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ABSTRACT

This paper presents three novel language implementafioitipes—Ilazy threads, stacklets, and
synchronizers—and shows how they combine to provide alpacall at nearly the efficiency of
asequential call. The centralidea s to transform paredl$ into parallel-ready sequential calls.
Excess parallelism degrades into sequential calls wittatteadant efficient stack management
and direct transfer of control and data, unless a call trelgds to execute in parallel, in which
case it gets its own thread of control. We show how these iqaks can be applied to distribute
work efficiently on multiprocessors.

1 INTRODUCTION

Many modern parallel languages provide methods for dynaligicreating multi-
ple independent threads of control, such as forks, paredlg$, futures [15], object
methods, and non-strict evaluation of argument expresgibn 12]. Generally, these
threads describe the logical parallelism in the programe programming language
implementation maps this dynamic collection of threadodhe fixed set of physi-
cal processors executing the program, either by providsgwn language-specific
scheduling mechanisms or by using a general threads packhgse languages stand
in contrast to languages with a single logical thread of mnsuch as Fortran90, or
a fixed set of threads, such as Split-C. There are many rededmsve the logical
parallelism of the program exceed the physical paralleti$tie machine, including
ease of expressing parallelism and better utilizationéytesence of synchronization
delays [16, 25], load imbalance, and long communicatioeni@. Moreover, the se-
mantics of the language or the synchronization primitivey mlow dependencies to
be expressed in such a way that progress can be made onlydoleaving multiple
threads, effectively running them in parallel even on algmpgocessor.
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A parallel call is fundamentally more expensive than a saetjakcall because of the
storage management, data transfer, scheduling, and symzation involved. This
cost has been reduced with a combination of compiler teclasignd clever run-time
representations [7, 19, 23, 16, 25, 20, 18], and by supppftire-grained parallel
execution directly in hardware [13, 2]. These approachemray others, have been
used in implementing the parallel programming languages ™M5], 1d90 [7, 19],
CC++ [5], Charm [14], Cilk [3], Cid [18], and Olden [4]. In mgrcases, the cost of
the parallel call is reduced by severely restricting what lba done in a thread.

In earlier approaches, the full cost of parallelism is bdimreall potentially parallel
calls, although the parallelism is neither needed nor étgaddn most instances. For
example, once all the processors are busy, there may be damspawn additional
work, and in the vast majority of cases the logic of the pragpermits the child to
run to completion while the parent is suspended. The godiisfwork is to make the
cost of a potentially parallel call as close as possible & ¢fia sequential call unless
multiple threads of control or remote execution are acyuadleded. We also produce
a very fast parallel call when it is needed.

The key idea is that we fork a new thread as if it were a seqalecail and elevate
it to a true fork of a local thread only if the child actuallyspends. This concept,
which we calllazy threadsbuilds upon work on lazy task creation [15]. In the best
case our system eliminates all the run-time bookkeepintgy @ssociated with forking
a thread or creating a future. In the worst case it requirdg thmee instructions to
create a future. Similarly, we can defer generating workdibrer processors until a
request for work is received from another processor. Iffal processors have plenty
to do, potential parallel work is simply assumed by the aurtbread of control. Our
experience is that potentially parallel calls frequentggenerate into the simple, local,
sequential case and that handling the simple case very agH Bignificant impact on
performance.

Our current experimental results focus on two prototypdé@mentations on the CM-5:
adirectimplementation in C and a compiler for the fine-gediparallel language 1d90.
The C implementation was used to write some kernels and sthawthese primitives
introduce little or no overhead over sequential programke 90 implementation
shows that for complete programs we achieve a substanfabiement over previous
work. Our work is applicable to many other systems as well.r &ample, our
techniques could be applied to other programming langugg&s$], thread packages
[8], and multithreaded execution models. Our work relietepgively on compiler
optimizations; lazy threads cannot simply be implementét & function call in a
user-level threads library without substantial loss ofoigficy. Because the synthesis
between compiler and run-time system is key to obtainingieficy, these ideas must
be evaluated in the context of an actual compiler.
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Figure1 How individual activation frames of a cactus stack are mapp®o stacklets.
Only parallel calls or stacklet overflows require allocatiof a new stacklet. (The arrows
point back to the parent; in the above example, A calls B anal phrallel.)

1.1 Overview

In this work athreadis a locus of control on a processor which can perform calls to
arbitrary nesting depth, suspend at any point, and forktamidil threads. Threads are
scheduled independently and are non-preemptivée associate with each thread its
own unbounded stack.

Before considering the parallel call, observe that the iefficy of a sequential call
derives from several cooperating factors. Storage allocan call and return involves
merely adjusting the stack pointer, because the parensjgesdled upon call and the
child and its children have completed upon return. Data amtdrol are transferred
together on the call and on the return, so arguments anchretilmes can be passed in
registers and no explicit synchronization is involved.

To realize a parallel-ready sequential call—i.e., one tisdites a sequential task that
can be elevated gracefully into an independent thread df@eswe proceed in four
steps.

First, in Section 2, we address storage allocation. Sineatts can fork other threads
and each requires a stack, a tree of stacksctus stackis required. We realize this
cactus stack usingtackletgsee Figure 1). A stacklet is a fixed-size region of storage
which can contain multiple call frames, is cheap to allocatel is managed internally
like a sequential stack. Allocation of a new stacklet ocauhen a new thread is
created or when a stacklet overflowStacklet stubare used to handle many special
cases, including underflow and remote return, without thypieetial call needing to
perform tests on return. This provides a naive parallel lexgg implementation with
conventional local and remote forks.

Next, in Section 3, we address control and data transfer \atibread is forked on the
local processor. Aazy thread forkis performed exactly like a sequential call; control

I This is similar to what is provided in many kernel threadskzayes. Our threads, however, are stronger
than those in TAM [7] and in some user-level threads packaggs Chorus [21], which require that the
maximum stack size be specified upon thread creation so thaiory can be preallocated.
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and data are transferred to the child and the call is madeeopdtent stack. However,
if the child suspends, the parent is resumed with its staténebed, so it gives up its
own stacklet to the new thread and uses a new stacklet farhisgegjuent children. We
generate code so that the child can suspend and resume #ém lppdoing a jump to
a simple offset of the return address. Thus, control is fearedd directly to the parent
on either return or suspension.

Third, in Section 4, we show how to perform synchronizatibeaply between the
parent and child, should they become independent threalds. oiiily flexibility we
have in the sequential call is the indirect jump on the refaddress. The key idea,
implemented byynchronizersis that the parent and the child share the return address,
which by our code generation technique represents multgblen addresses. The re-
turn entry points can be adjusted to reflect the synchrooizatate. The optimizations
outlined so far are required to support many logical thremada single processor.

Finally, in Section 5, we extend the use of multiple returdradses to allow the parent
to generate additional parallel wook demangin response to a work-stealing request
from another processor. We call this concept a thesetbecause it allows potential
threads to be held dormant very cheaply until they are eiissumed by the local
processor or stolen and planted in another processor. Ggoavihread seed into a full
thread requires executing a piece of code in the contexteofithction that created it.
On the other hand, the overhead for creating and assumimgadtieed is minimal.

In Section 6 we give empirical data to show that these coscegat be combined to
efficiently implement excess logical parallelism. Undartyour optimizations is the
observation that in modern microprocessors, a substaislis paid for memory ref-
erences and branches, whereas register operations anti@bséee. Since stacklets
are managed like a sequential stack, arguments and reaultsecpassed in registers,
even in the potentially parallel case. By manipulating tkisteng indirect return jump,
conditional tests for synchronization and special casaseaavoided.

1.2 Reated Work

Attempts to accommodate logical parallelism have inclimlead packages [8, 21, 6],
compiler techniques and clever run-time representationgq, 16, 25, 23, 20, 10], and
direct hardware support for fine-grained parallel exequfitB, 2]. These approaches
have been used to implement many parallel languages, elgT }Mi5], 1d90 [7, 19],
CC++ [5], Charm [14], Cilk [3], Olden [4], and Cid [18]. The gonon goal is to
reduce the overhead associated with managing the logicallglism. While much
of this work overlaps ours, none has combined the technidassribed in this paper
into an integrated whole. More importantly, none has stiiiem the premise that all
calls, parallel or sequential, can be initiated in the esache manner.

Our work grew out of previous efforts to implement the nonesfunctional language
1d90 for commodity parallel machines. Our earlier work deped aThreaded Ab-
stract Maching(TAM) which serves as an intermediate compilation targét [The

two key differences between this work and TAM are that undévicalls are always
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parallel, and due to TAM’s scheduling hierarchy, calling#rer function does not
immediately transfer control.

Our lazy thread fork allows all calls to begin in the same wayl creates only the
required amount of concurrency. In the framework of pregiawrk it allows excess
parallelism to degrade efficiently into a sequential callaryl other researchers have
proposed schemes which deal lazily with excess parallel@ar approach builds on
lazy task creatioffLTC) which maintains a data structure to record previoesigoun-
tered parallel calls [16]. When a processor runs out of wdykiamic load balancing
can be effected by stealing previously created lazy tashs fither processors. These
ideas were studied for Mul-T running on shared-memory meehi The primary
difference is that LTC always performs extra work for paghitalls, whether they
execute locally or remotely. Even the lazy tasks that aremnmised to full fledged
tasks are “spawned off” in the sense that they require extokkeeping. In addition,
in order to avoid memory references and increase efficiencynork uses different
primitives from LTC. LTC also depends on a garbage colleatdnich hides many of
the costs of stack management. Finally, while earlier systeased on LTC relied on
shared-memory hardware capabilities, our implementatiorks on both distributed-
and shared-memory systems.

Another proposed technique for improving LTC lsapfrogging[25]. Unlike the
techniques we use, it restricts the behavior of the prograamiattempt to reduce the
cost of futures.

We use stacklets for efficient stack-based frame allocatigrarallel programs. Pre-
vious work in [10] developed similar ideas for handling daoations efficiently.
Olden [4] uses a “spaghetti stack.” In both systems, theatlon of a new stack frame
always requires memory references and a garbage collector.

The way thread seeds encode future work builds on the use ltipiewffsets from a
single return address to handle special cases. This taghmigs used in SOAR [22].
It was also applied to Self, which uses parent controllagiretontinuations to handle
debugging [11]. We extend these two ideas to form synchesgiz

Building on LTC, Olden [20, 4] applies similar techniques fhe automatic paral-
lelization of programs using dynamic data structures. @fgiistems mentioned so
far, Olden’s integration is closest to ours.

Finally, user-level thread packages are still not as ligtigput as many of the systems
mentioned above. Since the primitives of thread packagesxsosed at the library
level, the compiler optimizations we present are not pdaesidy such systems.

2 STORAGE MANAGEMENT: STACKLETS

Stacklet@re a memory management primitive which efficiently suppoattus stacks.
Each stacklet can be managed like a sequential stack. Alstdska region of
contiguous memory on a single processor that can storeat@ativation frames (see
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Figure4 The result of a fork or of a sequential call which overflows stecklet.

Figure 2). Each stacklet is divided into two regions, thébstnd the frame area.
The stub contains data that maintains the global cactuk biakinking the individual
stacklets to each other. The frame area contains the aotivithmes. In addition
to a traditional stack pointes) and frame pointerf(p), our model defines &op
pointer(t op) which—for reasons presented in the next section—pointis¢dop of
the currently used portion of the stacklet, or, in other veprto the next free location
in the stacklet. These three pointers are kept in registers.

We recognize three kinds of calls—sequential call, forkj aamote fork—each of
which maps onto a different kind of allocation request. Awsagial allocation is one
that requests space on the same stack as the caller. Theetfitddms the allocation;
therefore, it determines whether its frame can fit on the ssiaeklet. If sosp, f p,
andt op are updated appropriately (see Figure 3). If not, a new ktaikallocated
and the child frame is allocated on the new stacklet (seer&igu This also happens
for a fork, which causes a new stacklet to be created on tl& pvocessor. We could



Enabling Primitives for Compiling Parallel Languages 7

\ree \ree \\
space space L free
sp. top N sp, top >~ > space
parent —_— parent \
fp remote call ¢ % sp,top
a frame a frame child
“... fp TEMOTE
Stub Stub e SUD .
EofTercon

Figure5 Aremote fork leaves the current stacklet unchanged andatis a new stacklet
on another processor.

either run the child in the new stacklet immediately or sehedhe child for later
execution. In the former casép, sp, andt op would point to the child stacklet
(see Figure 4). In the latter case, they would remain unabduadter the allocation.
For a remote fork there are no stacklet operations on thd fwoaessor. Instead, a
message is sent to a remote processor with the child rostatielress and arguments
(see Figure 5).

In our current naive implementation, the overhead in chagior stacklet overflow
in a sequential call is two register-based instructionsABD of the newsp and a
compare to the old) and a branch (which will usually be susfedly predicted). If the
stacklet overflows, a new stacklet is allocated from the h&dps cost is amortized
over the many invocations that will run in the stacklet.

2.1 Stacklet Stubs

Stub handlers allow us to use the sequential return meahagign though we are
operating on a cactus stack. The stacklet stub stores aletfaeneeded for the bottom
frame to return to its parent. When a new stacklet is allatatiee parent’s return
address and frame pointer are saved in the stub and a retdmesado the stub handler
is given to the child. When the bottom frame in a stacklet etex a return, it does
not return to its caller; instead it returns to the stub handrhe stub handler performs
stacklet deallocation and, using the data in the stacklét, starries out the necessary
actions to return control to the parent (restoringp, and havings p andf p pointto
the parent).

In the case of a remote fork, the stub handler uses indir¢isteamessages [24] to
return data and control to the parent’s message handlechvimturn has responsibility
for integrating the data into the parent frame and indicptinthe parent that its child
has returned.

2.2 Compilation

To reduce the cost of frame allocation even further we costa call graph which
enables us to determine for all but the recursive calls wdredin overflow check is



8 CHAPTER 1

needed. Each function has two entry points, one that cheekklst overflow and
another that does not. If the compiler can determine thathealcis needed, it uses
the latter entry point. This analysis inserts preventiaelgiet allocation to guarantee
that future children will not need to perform any overflow cke

2.3 Discussion

In summary, stacklets provide efficient storage managefioeparallel execution. In
the next section we will see that potentially parallel catis use the same efficient
mechanism as regular sequential calls, because eachettpodderves the invariants
of a stack. Specifically, the same call and return mechanésmssed; arguments and
results can be passed in registers. These benefits areebtdia small increase to the
cost of sequential calls, namely checking whether a nevkigtiaiweeds to be allocated
in the case of an overflow or parallel call. The extra cost am®tp a test and branch
along with the use of an additional register. This overheadequired only when
the compiler cannot statically determine that no check exlad. Stubs eliminate the
need to check for underflows. This contrasts with previoys@gches which always
require some memory touch operations or a garbage collector

3 CONTROL TRANSFER: THE LAZY THREAD CALL

Our goal is to make a fork as fast as a sequential call whenottked child executes
sequentially. Using stacklets as the underlying frameagi® allocation mechanism
gives us a choice as to where to run the new thread invokedfgtk. The obvious ap-
proach is to explicitly fork the new thread using the patalbcation explained in the
previous section. However, if the child is expected to catgWwithout suspending—
i.e., if it behaves like a sequential call—we would ratheatrit like a sequential call
and invoke the child on the current stacklet.

This section introduces lazy thread fork(t f or k) which behaves like a sequential
call unless it suspends, in which case—in order to suppe@rtiahical parallelism
implied by the fork it represents—it directly resumes thegp@ and behaves like an
eagerly forked thread. f or k behaves like a sequential call in that it transfers control
(and its arguments) directly to the new thread. Furthehéfmew thread completes
without suspending, it returns control (and results) diygo its parent.

If the child suspends, it must resume its parent in order tifynits parent that the
t f or k really required its own thread of control. Thus, the childstioe able to return
to its parent at either of two different addresses: one famab return and one for
suspension. Instead of passing the child two return adeseti®e parent calls the child
with a single address from which it can derive both addres&ethe implementation
level, this use of multiple return addresses can be thouigas @n extended version
of continuation passing [1], where the child is passed tvifeidint continuations, one
for normal return and one for suspension. The compiler exsstirat the suspension
entry point precedes the normal return entry point by a fixethier of instructions.
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Figure 6 A parallel call creates a new stacklet.

A normal return will continue execution after thé or k. In the case of suspension,
the compiler uses simple address arithmetic to calcul@esulspension entry point.

In the case where the child suspends, the parent will not é#ottmost frame in the
stacklet—i.e.sp will not equalt op (the situation shown in Figure 6). To maintain
the sequential stack invariant, we do not allocate futuitdam of the parent on
the current stacklet. Instead, while there is a suspendiéd ahove the parent in
the current stacklet, we allocate future children, seqaknt parallel, on their own
stacklets (see Figure 6). As a result, the translation falbneust first comparsp
andt op. If they are equal, the call occurs on the current stackketr(digure 3). If
they are different, it starts a new stacklet (as in Figure&3.a result, regardless of
the children’s return order, no stacklet will ever contaieef space between allocated
frames. This simplifies memory management.

In summaryt f or k allows a potentially parallel thread to be executed sedaignt
and still have the ability to suspend and get its own threadootrol. A child that
needs its own thread of control takes over its parent thiesadsing its parent to allocate
subsequent work on other stacklets. Using stacklets angbitemsupport we have
created a multithreaded environment in a single addregesplaich gives each thread
a logically unbounded stack.

3.1 Parent Controlled Return Continuations

To reduce the cost of parallel calls, we always want a chiletivterminates to return
directly to its parent. If the child terminates without sespion it can use its original
return address. But if it suspends, is later resumed, antiyfteaminates, it generally
cannot return to the same point: Once the child has suspetiaechild and parent are
truly separate threads and the parent may have alreadgdaut the workimmediately
following thet f or k that created the child.

If we want the child to return directly to the parent we neethsavay to modify the
child’s return continuation so that the child will return @olocation of the parent’s
choosing. Since we are using stacklets, both the parenthandhild know where
the child’s return address is located in the stack. If thepiais given permission to
change the return continuation, it can change it to refleeitw state of the parent’s
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Figure7 Example of a two-way join, illustrating synchronizers.

computation. The new return continuation will return thédto the pointin the parent
function that reflects that the child, and any work initiabdtér the child suspended,
have been carried out. We call this mechansarent controlled return continuations
(PcrecS).

4 EFFICIENT SYNCHRONIZATION: SYNCHRONIZERS

The ideas found imcrcs can be extended to efficiently implement synchronization.
We minimize the synchronization cost due to joins by extegdhne use of crcs with
judicious code duplication and by exploiting the flexibjldf the indirect jump in the
return instruction. The basic idea is to change the retunticoation of a child to
reflect the synchronization state of the parent. Inthiswaither extra synchronization
variables nor tests are needed. The amount of code dupliasenall since we need
to copy only the code fragments that deal with returned tesurhis allows us to
combine the return with synchronization at no additionattume cost. For full details
see [9].

Figure 7 illustrates synchronizers. As indicated in thé et of the figure, assume
that we have two thread§; and 75, which return to the code fragments A and B,
respectively, in the parent. There they synchronize, leeftarting the code €The
key observation is that modifying the contents of the retaddress lets us encode
synchronization informatiorecrcs allow the parent to perform this modification.

The resulting situation, which relies on code duplicatisnshown in the right part
of Figure 7. Depending on the synchronization state, eacheofwo threads returns
directly to the code for synchronization failure (AF or BR)success (AC or BC). If
both threads are explicitly forked, the return addressesdth initially point to their
respective failure entry points (AF and BF). Whichever resufirst executes its return
code fragment (A or B) followed by a piece of code for synchration failure. If
the first thread was invoked withf or k, its initial failure entry point will invoke
the second thread. The failure entry point will also modtig bther thread’s return
address to point to the code for synchronization successctBgnizers anecrcs
provide the mechanisms to efficiently combine the returnsymathronization.

2Each of the three pieces of code is fairly short. A and B uguadindle only taking the results and
depositing them into the parent’s frame, while C includely @me basic block.
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Figure8 Howpcal | andthread seeds are implemented.

5 REMOTE WORK: THE LAZY PARALLEL CALL

So far we have shown how to reduce the overhead of potentiall@ésm when it
actually unfolds sequentially on the local processor. Heeeextend these ideas to
generate work for remote processors. We introdincead seedswhich allow us to
represent the potential work in the system so that it may b&ilduted efficiently
among multiple processors. Our goal is to allow work to béritiated remotely, but
pay the cost only when there is an actual need to do so.

Thread seeds are a direct extension of the multiple retwineades we introduced to
handle the suspension of children invoked thyfaor k. As shown in Figure 8, athread
seed is a code fragment with three entry points: one for dleildrn, one for child
suspension, and one for an external work-stealing reqiegte implementation level,
a thread seed can be thought of as an extended version ohgafitin passing [1],
where the child is passed three different continuations foneach of the three cases.
When the compiler determines that there is work that couldibén parallel, it creates
a thread seed which represents the work. For example, witstwcessive forks, the
t f or k for the first thread will be associated with a thread seedesgting the fork
of the second thread.

We combine seed generation ahfior k into a single primitivepcal | X Sy,
where X is the function to call andy is a thread seed that will, when executed in
the context of the parent, cause the functdrio be invoked. Upon execution of
thepcal | , a seed is created and control is transferreKtanaking the current
(parent) frame inactive. The newly created seed remainsialatr until one of three
things happens: the child returns (the seed is inlined)cliile suspends (the seed is
activated), or a remote processor requests work (the sesdlen). All three cases
require the intervention of the parent. If the child retyrtiee parent picks up the
seed and inlines the new thread of control into its ownYig&xecutes on the parent’s
stacklet, just as if it had been called sequentially. If thédcsuspends, the parent
activates the seed by spawnilYgoff on its own new stacklet; the seed becomes a
new thread concurrent with the first, but on the same procedsmremote processor
requests work, the parent executes a remote ca¥l, afhich becomes a new thread
running concurrently with the current thread, but on anogirecessor.
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The model described above is a direct extension of the nheltgturn addresses used
to implement the lazy thread fork. In addition to two con@tions for handling the
“return” and “suspension,” we need a third for “finding wdrklf a remote work
request is received, the run-time system must somehow fanthtiead seed (the third
continuation) to initiate the creation of remote work. Heseconsider two approaches
to finding such work: an implicit seed model and an expliogdsenodel.

Inthe implicit model, the remote work request interrupeschild, which then continues
execution at the work-stealing entry point of its parentthére is no work, the entry
point contains a code fragment to jump to the parents ancestthe stack. The
search continues until either work is generated or no woftiisd because no excess
parallelism is present. For the implicit model, tpeiIshSeed and popSeed
macros in Figure 8 turn into nops and the planting of a seed abatract operation.
The advantage of this model is thatwhegmcal | is made no bookkeepingis required.
Instead, the stack frames themselves form the data steucg@ded to find work. The
disadvantage is that finding work is more complex.

In the explicit model, when a seed is planted a special coation is pushed onto
the top of aseed queue The continuation is a pointer to the return address in the
frame. The calling convention is such that the return fromchild will default to the
assumption point. If a child suspends, it saves the top pointhe stacklet stub, pops
the top seed off the queue, sets 81& as indicated by the seed, and jumps into the
suspension entry point of the seed.

The explicit queueing of seeds allows us to find work with puftw instructions. For
instance, if a child suspends, it can find its ancestor, whashmore work to perform,
merely by popping off the top seed. Or, more importantly, ifeanote processor
requests work, we can determine if there is work by simply paring the top and
bottom pointers to the seed queue. We can also spawn off thik by jumping
through the work-stealing entry point of the seed at thedmotof the queue. The
parent, invoked through the seed, will execute the workistg routine, placing any
appropriate seed on the bottom of the queue. The drawbablisaftheme is that even
when a seed is inlined into the current thread (the sequeasa) there is an extra cost
of two memory references over the previously described icitdcheme.

6 EXPERIMENTAL RESULTS

In this section we present preliminary performance redolt®ur techniques on both
uni- and multiprocessors. Our uniprocessor data were@elteon a SparcStation 10.
Our multiprocessor data were collected on a CM-5.

We have produced a parallel version of C for the CM-5 whicloiporates the tech-
niques presented in this paper. To evaluate these tectmigeidegin by comparing
the performance of four different implementations of thelbly recursive Fibonacci
function. Fib, being fine-grained, is a good “stress testfufction invocation. As
shown in Table 1, the C version is significantly slower thahesithe synchronizer or
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Runtime
Compilation Method (secs)
gcc -04 fib.c 2.29
Assembly version of Fib 1.22
Fib with stacklets, lazy threads, and synchronizers 1.50
Fib as above with explicit seeds 1.86
Tablel Comparing runtimes of fib 31 on a SparcStation 10.
Program | Short Description Input Size || TAM | Lazy Threads
Gamteb | Monte Carlo neutron transport 40,000 220.8 139.0
Paraffins | Enumerate isomers of paraffins 19 6.6 2.4
Simple Hydrodynamics and heat conductionl 1 100 5.0 3.3
MMT Matrix multiply test 500 70.5 66.5

Table 2 Dynamic run-time in seconds on a SparcStation 10 for the ld&@chmark
programs under the TAM model and lazy threads with multiplersls using explicit seeds.
The programs are described in [7].

the seed version. The reason is that our stacklet manageo@atioes not use register
windows, which introduce a high overhead on the Sparc. Fairecbmparison we
wrote an assembly version of Fib that also does not use eegishdows. This highly
optimized assembly version runs only 18% faster than theteymizer version, which
incorporates all the mechanisms for multithreading suppor

Further evidence that lazy threads are efficient is predemtelable 2, where we
compare our lazy thread model with TAM for some larger proggan the Sparc. At
thistime our 1d90 compiler uses a primitive version of egfiseed creation. Inaddition
to the primitives described so far, the compiler uses ssaadnechanism to support
fine-grained parallelism within a thread [9]. We see a penfamce improvement
ranging from 1.1 times faster for coarse-grained prograkedilocked matrix multiply
(MMT) to 2.7 times faster for finer-grained programs. We et additional benefit
of up to 30% when the compiler generates code using synctemmi

Next, we look at the efficiency of work-stealing combinedhwiteeds on a parallel
machine by examining the performance of the synthetic baack proposed in [16]
and also used in [25]. Grain is a doubly recursive prograrh¢bmputes a sum, but
each leaf executes a loopgpfnstructions, allowing us to control the granularity of the
leaf nodes. We compare its efficiency to the sequential C cod®iled by gcc. As
shown in Figure 9, using stacklets we achieve over 90% dfitgigvhen the grain size
is as little as 400 cycles. Compare this to the grain size afarcation of fib, which

is approximately 30 cycles. Most of the inefficiency comesifithe need to poll the
CM-5 network. The speed-up curve in Figure 9 shows that evendry fine-grained
programs, the thread seeds successfully exploit the entichine.
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Figure9 Efficiency of lazy threads on the CM-5 compared to the sedalddimplemen-
tation as a function of granularity. We use the syntheticdhemark Grain [16, 25].
7 SUMMARY

We have shown that by integrating a set of innovative teaesdor call frame man-
agement, call/return linkage, and thread generation wepoavide a fast parallel call
which obtains nearly the full efficiency of a sequential edfien the child thread exe-
cutes locally and runs to completion without suspensiors ©bcurs frequently with
aggressively parallel languages such as 1d90, as well as camrservative languages
such as C with parallel calls.

The central idea is to pay for what you use. Thus, a local fegeirformed essentially
as a sequential call, with the attendant efficient stack gemant and direct transfer
of control and data. The only preparation for parallelisnthis use of bounded-size
stacklets and the provision of multiple return entry pointshe parent. If the child
actually suspends before completion, control is returmmethé parent so that it can
take appropriate action. Similarly, remote work is genedldtizily. When a thread has
work that can be performed remotely, it exposes an entrytpoatied a thread seed,
that will produce the remote work on demand. If the work end$eing performed
locally, it is simply inlined into the local thread of contras a sequential call. We
exploit the one bit of flexibility in the sequential call, tirdirect jump on return, to
provide very fast synchronization and to avoid explicitakiag for special cases, such
as stacklet underflow.

Empirical studies with a parallel extension to C show thasthtechniques offer very
good parallel performance and support fine-grained paisatheeven on a distributed
memory machine. Integrating these methods into a protatypepiler for 1Id90 results,
depending on the frequency of parallel calls in the programan improvement by
nearly a factor of two over previous approaches.
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