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ABSTRACT

This paperpresents three novel language implementation primitives—lazy threads,stacklets, and
synchronizers—andshows how they combine to provide a parallel call at nearly the efficiency of
a sequential call. The central idea is to transform parallelcalls into parallel-ready sequential calls.
Excess parallelism degrades into sequential calls with theattendant efficient stack management
and direct transfer of control and data, unless a call truly needs to execute in parallel, in which
case it gets its own thread of control. We show how these techniques can be applied to distribute
work efficiently on multiprocessors.

1 INTRODUCTION

Many modern parallel languages provide methods for dynamically creating multi-
ple independent threads of control, such as forks, parallelcalls, futures [15], object
methods, and non-strict evaluation of argument expressions [17, 12]. Generally, these
threads describe the logical parallelism in the program. The programming language
implementation maps this dynamic collection of threads onto the fixed set of physi-
cal processors executing the program, either by providing its own language-specific
scheduling mechanisms or by using a general threads package. These languages stand
in contrast to languages with a single logical thread of control, such as Fortran90, or
a fixed set of threads, such as Split-C. There are many reasonsto have the logical
parallelism of the program exceed the physical parallelismof the machine, including
ease of expressing parallelism and better utilization in the presence of synchronization
delays [16, 25], load imbalance, and long communication latency. Moreover, the se-
mantics of the language or the synchronization primitives may allow dependencies to
be expressed in such a way that progress can be made only by interleaving multiple
threads, effectively running them in parallel even on a single processor.
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2 Chapter 1
A parallel call is fundamentally more expensive than a sequential call because of the
storage management, data transfer, scheduling, and synchronization involved. This
cost has been reduced with a combination of compiler techniques and clever run-time
representations [7, 19, 23, 16, 25, 20, 18], and by supporting fine-grained parallel
execution directly in hardware [13, 2]. These approaches, among others, have been
used in implementing the parallel programming languages Mul-T [15], Id90 [7, 19],
CC++ [5], Charm [14], Cilk [3], Cid [18], and Olden [4]. In many cases, the cost of
the parallel call is reduced by severely restricting what can be done in a thread.

In earlier approaches, the full cost of parallelism is bornefor all potentially parallel
calls, although the parallelism is neither needed nor exploited in most instances. For
example, once all the processors are busy, there may be no need to spawn additional
work, and in the vast majority of cases the logic of the program permits the child to
run to completion while the parent is suspended. The goal of this work is to make the
cost of a potentially parallel call as close as possible to that of a sequential call unless
multiple threads of control or remote execution are actually needed. We also produce
a very fast parallel call when it is needed.

The key idea is that we fork a new thread as if it were a sequential call and elevate
it to a true fork of a local thread only if the child actually suspends. This concept,
which we calllazy threads, builds upon work on lazy task creation [15]. In the best
case our system eliminates all the run-time bookkeeping costs associated with forking
a thread or creating a future. In the worst case it requires only three instructions to
create a future. Similarly, we can defer generating work forother processors until a
request for work is received from another processor. If all the processors have plenty
to do, potential parallel work is simply assumed by the current thread of control. Our
experience is that potentially parallel calls frequently degenerate into the simple, local,
sequential case and that handling the simple case very well has a significant impact on
performance.

Our current experimental results focus on two prototype implementations on the CM-5:
a direct implementation in C and a compiler for the fine-grained parallel language Id90.
The C implementation was used to write some kernels and showsthat these primitives
introduce little or no overhead over sequential programs. The Id90 implementation
shows that for complete programs we achieve a substantial improvement over previous
work. Our work is applicable to many other systems as well. For example, our
techniques could be applied to other programming languages[5, 26], thread packages
[8], and multithreaded execution models. Our work relies extensively on compiler
optimizations; lazy threads cannot simply be implemented with a function call in a
user-level threads library without substantial loss of efficiency. Because the synthesis
between compiler and run-time system is key to obtaining efficiency, these ideas must
be evaluated in the context of an actual compiler.
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Figure 1 How individual activation frames of a cactus stack are mapped onto stacklets.
Only parallel calls or stacklet overflows require allocation of a new stacklet. (The arrows
point back to the parent; in the above example, A calls B and H in parallel.)

1.1 Overview

In this work athread is a locus of control on a processor which can perform calls to
arbitrary nesting depth, suspend at any point, and fork additional threads. Threads are
scheduled independently and are non-preemptive.1 We associate with each thread its
own unbounded stack.

Before considering the parallel call, observe that the efficiency of a sequential call
derives from several cooperating factors. Storage allocation on call and return involves
merely adjusting the stack pointer, because the parent is suspended upon call and the
child and its children have completed upon return. Data and control are transferred
together on the call and on the return, so arguments and return values can be passed in
registers and no explicit synchronization is involved.

To realize a parallel-ready sequential call—i.e., one thatcreates a sequential task that
can be elevated gracefully into an independent thread of control—we proceed in four
steps.

First, in Section 2, we address storage allocation. Since threads can fork other threads
and each requires a stack, a tree of stacks, acactus stack, is required. We realize this
cactus stack usingstacklets(see Figure 1). A stacklet is a fixed-size region of storage
which can contain multiple call frames, is cheap to allocate, and is managed internally
like a sequential stack. Allocation of a new stacklet occurswhen a new thread is
created or when a stacklet overflows.Stacklet stubsare used to handle many special
cases, including underflow and remote return, without the sequential call needing to
perform tests on return. This provides a naive parallel language implementation with
conventional local and remote forks.

Next, in Section 3, we address control and data transfer whena thread is forked on the
local processor. Alazy thread forkis performed exactly like a sequential call; control1This is similar to what is provided in many kernel threads packages. Our threads, however, are stronger
than those in TAM [7] and in some user-level threads packages, e.g. Chorus [21], which require that the
maximum stack size be specified upon thread creation so that memory can be preallocated.
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and data are transferred to the child and the call is made on the parent stack. However,
if the child suspends, the parent is resumed with its stack extended, so it gives up its
own stacklet to the new thread and uses a new stacklet for its subsequent children. We
generate code so that the child can suspend and resume the parent by doing a jump to
a simple offset of the return address. Thus, control is transferred directly to the parent
on either return or suspension.

Third, in Section 4, we show how to perform synchronization cheaply between the
parent and child, should they become independent threads. The only flexibility we
have in the sequential call is the indirect jump on the returnaddress. The key idea,
implemented bysynchronizers, is that the parent and the child share the return address,
which by our code generation technique represents multiplereturn addresses. The re-
turn entry points can be adjusted to reflect the synchronization state. The optimizations
outlined so far are required to support many logical threadson a single processor.

Finally, in Section 5, we extend the use of multiple return addresses to allow the parent
to generate additional parallel workon demand, in response to a work-stealing request
from another processor. We call this concept a threadseedbecause it allows potential
threads to be held dormant very cheaply until they are eitherassumed by the local
processor or stolen and planted in another processor. Growing a thread seed into a full
thread requires executing a piece of code in the context of the function that created it.
On the other hand, the overhead for creating and assuming a thread seed is minimal.

In Section 6 we give empirical data to show that these concepts can be combined to
efficiently implement excess logical parallelism. Underlying our optimizations is the
observation that in modern microprocessors, a substantialcost is paid for memory ref-
erences and branches, whereas register operations are essentially free. Since stacklets
are managed like a sequential stack, arguments and results can be passed in registers,
even in the potentiallyparallel case. By manipulating the existing indirect return jump,
conditional tests for synchronization and special cases can be avoided.

1.2 Related Work

Attempts to accommodate logical parallelism have include thread packages [8, 21, 6],
compiler techniques and clever run-time representations [7, 19, 16, 25, 23, 20, 10], and
direct hardware support for fine-grained parallel execution [13, 2]. These approaches
have been used to implement many parallel languages, e.g. Mul-T [15], Id90 [7, 19],
CC++ [5], Charm [14], Cilk [3], Olden [4], and Cid [18]. The common goal is to
reduce the overhead associated with managing the logical parallelism. While much
of this work overlaps ours, none has combined the techniquesdescribed in this paper
into an integrated whole. More importantly, none has started from the premise that all
calls, parallel or sequential, can be initiated in the exactsame manner.

Our work grew out of previous efforts to implement the non-strict functional language
Id90 for commodity parallel machines. Our earlier work developed aThreaded Ab-
stract Machine(TAM) which serves as an intermediate compilation target [7]. The
two key differences between this work and TAM are that under TAM calls are always
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parallel, and due to TAM’s scheduling hierarchy, calling another function does not
immediately transfer control.

Our lazy thread fork allows all calls to begin in the same way,and creates only the
required amount of concurrency. In the framework of previous work it allows excess
parallelism to degrade efficiently into a sequential call. Many other researchers have
proposed schemes which deal lazily with excess parallelism. Our approach builds on
lazy task creation(LTC) which maintains a data structure to record previouslyencoun-
tered parallel calls [16]. When a processor runs out of work,dynamic load balancing
can be effected by stealing previously created lazy tasks from other processors. These
ideas were studied for Mul-T running on shared-memory machines. The primary
difference is that LTC always performs extra work for parallel calls, whether they
execute locally or remotely. Even the lazy tasks that are never raised to full fledged
tasks are “spawned off” in the sense that they require extra bookkeeping. In addition,
in order to avoid memory references and increase efficiency our work uses different
primitives from LTC. LTC also depends on a garbage collector, which hides many of
the costs of stack management. Finally, while earlier systems based on LTC relied on
shared-memory hardware capabilities, our implementationworks on both distributed-
and shared-memory systems.

Another proposed technique for improving LTC isleapfrogging[25]. Unlike the
techniques we use, it restricts the behavior of the program in an attempt to reduce the
cost of futures.

We use stacklets for efficient stack-based frame allocationin parallel programs. Pre-
vious work in [10] developed similar ideas for handling continuations efficiently.
Olden [4] uses a “spaghetti stack.” In both systems, the allocation of a new stack frame
always requires memory references and a garbage collector.

The way thread seeds encode future work builds on the use of multiple offsets from a
single return address to handle special cases. This technique was used in SOAR [22].
It was also applied to Self, which uses parent controlled return continuations to handle
debugging [11]. We extend these two ideas to form synchronizers.

Building on LTC, Olden [20, 4] applies similar techniques for the automatic paral-
lelization of programs using dynamic data structures. Of the systems mentioned so
far, Olden’s integration is closest to ours.

Finally, user-level thread packages are still not as lightweight as many of the systems
mentioned above. Since the primitives of thread packages are exposed at the library
level, the compiler optimizations we present are not possible for such systems.

2 STORAGE MANAGEMENT: STACKLETS

Stackletsare a memory management primitive which efficiently supports cactus stacks.
Each stacklet can be managed like a sequential stack. A stacklet is a region of
contiguous memory on a single processor that can store several activation frames (see
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Figure 2). Each stacklet is divided into two regions, the stub and the frame area.
The stub contains data that maintains the global cactus stack by linking the individual
stacklets to each other. The frame area contains the activation frames. In addition
to a traditional stack pointer (sp) and frame pointer (fp), our model defines atop
pointer(top) which—for reasons presented in the next section—points tothe top of
the currently used portion of the stacklet, or, in other words, to the next free location
in the stacklet. These three pointers are kept in registers.

We recognize three kinds of calls—sequential call, fork, and remote fork—each of
which maps onto a different kind of allocation request. A sequential allocation is one
that requests space on the same stack as the caller. The childperforms the allocation;
therefore, it determines whether its frame can fit on the samestacklet. If so,sp, fp,
andtop are updated appropriately (see Figure 3). If not, a new stacklet is allocated
and the child frame is allocated on the new stacklet (see Figure 4). This also happens
for a fork, which causes a new stacklet to be created on the local processor. We could
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Figure 5 A remote fork leaves the current stacklet unchangedand allocates a new stacklet
on another processor.

either run the child in the new stacklet immediately or schedule the child for later
execution. In the former case,fp, sp, andtop would point to the child stacklet
(see Figure 4). In the latter case, they would remain unchanged after the allocation.
For a remote fork there are no stacklet operations on the local processor. Instead, a
message is sent to a remote processor with the child routine’s address and arguments
(see Figure 5).

In our current naive implementation, the overhead in checking for stacklet overflow
in a sequential call is two register-based instructions (anAND of the newsp and a
compare to the old) and a branch (which will usually be successfully predicted). If the
stacklet overflows, a new stacklet is allocated from the heap. This cost is amortized
over the many invocations that will run in the stacklet.

2.1 Stacklet Stubs

Stub handlers allow us to use the sequential return mechanism even though we are
operating on a cactus stack. The stacklet stub stores all thedata needed for the bottom
frame to return to its parent. When a new stacklet is allocated, the parent’s return
address and frame pointer are saved in the stub and a return address to the stub handler
is given to the child. When the bottom frame in a stacklet executes a return, it does
not return to its caller; instead it returns to the stub handler. The stub handler performs
stacklet deallocation and, using the data in the stacklet stub, carries out the necessary
actions to return control to the parent (restoringtop, and havingsp andfp point to
the parent).

In the case of a remote fork, the stub handler uses indirect active messages [24] to
return data and control to the parent’s message handler, which in turn has responsibility
for integrating the data into the parent frame and indicating to the parent that its child
has returned.

2.2 Compilation

To reduce the cost of frame allocation even further we construct a call graph which
enables us to determine for all but the recursive calls whether an overflow check is
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needed. Each function has two entry points, one that checks stacklet overflow and
another that does not. If the compiler can determine that no check is needed, it uses
the latter entry point. This analysis inserts preventive stacklet allocation to guarantee
that future children will not need to perform any overflow checks.

2.3 Discussion

In summary, stacklets provide efficient storage managementfor parallel execution. In
the next section we will see that potentially parallel callscan use the same efficient
mechanism as regular sequential calls, because each stacklet preserves the invariants
of a stack. Specifically, the same call and return mechanismsare used; arguments and
results can be passed in registers. These benefits are obtained at a small increase to the
cost of sequential calls, namely checking whether a new stacklet needs to be allocated
in the case of an overflow or parallel call. The extra cost amounts to a test and branch
along with the use of an additional register. This overhead is required only when
the compiler cannot statically determine that no check is needed. Stubs eliminate the
need to check for underflows. This contrasts with previous approaches which always
require some memory touch operations or a garbage collector.

3 CONTROL TRANSFER: THE LAZY THREAD CALL

Our goal is to make a fork as fast as a sequential call when the forked child executes
sequentially. Using stacklets as the underlying frame-storage allocation mechanism
gives us a choice as to where to run the new thread invoked by the fork. The obvious ap-
proach is to explicitly fork the new thread using the parallel allocation explained in the
previous section. However, if the child is expected to complete without suspending—
i.e., if it behaves like a sequential call—we would rather treat it like a sequential call
and invoke the child on the current stacklet.

This section introduces alazy thread fork(tfork) which behaves like a sequential
call unless it suspends, in which case—in order to support the logical parallelism
implied by the fork it represents—it directly resumes the parent and behaves like an
eagerly forked thread.tfork behaves like a sequential call in that it transfers control
(and its arguments) directly to the new thread. Further, if the new thread completes
without suspending, it returns control (and results) directly to its parent.

If the child suspends, it must resume its parent in order to notify its parent that the
tfork really required its own thread of control. Thus, the child must be able to return
to its parent at either of two different addresses: one for normal return and one for
suspension. Instead of passing the child two return addresses, the parent calls the child
with a single address from which it can derive both addresses. At the implementation
level, this use of multiple return addresses can be thought of as an extended version
of continuation passing [1], where the child is passed two different continuations, one
for normal return and one for suspension. The compiler ensures that the suspension
entry point precedes the normal return entry point by a fixed number of instructions.
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A normal return will continue execution after thetfork. In the case of suspension,
the compiler uses simple address arithmetic to calculate the suspension entry point.

In the case where the child suspends, the parent will not be the topmost frame in the
stacklet—i.e.,sp will not equaltop (the situation shown in Figure 6). To maintain
the sequential stack invariant, we do not allocate future children of the parent on
the current stacklet. Instead, while there is a suspended child above the parent in
the current stacklet, we allocate future children, sequential or parallel, on their own
stacklets (see Figure 6). As a result, the translation for a call must first comparesp
andtop. If they are equal, the call occurs on the current stacklet (as in Figure 3). If
they are different, it starts a new stacklet (as in Figure 6).As a result, regardless of
the children’s return order, no stacklet will ever contain free space between allocated
frames. This simplifies memory management.

In summary,tfork allows a potentially parallel thread to be executed sequentially
and still have the ability to suspend and get its own thread ofcontrol. A child that
needs its own thread of control takes over its parent thread,causing its parent to allocate
subsequent work on other stacklets. Using stacklets and compiler support we have
created a multithreaded environment in a single address space which gives each thread
a logically unbounded stack.

3.1 Parent Controlled Return Continuations

To reduce the cost of parallel calls, we always want a child which terminates to return
directly to its parent. If the child terminates without suspension it can use its original
return address. But if it suspends, is later resumed, and finally terminates, it generally
cannot return to the same point: Once the child has suspended, the child and parent are
truly separate threads and the parent may have already carried out the work immediately
following thetfork that created the child.

If we want the child to return directly to the parent we need some way to modify the
child’s return continuation so that the child will return toa location of the parent’s
choosing. Since we are using stacklets, both the parent and the child know where
the child’s return address is located in the stack. If the parent is given permission to
change the return continuation, it can change it to reflect the new state of the parent’s
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computation. The new return continuationwill return the child to the point in the parent
function that reflects that the child, and any work initiatedafter the child suspended,
have been carried out. We call this mechanismparent controlled return continuations
(pcrcs).

4 EFFICIENT SYNCHRONIZATION: SYNCHRONIZERS

The ideas found inpcrcs can be extended to efficiently implement synchronization.
We minimize the synchronization cost due to joins by extending the use ofpcrcs with
judicious code duplication and by exploiting the flexibility of the indirect jump in the
return instruction. The basic idea is to change the return continuation of a child to
reflect thesynchronizationstate of the parent. In this way,neitherextra synchronization
variables nor tests are needed. The amount of code duplicated is small since we need
to copy only the code fragments that deal with returned results. This allows us to
combine the return with synchronization at no additional run-time cost. For full details
see [9].

Figure 7 illustrates synchronizers. As indicated in the left part of the figure, assume
that we have two threads,T1 andT2, which return to the code fragments A and B,
respectively, in the parent. There they synchronize, before starting the code C.2 The
key observation is that modifying the contents of the returnaddress lets us encode
synchronization information.pcrcs allow the parent to perform this modification.

The resulting situation, which relies on code duplication,is shown in the right part
of Figure 7. Depending on the synchronization state, each ofthe two threads returns
directly to the code for synchronization failure (AF or BF) or success (AC or BC). If
both threads are explicitly forked, the return addresses for both initially point to their
respective failure entry points (AF and BF). Whichever returns first executes its return
code fragment (A or B) followed by a piece of code for synchronization failure. If
the first thread was invoked withtfork, its initial failure entry point will invoke
the second thread. The failure entry point will also modify the other thread’s return
address to point to the code for synchronization success. Synchronizers andpcrcs
provide the mechanisms to efficiently combine the return andsynchronization.2Each of the three pieces of code is fairly short. A and B usually handle only taking the results and
depositing them into the parent’s frame, while C includes only one basic block.
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pushSeed(Sy);

call X();
return address is by conventionassumption
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popSeed();

PCALL X, Sy

The Seed:Sy

All seeds are a fixed number of
instructions.

Figure 8 How pcall and thread seeds are implemented.

5 REMOTE WORK: THE LAZY PARALLEL CALL

So far we have shown how to reduce the overhead of potential parallelism when it
actually unfolds sequentially on the local processor. Herewe extend these ideas to
generate work for remote processors. We introducethread seeds, which allow us to
represent the potential work in the system so that it may be distributed efficiently
among multiple processors. Our goal is to allow work to be distributed remotely, but
pay the cost only when there is an actual need to do so.

Thread seeds are a direct extension of the multiple return addresses we introduced to
handle the suspension of children invoked by atfork. As shown in Figure 8, a thread
seed is a code fragment with three entry points: one for childreturn, one for child
suspension, and one foran external work-stealing request.At the implementation level,
a thread seed can be thought of as an extended version of continuation passing [1],
where the child is passed three different continuations, one for each of the three cases.
When the compiler determines that there is work that could berun in parallel, it creates
a thread seed which represents the work. For example, with two successive forks, the
tfork for the first thread will be associated with a thread seed representing the fork
of the second thread.

We combine seed generation andtfork into a single primitive,pcall X,SY,
whereX is the function to call andSY is a thread seed that will, when executed in
the context of the parent, cause the functionY to be invoked. Upon execution of
the pcall, a seed is created and control is transferred toX, making the current
(parent) frame inactive. The newly created seed remains dormant until one of three
things happens: the child returns (the seed is inlined), thechild suspends (the seed is
activated), or a remote processor requests work (the seed isstolen). All three cases
require the intervention of the parent. If the child returns, the parent picks up the
seed and inlines the new thread of control into its own, i.e.Y executes on the parent’s
stacklet, just as if it had been called sequentially. If the child suspends, the parent
activates the seed by spawningY off on its own new stacklet; the seed becomes a
new thread concurrent with the first, but on the same processor. If a remote processor
requests work, the parent executes a remote call ofY, which becomes a new thread
running concurrently with the current thread, but on another processor.
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The model described above is a direct extension of the multiple return addresses used
to implement the lazy thread fork. In addition to two continuations for handling the
“return” and “suspension,” we need a third for “finding work.” If a remote work
request is received, the run-time system must somehow find the thread seed (the third
continuation) to initiate the creation of remote work. Herewe consider two approaches
to finding such work: an implicit seed model and an explicit seed model.

In the implicit model, the remotework request interrupts thechild,which then continues
execution at the work-stealing entry point of its parent. Ifthere is no work, the entry
point contains a code fragment to jump to the parents ancestor on the stack. The
search continues until either work is generated or no work isfound because no excess
parallelism is present. For the implicit model, thepushSeed and popSeed
macros in Figure 8 turn into nops and the planting of a seed is an abstract operation.
The advantage of this model is that when apcall is made no bookkeeping is required.
Instead, the stack frames themselves form the data structure needed to find work. The
disadvantage is that finding work is more complex.

In the explicit model, when a seed is planted a special continuation is pushed onto
the top of aseed queue. The continuation is a pointer to the return address in the
frame. The calling convention is such that the return from the child will default to the
assumption point. If a child suspends, it saves the top pointer in the stacklet stub, pops
the top seed off the queue, sets thesp as indicated by the seed, and jumps into the
suspension entry point of the seed.

The explicit queueing of seeds allows us to find work with justa few instructions. For
instance, if a child suspends, it can find its ancestor, whichhas more work to perform,
merely by popping off the top seed. Or, more importantly, if aremote processor
requests work, we can determine if there is work by simply comparing the top and
bottom pointers to the seed queue. We can also spawn off that work by jumping
through the work-stealing entry point of the seed at the bottom of the queue. The
parent, invoked through the seed, will execute the work-stealing routine, placing any
appropriate seed on the bottom of the queue. The drawback of this scheme is that even
when a seed is inlined into the current thread (the sequential case) there is an extra cost
of two memory references over the previously described implicit scheme.

6 EXPERIMENTAL RESULTS

In this section we present preliminary performance resultsfor our techniques on both
uni- and multiprocessors. Our uniprocessor data were collected on a SparcStation 10.
Our multiprocessor data were collected on a CM-5.

We have produced a parallel version of C for the CM-5 which incorporates the tech-
niques presented in this paper. To evaluate these techniques we begin by comparing
the performance of four different implementations of the doubly recursive Fibonacci
function. Fib, being fine-grained, is a good “stress test” offunction invocation. As
shown in Table 1, the C version is significantly slower than either the synchronizer or



Enabling Primitives for Compiling Parallel Languages 13

Runtime
Compilation Method (secs)

gcc -O4 fib.c 2.29
Assembly version of Fib 1.22
Fib with stacklets, lazy threads, and synchronizers 1.50
Fib as above with explicit seeds 1.86

Table 1 Comparing runtimes of fib 31 on a SparcStation 10.

Program Short Description Input Size TAM Lazy Threads
Gamteb Monte Carlo neutron transport 40,000 220.8 139.0
Paraffins Enumerate isomers of paraffins 19 6.6 2.4
Simple Hydrodynamics and heat conduction1 1 100 5.0 3.3
MMT Matrix multiply test 500 70.5 66.5

Table 2 Dynamic run-time in seconds on a SparcStation 10 for the Id90benchmark
programs under the TAM model and lazy threads with multiple strands using explicit seeds.
The programs are described in [7].

the seed version. The reason is that our stacklet managementcode does not use register
windows, which introduce a high overhead on the Sparc. For a fair comparison we
wrote an assembly version of Fib that also does not use register windows. This highly
optimized assembly version runs only 18% faster than the synchronizer version, which
incorporates all the mechanisms for multithreading support.

Further evidence that lazy threads are efficient is presented in Table 2, where we
compare our lazy thread model with TAM for some larger programs on the Sparc. At
this timeour Id90 compileruses aprimitiveversion of explicit seed creation. In addition
to the primitives described so far, the compiler uses strands, a mechanism to support
fine-grained parallelism within a thread [9]. We see a performance improvement
ranging from 1.1 times faster for coarse-grained programs like blocked matrix multiply
(MMT) to 2.7 times faster for finer-grained programs. We expect an additional benefit
of up to 30% when the compiler generates code using synchronizers.

Next, we look at the efficiency of work-stealing combined with seeds on a parallel
machine by examining the performance of the synthetic benchmark proposed in [16]
and also used in [25]. Grain is a doubly recursive program that computes a sum, but
each leaf executes a loop ofg instructions, allowing us to control the granularity of the
leaf nodes. We compare its efficiency to the sequential C codecompiled by gcc. As
shown in Figure 9, using stacklets we achieve over 90% efficiency when the grain size
is as little as 400 cycles. Compare this to the grain size of aninvocation of fib, which
is approximately 30 cycles. Most of the inefficiency comes from the need to poll the
CM-5 network. The speed-up curve in Figure 9 shows that even for very fine-grained
programs, the thread seeds successfully exploit the entiremachine.
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Figure 9 Efficiency of lazy threads on the CM-5 compared to the sequential C implemen-
tation as a function of granularity. We use the synthetic benchmark Grain [16, 25].

7 SUMMARY

We have shown that by integrating a set of innovative techniques for call frame man-
agement, call/return linkage, and thread generation we canprovide a fast parallel call
which obtains nearly the full efficiency of a sequential callwhen the child thread exe-
cutes locally and runs to completion without suspension. This occurs frequently with
aggressively parallel languages such as Id90, as well as more conservative languages
such as C with parallel calls.

The central idea is to pay for what you use. Thus, a local fork is performed essentially
as a sequential call, with the attendant efficient stack management and direct transfer
of control and data. The only preparation for parallelism isthe use of bounded-size
stacklets and the provision of multiple return entry pointsin the parent. If the child
actually suspends before completion, control is returned to the parent so that it can
take appropriate action. Similarly, remote work is generated lazily. When a thread has
work that can be performed remotely, it exposes an entry point, called a thread seed,
that will produce the remote work on demand. If the work ends up being performed
locally, it is simply inlined into the local thread of control as a sequential call. We
exploit the one bit of flexibility in the sequential call, theindirect jump on return, to
provide very fast synchronization and to avoid explicit checking for special cases, such
as stacklet underflow.

Empirical studies with a parallel extension to C show that these techniques offer very
good parallel performance and support fine-grained parallelism even on a distributed
memory machine. Integrating these methods into a prototypecompiler for Id90 results,
depending on the frequency of parallel calls in the program,in an improvement by
nearly a factor of two over previous approaches.
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