 Processor Characterization

LogP does not specify how the local processor is to be modeled. Modeling local computation is not the

focus of this study, yet is necessary in order to predict the total execution time of the algorithms. Therefore,

we characterize the local performance empirically. We assign a time per key per processor for each of the

local computation phases, such as merging two sorted lists (tmerge) or clearing histogram buckets (tzero).

Throughout our analysis, we use a lowercase t to indicate a rate per key and an uppercase T for the total

time of a phase.

The local sort plays an important role in bitonic, column and sample sort, accounting for up to 80% of the

execution time. Thus, it is important both to optimize the local sort carefully and to model its performance

accurately. We determined empirically, for the number of keys per processor in this study and for uniformly

distributed keys, that an 11-bit radix sort is faster than radix sorts of other digit sizes and quicksort. Radix

sort relies on the representation of keys as b-bit numbers. Each key is divided into db�re digits of r bits each,

where r is the radix. One pass is then performed over each digit, each time permuting the keys according

to the rank of the digit.

N/P

u
s

/k
e

y

0

1

2

3

4

5

6

7

8

9

1 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

3 1

25.1

16.9

10.4

6.2

Figure 2: Measured execution times per key for the local radix sort for input key distributions with entropies
of 31, 25.1, 16.9, 10.4, and 6.2.

Figure 2 shows the measured time per key of the local sort as n is varied from 16 K to 1 M keys per

processor and for keys with entropies between 31 and 6.2. As evident from the figure, the execution time

when sorting uniform keys is very sensitive to the number of keys per processor; however, when sorting

keys with a lower entropy, the performance varies much less with the number of keys. Simulations of the

local radix sort and the memory hierarchy of the CM-5 nodes reveal that the variation in execution time is

largely due to TLB misses that occur when the keys are written into their ordered positions on each pass.

3The bisection bandwidth is the minimum bandwidth through any cut of the network that separates the set of processors into
halves.

7



With a uniformly distributed input set, on each of the db�re passes, the destination position of each key

is essentially random and, thus, is written to a random page of the destination buffer. Assuming a page of

memory holds k keys, then n�k pages and TLB entries are required for the destination buffer. If l otherwise

inactive TLB entries exist for the destination array,4 then the probability that a key’s destination page is not

contained in the TLB is �1 � l � k�n�. If tlocalsort tlbhit is the time per key for the local radix sort when all

destination pages are contained in the TLB, we can model the time of the local sort on uniformly distributed

data as follows.

tlocalsort �

��
�

tlocalsort tlbhit if n � �l � k�

tlocalsort tlbhit �
l
b

r

m
ttlb miss � �1� l�k

n � otherwise

On the CM-5, tlocalsort tlbhit is measured as 4.5�s/key, ttlb miss, the cost of replacing an entry in TLB, is

approximately 1.5�s/key, l is �64� 3 � 61� TLB entries, and k is 1K keys. Substituting these numbers into

our model gives the formula for tlocalsortin Table 1.

The model for the local sort is within 10% of the measured time of the local sort on uniform keys;

however, the performance of the local radix sort also depends upon the probability distribution of the input

keys. Since identical digits have adjacent positions in the destination buffer, sorting many keys with the

same value increases the likelihood that the same digit, and thus the same destination page, is referenced. If

few unique keys exist, then the probability of hitting in the TLB increases and the local sort time decreases.

For example, when sorting identical keys, TLB misses occur only when a page boundary is crossed. Rather

than developing a model which predicts the probability of missing in the TLB as a function of the input key

distribution, we use the model for uniformly distributed keys as an upper bound on the execution time.

The other computation steps account for a much smaller fraction of the execution time of the algorithms.

For this reason, we use a measured time per key per processor for the computation rates. When possible, we

use a constant rate for the time per key; however, in the case of Tswap, Tgather, and Tscatter, we use times per

key that are dependent upon the number of keys, because the computation is sensitive to memory effects.

Table 1 shows the local computational rates used in all of the sorts.

4 Bitonic Sort

In this section, we discuss a variant of Batcher’s bitonic sort[4]. After describing the general algorithm, we

present a data layout that reduces communication and enables optimizations for the local computation. We

then describe how the LogP model guides us to an efficient implementation of the important communication

operations: remaps between cyclic and blocked layouts. Finally, we give the predicted execution time under

LogP and compare it to measured results.

Bitonic sort is based on repeatedly merging two bitonic sequences to form a larger bitonic sequence.5

The basic algorithm for sorting N numbers performs lgN merge stages. The communication structure

4We assume that the source buffer of keys, the code, and the histogram buckets each require one active TLB entry.
5A bitonic sequence is a sequence that can be circularly shifted such that it first increases monotonically and then decreases

monotonically.

8



Variable Operation Time Per Key (�s/key) Sort

tswap simulate cyclic �0�08 � 0�025 � lgn
butterfly for key

tmergesort sort bitonic 1.0 Bitonic
sequence of keys

tscatter move key for cyclic 0.46 if n� 64K
to blocked remap 0�44 � 0�00059 � P otherwise

tgather move key for blocked 0.52 if n� 64K or P �64
to cyclic remap 1.1 otherwise Bitonic

tlocalsort local radix sort of 4.5 if n� 64K and
random keys 9�0� �281088�n� if 64K � n Column

tmerge merge two sorted lists 1.5
tshiftcopy shift key 0.5 Column

tzero clear histogram bin 0.22
th produce histogram 1.2
tadd produce scan value 1.0 Radix
tbsum adjust scan of bins 2.5
taddr determine destination 4.7

tcompare compare key 0.9
to splitter Sample

tlocalsort 8 local radix sort 5.0
of samples

Table 1: Models of local computation rates.

of the i-th merge stage can be represented by N�2i butterflies each with 2i rows and i columns. Each

butterfly node compares two keys and selects either the maximum or the minimum key. The communication

structure of the complete algorithm can be visualized as the concatenation of increasingly larger butterflies,

as suggested by Figure 3.

The basic algorithm does not specify the layout of keys across processors nor what operations are

performed by each processor. The standard approach to implementing bitonic sort is to simulate the

individual steps in the butterfly. However, we derive a more efficient data placement that was inspired by

the mapping used for large FFTs [1].

Our bitonic sort starts with a blocked layout. The first n keys are assigned to the first processor, which

is responsible for the operations represented by the first n rows of the butterfly nodes, the second n keys

and n rows are assigned to the second processor, and so on. Under this layout, the first lgn merge stages

are entirely local. Since the purpose of these first stages is to form a monotonically increasing or decreasing

sequence of n keys on each processor, we can replace all of these merge stages with a single, highly

optimized local sort. For example, with two processors the first two merge stages in Figure 3 are entirely

local and are replaced with a local sort.

For subsequent merge stages, we remap from a blocked to a cyclic layout. Under a cyclic layout, the

9



Merge StageMerge Stage
3rd 2nd1st

Merge Stage

8

5

4

2

1

8

7

6

3

7

8

6

3

7

6

1

2

4

3 2

1

4

5

6

1

3

5

7

3

7

8

6

4

6

8

3

7

2

5

Addr 0

Addr 2

Addr 5

Addr 7

Addr 1

Addr 3

Addr 4

Addr 6

1

4

5

2

5

4

1

2 8

7

5

3

1

2

4

6

8

Figure 3: The communication required for bitonic sort to sort eight keys using a series of merge stages. A
row of nodes represents an address containing one of the keys. The edges show which keys are swapped
with one another. A shaded node designates an address where the minimum of the two keys is placed. The
arrows indicate the monotonic ordered sequences, with the arrowhead pointing towards the largest key.

first key is assigned to the first processor, the second key to the second processor, and so on. The first

i� lgn columns of the i-th merge stage are computed locally. In each of these steps, the processor performs

a comparison and conditional swap of pairs of keys. A remap back into a blocked layout is then performed

so the last lgn steps of the merge stage are local.

A gather or scatter operation is associated with each remap, but by restructuring the local computation

on either side of the remap, it is often possible to eliminate the gather and/or the scatter. The purpose of the

final lgn steps of each stage is again to produce sorted sequences of n keys on every processor. Since at

this point the keys on each processor form a bitonic sequence, we can use a bitonic merge sort, rather than

full radix sort. In a bitonic merge sort, after the minimum element has been found, the keys to its left and

right are simply merged.

4.1 Optimizing Remaps

The remaps between cyclic and blocked layouts involve regular and balanced all-to-all communication,

i.e., the communication schedule is oblivious to the values of the keys and each processor receives as much

data as it sends. The remap operation consists of �P � 1� iterations, where on each iteration the processor

performs a gather or scatter and exchanges n�P keys with another processor. Recall that one source of stalls

under LogP occurs when the capacity limit of the network is exceeded. We can construct a communication

schedule that ensures that no more than L�g messages are in transit to any processor by having processor p

exchange data with processor p� i on iteration i.

Ignoring the gather and scatter cost, the remap is modeled as �P � 1� iterations of pair-wise bulk

exchanges of n�P keys, where the time for a single exchange was presented in Section 2.6

6The astute reader may notice that there appears to be an opportunity to save time �P � 2�L by not waiting for the pairwise
exchange to complete before storing into the next processor. However, given that processors operate asynchronously, due to cache

10



Tremap � �P � 1� � Texch�n�P �

Stalls may also occur under LogP if a processor fails to retrieve messages from the network. In Split-C,

the network is polled when messages are sent or when explicitly specified. Therefore, if local computation,

such as a gather or scatter, is performed during each iteration of the remap, messages may not be retrieved

from the network after time L as expected. The simple solution is to remove the local computation from

the communication loop, i.e., gather the data for all processors before storing to any of them. With this

approach, the execution time of remap is within 15% of that predicted by the model for all values of n

and P .7 We would like to point out that our first attempts to implement the remap ignored the network

and caused contention; thus, we failed to completely address the potential stalls articulated in the model

and the performance suffered. Not meeting the model predictions motivated us to look more closely at the

implementation, and the model served further to explain the defect.

4.2 LogP Complexity

In this section, we summarize the LogP complexity of bitonic sort. Our bitonic sort algorithm begins with a

blocked layout and performs a local sort. Next, lgP merge stages are performed. Each merge stage consists

of a remap from a blocked to a cyclic layout, a sequence of local swaps, a remap of the data back to a

blocked layout, and a bitonic merge sort.

Tbitonic � n � tlocalsort � n � tgather

� lgP � �Tremap �
1
2
�lgP � 1� � n � tswap � Tremap � n � tscatter � n � tmergesort�

The equation for the communication phase, Tremap, was given in Section 4.1.

4.3 Empirical Results

Figure 4 shows the predicted and measured time per key for bitonic sort on 16K through 1M keys per

processor on a CM-5 of 32 to 512 processors. Each data point represents a single run of the program. These

experiments were performed on random distributions of keys, i.e., their entropy is equal to 31. The time per

key per processor increases only slightly with problem size, but increases substantially with the number of

processors. The increase in time per key across processors is largely due to the greater number of merge

stages. Comparing the two figures, it is evident that our prediction of the overall execution time per key is

close to the measured time; all of our errors are less than 12%.

Figure 5 shows the breakdown of the execution time of bitonic sort into computation and communication

phases. Predicted and measured times are presented for 512 processors. The figure illustrates that the time

per key increases slowly with n due to the local steps: the local sort, the swap, and the bitonic merge sort.

misses and network collisions, this approach increases the likelihood that there will be contention.
7The model used in this comparison and in the graphs to follow was adjusted to include the overhead of Split-C’s implementation

of bulk stores. An additional cost of 2L� 4o is incurred for each invocation of bulk store to set up a communication segment.

11



Predicted

N/P

u
s

/k
e

y

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Measured

N/P

u
s

/k
e

y

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

5 12

256

128

6 4

3 2

Figure 4: Predicted and measured execution time per key of bitonic sort on the CM-5. Times are shown to
sort between 16K and 1M keys per processor on 32, 64, 128, 256 and 512 processors.

Predicted

N/P

u
s

/k
e

y

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Measured

N/P

u
s

/k
e

y

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Remap B-C

Remap C-B

Mergesort

Swap

Localsort

Figure 5: Predicted and measured execution times per key on 512 processors for the phases of bitonic
sort. The time for the single gather is included in the time for the remap from a blocked to a cyclic layout;
likewise, the time for the scatter is included in the time for the remap from a cyclic to a blocked layout.

The increase in each of these steps is due to cache effects. The time per key for the communication steps

actually decreases slightly with n because the remap contains a startup cost proportional to the number of

processors. These two trends imply that the percentage of time spent performing communication decreases

with n, from 64% at small data sets to 40% at large data sets.

The communication operations performed in bitonic sort are oblivious to the distribution of the input

set, and, as our experiments demonstrate, the total execution time of bitonic sort is relatively insensitive to

the input set. Figure 6 shows the measured time per key of bitonic sort with 64 processors and 1M keys

per processor for input sets with different entropies. The figure shows that the times for the communication

steps and for the swap step are constant with respect to the distribution of the input set. As discussed in

Section 3.3, the time for the local sort increases with entropy because of an increase in the TLB miss rate;

however, this increase in time is offset by a decrease in the time for the merge sort step.8 Therefore, the

8With low entropies, our implementation for finding the minimum element in the bitonic sequence is slower because more keys

12



 

Entropy (bits)

u
s

/k
e

y
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

0 6.2 10.4 16.9 25.1 3 1

Remap C-B

Remap B-C

Mergesort

Swap

Localsort

Figure 6: Measured execution times per key on 64 processors for the phases of bitonic sort for different
input key distributions.

overall time for bitonic sort is relatively stable with different input key entropies, varying by only 12%.

5 Column Sort

Column sort [5], like bitonic sort, alternates between local sort and key distribution phases, but only four

phases of each are required. Two key distribution phases use an all-to-all communication pattern and two

use a one-to-one pattern. In column sort the layout of keys across processors is simple: the N keys are

considered elements of an n � P matrix with column i on processor i. A number of restrictions are placed

on the relative values of n and P , which require N � P 3.

The communication phases are transpose, untranspose, shift, and unshift, respectively. A local sort is

performed on every column before each communication phase. Transpose is exactly the blocked-to-cyclic

remap described in bitonic sort; untranspose is the cyclic-to-blocked remap. The shift permutation requires

that the second half of the keys on processor i be sent to processor �i� 1� mod P . Thus, this step requires

one-to-one communication. A small amount of local computation is performed to move the first half of the

keys in each column to the second half of the same column. Similarly, in the unshift operation, the first half

of the keys on processor i are sent to the second half of processor �i� 1� mod P . The local computation

consists of moving the second half of each column to the first half.

When optimizing the local sort, it is essential to notice that after the first sort, the keys are partially

sorted. In the second and third local sorts, there areP sorted lists of lengthn�P on each processor; therefore,

a P -way merge could be performed instead of a general sort. However, empirical study showed that our

general local radix sort is faster than a P -way merge sort for the P of interest. In the fourth sorting step

there are two sorted lists of length n�2 in each column and a two-way merge is most efficient. The models

for this local computation are once again found in Table 1.

must be examined before the direction of the sequence is determined, due to duplicate keys.

13



5.1 LogP Complexity

The execution time of column sort is the sum of its eight steps, alternating between local computation and

communication.

Tcolumnsort � n � tlocalsort � �n � tgather � Tremap� � n � tlocalsort � Tremap

�n � tlocalsort � Tshift � n � tmerge � Tunshift

Tshift � Tunshift �
n

2
� tshiftcopy �

�
n

2w

�
�max�g� 2o�

The time of the local sort is the same as in bitonic sort. Our implementation of transpose gathers the

keys into contiguous memory before performing the remap. Untranspose does not require a scatter because

the next step of the algorithm is a local sort on the column; therefore, untranspose is modeled as a single

remap. The shift and unshift consist of a local copy of half of a column, receiving n�2 words from one

processor, and sending the same amount to another. The communication has the same cost as a pairwise

exchange. Since n is large compared to L, we simplify the model as shown above.

5.2 Empirical Results

Predicted

N/P

u
s

/k
e

y

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Measured

N/P

u
s

/k
e

y

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

5 12

256

128

6 4

3 2

Figure 7: Estimated and measured execution time of column sort on the CM-5. Note that, due to the
restriction that N � P 3, our algorithm cannot sort all values of n for a given P .

The predicted and measured time per key for column sort on uniformly distributed keys is shown in Figure 7.

Note that not all data points are available for all numbers of processors, due to the restriction that N � P 3.

The error between the predicted overall time per key and the measured time is less than 11% for all data

points. The predicted time per key increases very little with an increasing number of processors; the

measured time increases somewhat more, due to a rise in the gather time. The time per key increases more

dramatically as the number of keys per processor grows. These two trends are in contrast with the behavior

of bitonic sort, where time per key increased significantly with P , but slowly with n.

Figure 8 shows the predicted and measured times per key for each of the phases on 64 processors. This

configuration was chosen because it is the largest on which the full range of keys can be sorted. These

14



Predicted

N/P

u
s

/k
e

y

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Measured

N/P

u
s

/k
e

y

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Sort1

Sort2

Sort3

Merge

Trans

Untrans

Shift

Unshift

Figure 8: Estimated and measured execution time of the phases of column sort on 64 processors.

figures demonstrate that the time for the local computation steps increases with n. In fact, the increase in

column sort is more dramatic than in bitonic sort. The time spent communicating remains constant with n,

so the percentage of time spent communicating decreases with n, from 20% to 12%. The error between the

predicted and measured values is negligible for the communication phases; the primary source of error is in

our prediction for the local computation.

Entropy (bits)

u
s

/k
e

y

0

5

1 0

1 5

2 0

2 5

3 0

3 5

0 6.2 10.4 16.9 25.1 3 1

Sort1

Sort2

Sort3

Merge

Trans

Untrans

Shift

Unshift

Figure 9: Measured execution times per key on 64 processors for the phases of column sort for different
input key distributions.

The measured execution time for the phases of column sort for various input set entropies is shown in

Figure 9. As expected, the time per key for the communication phases is constant; the time for the merge

computation is also constant with entropy. However, because column sort performs three local sorts which

each execute much faster at lower entropies, column sort is more than 60% faster for low entropy keys than

for uniformly distributed keys and than our model predicts.

15



6 Radix Sort

Parallel radix sort requires fewer local computation and key distribution phases than the previous sorts;

however, the communication phase is irregular and uses an additional setup phase to determine the desti-

nation of the keys. In the setup phase a global histogram is constructed, which involves a multi-scan and a

multi-broadcast.

The parallel version of radix sort is a straight-forward extension to a local radix sort. In the parallel

version, the keys begin in a blocked layout across processors. Each pass of the parallel radix sort consists

of three phases. First, each processor determines the local rank of its digits by computing a local histogram

with 2r buckets. Second, the global rank of each key is calculated by constructing a global histogram from

the local histograms. In the third phase, each processor has the global rank of the first of each digit, which

is used to distribute each key to its proper position.

. . .

. . .

. .
 .

+

+

+

+

. .
 .

+

+

+

+

. .
 .

+

+

+

+

P
0

P
1

P
P-1

Bin0

Bin
2 r-1

Figure 10: Linear scan of local histograms to form the global histogram.

The global histogram in the second step is constructed such that bucket i on processor p contains the

sum of all local histogram buckets less than i on all processors and the local histogram buckets equal to i on

processors less than p. In the naive approach to constructing the global histogram, each row of the global

histogram depends upon the previous row. This construction is shown in Figure 10. When this dependency

exists, a parallel prefix can be used for each row of bins, but the 2r scans must be done sequentially. For a

large radix, this is inefficient.

To eliminate the dependency, a partial global histogram is constructed by performing a scan on each

bucket across processors. Thus, each row in the partial histogram is independent of the earlier rows. After

the partial global histogram is constructed, the sum of each row of buckets, stored in the buckets on the last

processor, is broadcast to all processors. Each processor computes its portion of the global histogram by

adding the sum of the broadcasted buckets less than i to the bucket i in the partial histogram.

The algorithm just described consists of three components: a multi-scan to construct the partial global

histogram, a multi-broadcast of the sum of each row, and finally, some local computation to adjust the values

in the global histogram. The multi-scan and multi-broadcast communication operations are discussed further

below.

In the key distribution phase, the processor and offset to which a key is sent depends upon the value in the

global histogram; thus, this phase requires all-to-all irregular communication. Since the destination of the

16



keys is dependent upon the value of the key, it is not possible to precompute a contention-free communication

schedule as for the remap. Determining the expected slowdown due to contention of a random permutation

under LogP is an interesting open problem. Our simulations and recent theoretical results[11] suggest that

the slow-down is bounded by a small constant, but a thorough treatment of this problem is beyond the scope

of this paper. Because of difficulties in modeling the contention in this phase, we elected to ignore it and

model the time for this phase as

Tdist � n �max�g� 2o� taddr��

where taddr is the time required to perform the address calculation before storing each element. 9

6.1 Optimizing Multi-Scan and Multi-Broadcast

There are many different ways to tackle the multi-scan and multi-broadcast problems, but LogP provides

valuable guidance in formulating an efficient pipelined approach. One might expect that a tree-based

approach would be most attractive. However, for one processor to send n words to each of two other

processors takes time at least 2n � g. Thus, if n is much larger than P , it is faster to broadcast the data as

a linear pipeline, than as a tree.10 In a pipelined multi-scan, processor 0 stores its first value on processor

1; processor 1 waits until it receives this value, adds it to a local value, and passes the result to processor

2, and so on. Meanwhile, after sending the first value, processor 0 sends the second value to processor 1,

and so on through each of the values. We concentrate on the multi-scan for the remainder of the discussion

since multi-broadcast is identical to multi-scan, except the value is forwarded directly to the next processor

without adding it to a local value.

A straight-forward estimate of the time for multi-scan is the time for one processor to forward (2r � 1)

values to the next processor plus the time to propagate the last element across all processors. It takes time

max�g� 2o� tadd� to forward one element in multi-scan, so the time to perform a multi-scan over 2r values

should be

Tscan � �2r � 1� �max�g� 2o� tadd� � �P � 1� � �L� 2o� tadd��

In this analysis we are tacitly assuming that each processor receives a value, forwards it, and then

receives the next value, so that a smooth pipeline is formed. This observation brings to light an important

facet of the LogP model: time that a processor spends receiving is time that is not available for sending. In

practice, receiving is usually given priority over sending in order to ensure that the network is deadlock-free.

The difficulty in the multi-scan is that processor 0 only transmits, so it may send values faster than the rest of

the pipeline can forward them. As a result, processor 1 receives multiple values before forwarding previous

ones and processors further in the pipeline stall, waiting for data.

In order to maintain the smooth pipeline, the sending rate of processor 0 must be slowed to the forwarding

rate of the others. The model does not specify the policy for handling messages at the processor, so in

9Our implementation of the key distribution does not take advantage of the size of the communication word. Modifications
could be made to the algorithm such that keys destined for the same processor are first gathered and then stored in bulk.

10In [12] an optimal broadcast strategy is developed where the root sends each data element only once, but alternates among
recipients in order to retain the logarithmic depth of a tree broadcast.

17



theory each processor could refuse to receive the next value until it has forwarded the present one and the

capacity constraint would eventually cause processor 0 to slow to the forwarding rate. A simpler solution,

which we chose to implement, is to insert a delay into the sending loop on processor 0 so it only sends at

the forwarding rate max�g� 2o� tadd�.

This seemingly minor issue proved to be quite important in practice. Our initial naive implementation

allowed processor 0 to send at its maximum rate. This was slower than our prediction by roughly a factor

of two, which caused us to study the issue more carefully. After inserting a delay, the measured execution

times were within 3% of that predicted by the model.

6.2 LogP Complexity

The total running time of the radix sort algorithm is the sum of the running time of the three phases multiplied

by the number of passes. The optimal radix size r depends upon the number of keys to be sorted and the

relative cost of creating the global histogram to the cost of permuting the keys. A larger radix implies

more histogram buckets and thus a higher cost for creating the global histogram; however, less passes are

performed. Our implementation uses a radix size of 16 bits.

Tradix �
l
b

r

m
� �Tlocalhist � Tglobalhist � Tdist�

Tlocalhist involves only local computation; forming the local histogram requires initializing each of the

histogram buckets and incrementing the corresponding bucket for each of the keys.

Tlocalhist � 2r � tzero � n � th

The LogP complexity of constructing the global histogram, is the sum of three components. Our models

of the execution time of Tscan and Tbcast are those presented in Section 6.1, plus the cost of initializing each

of the histogram buckets. Tfinal is the time to adjust the local histogram by the broadcasted values.

Tglobalhist � Tscan � Tbcast � Tfinal

Tscan � 2r � tzero � 2r �max�g� 2o� tadd� � �P � 1� � �L� 2o� tadd�

Tbcast � 2r � tzero � 2r �max�g� 2o�� �P � 1� � �L� 2o�

Tfinal � 2r � tbsum

6.3 Empirical Results

Figure 11 shows the predicted and measured times per key for radix sort on uniformly distributed keys.

For small values of n, our measurements are only 9% higher than the prediction; for large values of n, our

measurements are 37% higher. We predict that the number of processors has a negligible impact on the

execution time per key, but measurements show that the execution time increases slowly with the number

of processors due to a slight increase in key distribution time. The execution time per key decreases as the

number of keys increases; therefore, while radix sort is slower for small n than both column and bitonic

18



Predicted

N/P

u
s

/k
e

y

0

2 0

4 0

6 0

8 0

100

120

140

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Measured

N/P

u
s

/k
e

y

0

2 0

4 0

6 0

8 0

100

120

140

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

5 12

256

128

6 4

3 2

Figure 11: Predicted and measured execution time per key of radix sort on the CM-5.

N/P

u
s

/k
e

y

0

2 0

4 0

6 0

8 0

100

120

140

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
E

+
0

6

Dist

GlobalHist

LocalHist

Dist-m

GlobalHist-m

LocalHist-m

Figure 12: Predicted and measured execution times per key of various phases in radix sort on 512 processors.

sort, it is faster for large n.

Figure 12 shows the breakdown by phases for 512 processors. Both the prediction and the measurements

show a significant decrease in time per key with increasing number of keys, due to the fixed cost of

constructing the global histogram. This observation implies that a smaller radix size should be used to sort

small data sets. At large values of n, the time to distribute the keys comprises 85% of the execution time.

Our measurements show that the time to permute the keys across processors increases with both P and

n. The model matches the measured execution time precisely for 32 processors and 16K keys. On 512

processors and 16K keys, our measured time is 34% higher than that predicted by the model; with 1M keys

it is 47%. This increase in communication time both with the number of processors and problem size may

be due to the contention which we do not model, although additional experiments indicate that the increase

with n is largely due to tlb misses on the destination processor, similar to the misses observed in the local

sort. As a result of the poorer accuracy of our model for very large numbers of processors, we may not be

able to extrapolate our results to 1024 processors as well for radix sort as for the other sorts.

Figure 13 shows the execution time of radix sort for various input sets. The execution time for

constructing the local histogram increases slightly with entropy, due to a decrease in the locality of histogram

19



Key Distribution

u
s

/k
e

y

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

0 6.2 10.4 16.9 25.1 3 1 Cyclic

118

Dist

GlobalHist

LocalHist

Figure 13: Measured execution times per key on 64 processors for the phases of radix sort for different input
key distributions. The time per key under the cyclically sorted input set extends beyond the graph.

bucket accesses. The time for constructing the global histogram is constant with key entropy because the

pipelined multi-scan and multi-broadcast are oblivious to the keys. In the key distribution phase, the

communication pattern does depend upon the input set; however, the entropy of the keys is of lesser

importance than the layout of keys across processors. The key distribution phase executes 5% faster with an

input set of entropy 25.1 than one of 31; however, this is due not to changes in the communication schedule,

but to increased locality in the histogram bucket accesses when calculating the destination addresses.

In contrast, an input set of a constant value (an entropy of 0) is already sorted on each of the passes; thus,

during key distribution, each processor stores keys only to itself.11 Not only does this guarantee that no

contention occurs, but processors compute for some time less than o to perform the local store; this results

in a communication phase which is 80% faster than with uniformly distributed keys.

In [9], similar results are presented for the execution time of the phases in radix sort as the entropy

of keys is varied: a decrease in the total execution time as the entropy decreases, with a marked decrease

with an entropy of 0. While the shape of their curve and ours are very similar, their execution times are

between 50% and 66% faster. Their improvement in execution time occurs in the key distribution phase; if

our implementation were changed to pack multiple keys into a single communication word, this difference

might be reduced.

Figure 13 also shows the performance for the worst case input set: the keys are initially sorted on each

pass cyclically across processors. On every pass, each processor first stores n�P keys on processor 0, then

each stores n�P keys on processor 1, and so forth. This contention in the communication schedule slows

down the key distribution phase more than five times that for uniformly distributed keys.

11Note that not all input sets which are initially sorted cause processors to store only to themselves, since the keys must be in
sorted order for each of the

�
b

r

�
passes.

20



7 Sample Sort

An interesting recent algorithm, called sample (or splitter) sort [3, 13], pushes the pattern of alternating

phases of local computation, destination setup, and key distribution to the extreme — it performs only one

of each. The key distribution phase in sample sort exhibits the most complicated structure of any in the four

sorts: irregular, unbalanced all-to-all communication.

The idea behind sample sort is as follows. Suppose we could pick every n-th key in the final sorted

order; these P � 1 values split the data into P equal pieces. If each processor has the P � 1 splitters, it

can send each key to the destination processor. After sending and receiving all of its keys, each processor

sorts its keys locally. In sample sort, rather than picking precisely every n-th key, the splitters are guessed

by sampling the initial data. Some s � P elements are selected at random, sorted, and every s-th element is

selected.

This leads to the three phases of sample sort. In the setup phase, the splitter step, every processor

sends s of its keys to processor 0, where s is the sample size. Processor 0 sorts the samples, selects keys

s� 2s� ���� �P � 1� � s as splitters, and broadcasts the splitters to the other processors. In the second step, the

distribute phase, every processor sends each of its keys to the correct destination processor, as determined

by a binary search on the splitter array.12 In the last phase, a local radix sort is performed on the received

keys.

The key distribution step of sample sort involves irregular, unbalanced all-to-all communication, i.e.,

each processor potentially receives a different number of keys. We call the ratio of the maximum number of

keys received by a processor to the average the expansion factor, E. Assuming a large sample size, a large

number of keys per processor, and a random input key distribution, the expansion factor can be bounded by a

small constant with high probability [3]. In our analysis of the distribution of keys in radix sort, we ignored

the destination contention that occurs when multiple processors send to the same destination processor. The

distribution phase for sample sort is similar, so we continue to ignore the potential contention. However,

because the communication is unbalanced, one processor may receive up to E �n keys. The execution time

of this step is limited by the processor receiving the most keys.13

7.1 LogP Complexity

Under LogP, we model the time to perform the sample sort as the sum of the three phases.

Tsample � Tsplit � Tdist � Tlocalsort

The time for the first phase, the splitter step, is the sum of its three components: collecting the samples

and sending them to processor 0, sorting the samples on processor 0, and broadcasting the splitters. In our

12With low entropy input sets, there is a high probability that the splitters are not unique; special care is taken to distribute the
keys with those values evenly across the processors.

13As with the key distribution in radix sort, our implementation does not use a bulk communication style. Once again, additional
computation could be performed to gather keys to take advantageof the communication word. For example, instead of independently
determining the destination processor of each key and then storing each key, the keys could be first sorted locally on each processor,
effectively gathering the keys destined for the same processor, and then storing the keys in bulk.

21



implementation, we use a sample size of s � 64. Processor 0 sorts the samples using an eight-bit radix sort

and broadcasts the splitters, using the multi-broadcast described in Section 6.1 for P values.

Tsplit � Tcollect � Tsplitsort � Tbcast

Tcollect �

�
s

w

�
P � g � L

Tsplitsort � s � P � tlocalsort 8

Tbcast � P � tzero � P �max�g� 2o� � �P � 1� � �L� 2o�

In the distribution phase the execution time is limited by the processor receiving n � E keys. Before

sending each key, each processor must perform a binary search on the splitter array to determine the

destination processor. We model the time of this search for each key, tsearch � lgP � tcompare, as the number

of comparisons multiplied by the time to perform a single comparison. Because this lookup time is larger

than g for a large number of processors, the communication is spread further apart and the destination

contention is less of an issue than in radix sort.

Tdist � n �max�E � g� o� tsearch �E � o�

The local sort time in sample sort is different than that in bitonic and column sort because the number

of keys being sorted on a processor may be as large as E � n. This affects not only the total sorting time,

Tlocalsort � E � n � tlocalsort, but also tlocalsort, the sorting rate per key.

For our sample size, number of keys per processor, number of processors, and uniformly distributed

input keys, we found that 1�22 � E � 1�45. In our model, we approximateE with the mean of the observed

expansion factors: 1.33. Note that after sample sort has finished sorting the keys, the number of keys per

processor is not constant. If this condition is desired, then an extra phase is necessary to redistribute the

keys evenly across processors.

7.2 Empirical Results

The predicted and measured times per key for sample sort on uniformly distributed keys are displayed in

Figure 14. On 512 processors, our measurements are accurate within 4% of that predicted by the LogP

model. From the plots, we see that the time per key increases with the number of processors, for reasons

discussed below. The behavior with increasing n depends upon the number of processors: for small P , it

increases slightly; for large P , it decreases more significantly. The measured execution times of sample sort

exhibit variation with n because the actual expansion factors are dependent on the random data sets.

The increase in time per key with the number of processors occurs in two different phases. The time

of the splitter phase increases because with more processors, there are more samples to sort on processor

0 and more splitters to distribute across processors; however, the effect of this startup cost diminishes as n

increases. The time of the key distribution phase increases because the search on the splitters takes time

proportional to lgP ; this cost does not diminish with n.

The predicted and measured execution time per key on 512 processors is plotted in Figure 15. The

22



Predicted

N/P

u
s

/k
e

y

0

5

1 0

1 5

2 0

2 5

3 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Measured

N/P

u
s

/k
e

y

0

5

1 0

1 5

2 0

2 5

3 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

5 12

256

128

6 4

3 2

Figure 14: Estimated and measured execution time of sample sort on the CM-5.

N/P

u
s

/k
e

y

0

5

1 0

1 5

2 0

2 5

3 0

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Split

Sort

Dist

Split-m

Sort-m

Dist-m

Figure 15: Estimated and measured execution times of various phase of sample sort on 512 processors.

measured time for the key distribution phase matches the predicted time very closely and is constant with

n because the observed expansion factor on 512 processors varies very little from 1.33. However, the

percentage of time spent distributing keys increases from 38% to 51% as the number of keys increases.

Once again, the time for the local sort is greater for larger data sets due to cache misses. The execution

time of the splitter phases decreases dramatically with the number of keys per processor. From this figure,

it is obvious that the cost of the splitter phase is too large for small values of n: on 512 processors, with an

oversampling ratio of 64, the splitter phase sorts 32K samples. The time for this phase could be reduced by

sorting the samples on multiple processors, by using an 11-bit radix sort rather than the eight-bit radix sort,

or by using a smaller oversampling ratio.14

Figure 16 shows the execution time per key of the phases of sample sort for various input key distributions.

The time for the splitter phase is negligible for 64 processors and 1M keys per processor for all keys

distributions. Once again, the time for the local sort increases with the entropy of the keys. As was the case

with radix sort, if constant-valued keys are ignored, then the execution time of the key distribution phase

14Of course, a smaller value of s results in higher expansion factors.

23



Key Distribution

u
s

/k
e

y

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

0.0 6.2 10.4 16.9 25.1 31.0 Block Cyclic

Split

Sort

Dist

Figure 16: Measured execution times per key on 64 processors for the phases of sample sort for different
input key distributions.

exhibits very little variation with key entropy. The time per key is slightly greater at the lower entropies

because the expansion factors are larger.

The layout of keys across processors is more significant to the execution time of the key distribution

phase. For example, distributing constant-valued keys is 63% faster than distributing keys with an entropy

of 31 for two reasons: first, our implementation of the binary search is faster when a key matches one of

the splitter values; second, each of the keys is stored on the sending processor. The figure shows that when

the key values are unique, but already sorted across processors, the distribution phase is only 20% faster

than for keys with an entropy of 31; this smaller speedup occurs because the binary search time remains

unchanged from the uniform-distribution case, but keys are not moved across processors.

Finally, the worst case key distribution time occurs when the keys are initially sorted cyclically across

processors. The contention in the communication results in a phase that is more than eight times slower

than that for uniform keys. This slowdown due to contention is similar to that observed in radix sort for its

worst case layout; however, the layout of keys that produces the most contention in radix sort is not a simple

cyclically-sorted list and seems much less likely to occur in real input sets.

8 Comparison

The accuracy of the model encourages us to extrapolate to configurations which we have not yet measured.

Figure 17 shows the predicted execution time of the four sorts for uniform data sets on 32 and 1024

processors. Note that with 1024 processors, column sort, because of its layout restrictions, is unable to sort

any of the data sets of interest and so is not included in the figure. It appears that two of the sorts, radix and

sample sort, are fast enough on 1M keys per processor and 1024 processors to sort one billion keys in less

than half a minute, since they achieve a rate of about 25�s per key.

The predicted time per key is slightly less for radix sort than for sample sort; however, as mentioned

in Section 6.3, for a large number of processors and large problem sizes the predictions for radix sort are

less accurate, which may lead to a 40% higher execution time than predicted. Both of these sorts have the

24



N/P

u
s

/k
e

y

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

Bitonic 1024

Bitonic 32

Column 32

Radix 1024

Radix 32

Sample 1024

Sample 32

Figure 17: Estimated execution time of four parallel sorting algorithms under LogP with the performance
characteristics of the CM-5.

disadvantage that the time for the key distribution phase is extremely sensitive to the layout of the keys

across processors; each has a worst case layout that leads to an execution time that is five to eight times

slower than that for uniform data. The worst case layout for sample sort (a cyclically sorted list) may occur

more frequently in real input sets.

A question of interest is the execution time of the algorithms for the four combinations of small and large

values of n and of P . As discussed above, for a large number of processors and large problem sizes, the

performance of radix and sample sort are very similar; the choice between the two may depend on the input

key distribution. On a small number of processors and small data sets, column and sample sort have nearly

identical performance. Again, the decision for choosing between these two sorts would be based upon the

expected distribution of the input keys and whether the number of keys meet the constraints imposed by

column sort. With a small number of processors and large data sets, radix and sample sort once again have

similar performance, with the tradeoff depending on the input key distribution. Finally, with small data sets

on a large number of processors, sample sort significantly outperforms the other sorts.

9 Summary

In this paper, we have analyzed the performance of four parallel sorting algorithms.15 We have found that

when sorting algorithms are highly optimized to exploit the layout of keys across processors that they consist

of alternating phases of local computation, setup to determine the destination of keys, and key distribution.

LogP captures the characteristics of modern parallel machines with a small set of parameters: latency

(L), overhead (o), bandwidth (g), and number of processors (P ). We have shown that the LogP model is

a good predictor of the communication performance. In order to accurately predict the total execution of

the algorithms, we required a model for the local computation; because LogP does not specify how local

15The Split-C implementations of the four sorting algorithms, as well as the Split-C compiler, are available by anonymous ftp
from ftp.CS.Berkeley.EDU.

25



computation is modeled and because this was not the focus of our study, our model of the local computation

is based on measurements. We discovered that a more elaborate model was needed for the local computation

phases than for the communication phases in order to predict the two with comparable accuracy.

One issue when predicting execution time is whether the expected execution time or the worst case

execution time should be used. The expected execution time depends upon both the distribution and the

layout of the input keys. An open question remains as to how to characterize the input keys. We found that

the execution time of the local radix sort was very sensitive to the probability distribution, or the entropy,

of the input keys; our model of the local sort accurately predicts only the execution time for uniformly

distributed keys. The key distribution phases in radix and sample sort exhibited substantially different

performance with different layouts of keys across processors, due to differences in contention. Contention

is modeled in LogP by the capacity constraint; however, because predicting the expected number of keys

destined for a particular processor is difficult, we chose to ignore the contention in these phases in our model.

Therefore, our model focused on predicting the expected execution time for random, uniformly distributed

keys.

We have also shown that LogP is a valuable guide in illuminating deficiencies in implementations.

Specifically, when the measured execution time of the all-to-all remap and the pipelined multi-scan did

not match the execution time predicted by the model, we examined our implementations more carefully

and found that we were violating constraints specified by the model. Re-implementations corrected the

violations and brought the measured execution times to within 15% and 3%, respectively, of the predictions.

Acknowledgement

The authors wish to acknowledge the computational support provided by the NSF Infrastructure Grant

number CDA-8722788 and the Advanced Computing Laboratory of Los Alamos National Laboratory.

David Culler is supported by an NSF Presidential Faculty Fellowship CCR-9253705 and LLNL Grant

UCB-ERL-92/172. Andrea Dusseau is supported by an NSF Graduate Research Fellowship and Siemens.

Klaus Erik Schauser was supported by an IBM Graduate Fellowship. Richard Martin is supported by a UC

Berkeley Fellowship. The information presented here does not necessarily reflect the position or the policy

of the Government and no official endorsement should be inferred.

26



References

[1] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and

T. von Eicken, “ LogP: Towards a Realistic Model of Parallel Computation,” in Fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, May 1993.

[2] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick,

“Parallel Programming in Split-C,” in Supercomputing, 1993.

[3] G. Blelloch, C. Leiserson, and B. Maggs, “A Comparison of Sorting Algorithms for the Connection

Machine CM-2,” in Symposium on Parallel Algorithms and Architectures, July 1991.

[4] K. Batcher, “Sorting Networks and their Applications,” in Proceedings of the AFIPS Spring Joint

Computing Conference, 1986.

[5] T. Leighton, “Tight Bounds on the Complexity of Parallel Sorting,” IEEE Transactions on Computers,

Apr. 1985.

[6] M. Zagha and G. Blelloch, “Radix Sort for Vector Multiprocessors,” in Supercomputing, 1991.

[7] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and

M. Lam, “The Stanford Dash Multiprocessor,” IEEE Computer, vol. 25, pp. 63–79, Mar. 1992.

[8] C. Shannon and W. Weaver, The Mathematical Theory of Communication. University of Illinois Press:

Urbana, 1949.

[9] K. Thearling and S. Smith, “An Improved Supercomputer Sorting Benchmark,” tech. rep., Thinking

Machines Corporation, 1991.

[10] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active Messages: a Mechanism

for Integrated Communication and Computation,” in Proc. of the 19th International Symposium on

Computer Architecture, May 1992.

[11] P. Liu, W. Aiello, and S. Bhatt, “An atomic model for message-passing,” in Symposium on Parallel

Algorithms and Architectures, 1993.

[12] R. Karp, A. Sahay, E. Santos, and K. E. Schauser, “Optimal Broadcast and Summation in the LogP

Model,” in 5th Symp. on Parallel Algorithms and Architectures, June 1993.

[13] J. H. Reif and L. G. Valiant, “A Logarithmic time Sort for Linear Size Networks,” Journal of the ACM,

vol. 34, pp. 60–76, Jan. 1987.

27


