Managing Concurrent Access for Shared Memory Active Messages *

Steven S. Lumetta and David E. Culler
Computer Science Division

University of California at Berkeley
{stevel,culler } @CS.Berkeley.EDU

Abstract

Passing messages through shared memory plays an im-
portant role on symmetric multiprocessors and on Clumps.
The management of concurrent access to message queues is
an important aspect of design for shared memory message-
passing systems. Using both microbenchmarks and appli-
cations, this paper compares the performance of concurrent
access algorithms for passing active messages on a Sun En-
terprise 5000 server. The paper presents a new lock-free
algorithm that provides many of the advantages of non-
blocking algorithms while avoiding the overhead of true
non-blocking behavior. The lock-free algorithm couples syn-
chronization tightly to the data structure and demonstrates
application performance superior to all others studied. The
success of this algorithm implies that other practical prob-
lems might also benefit from a reexamination of the non-
blocking literature.

1. Introduction

The ability to pass messages through shared memory
plays an important role both in applications and in the operat-
ing system on symmetric multiprocessors (SMP’s). The im-
plicit synchronization encapsulated in the message abstrac-
tion simplifies the construction of otherwise asynchronous
data transfers and provides an efficient mechanism for se-
rializing operations on complex data structures. Messages
are also a generally accepted tool for parallel programming
and offer an attractive uniform interface for programming
clusters of SMP’s (Clumps).

Two aspects of design are particularly important to ob-
taining performance with shared memory message-passing

*The Enterprise 5000 server used in this work was donated by Sun Mi-
crosystems, Inc. This work was also supported in part by funding from Na-
tional Science Foundation Infrastructure Grant CDA 94-01156, Lawrence
Livermore National Laboratory Intra-University Transaction Agreement
B336568, and the Defense Advanced Research Projects Administration
Grant F30602-95-C-0014. The authors would also like to thank Andrea
Dusseau, Arvind Krishnamurthy, Girija Narlikar, Kathy Yelick, and the
anonymous reviewers for their insightful comments.

protocols: the arrangement of data to reduce cache-
coherence transactions and the management of concurrent
access to message queues. Good solutions to the former
require only the application of well-understood techniques
from the literature, but efficient concurrent access can be
challenging. Systems that approach this problem often
sidestep concurrent access through the use of separate re-
sources for each sender-receiver pair, but such solutions can
hurt performance in a well-tuned, user-level communication
layer.

In this paper, we study the performance of a variety of
concurrent access algorithms for message-passing. Real ap-
plications are the primary tool for our investigation, but a
set of microbenchmarks helps to characterize performance
in the extremes of high and low contention. The plat-
form for these tests is a shared memory version of Active
Messages-1II [16] that operates on a Sun Enterprise 5000
server running the Solaris 2.5 operating system. This system
is part of a multi-protocol communication layer designed for
Clumps [15].

The literature separates concurrent access algorithms into
three disjoint groups. Traditional algorithms [1, 18, 20] are
locking: a process must obtain a mutually exclusive lock to
enter a critical section, thereby preventing other processes
from entering concurrently. When such locks are used, a
process stalled inside a critical section can delay all others
for an arbitrary amount of time, a behavior termed blocking.
Non-blocking algorithms [9, 10, 17, 19] hence guarantee
that some process makes progress in a finite amount of time,
which implies that they do not enforce mutual exclusion.
The remaining algorithms do not use locks but can still result
in blocking behavior [2, 12, 22]. We follow Valois [22] and
adopt the term lock-free for this third category.

Non-blocking algorithms are advantageous on multipro-
grammed systems, since locks interact poorly with time-
sharing. These algorithms follow a common design strategy
and are simpler than their optimized locking counterparts. A
typical non-blocking operation works as follows. A process
reads a value from a data structure, performs all computation
based on the value read, and inserts the results atomically
into the data structure. If another process has changed the
original value during the computation phase, the computed

results are discarded and the operation starts again from the
beginning. For many operations, the first steps of such an
approach are the same as a sequential implementation, mak-
ing non-blocking algorithms straightforward to construct.
However, since most architectures support only 64-bit syn-
chronization primitives, atomic insertion of the results often
requires an extra level of indirection in the data structures.

On a dedicated system, the overhead of additional indi-
rection and the cost of discarding optimistically completed
work make generic non-blocking algorithms slower than
locking algorithms. To address this drawback, numerous
efforts apply problem-specific information to build more
efficient solutions out of universal primitives. This opti-
mization process sometimes involves sacrificing true non-
blocking behavior in favor of fast common-case perfor-
mance. The result is a lock-free algorithm. In practice,
we expect these algorithms to provide many of the advan-
tages of non-blocking algorithms while avoiding most non-
blocking overheads. This paper presents a new lock-free
algorithm for concurrent message queues and demonstrates
performance superior to several locking alternatives.

The remainder of the paper is organized as follows: in the
next section, we describe the problem domain and the ex-
perimental platform used in this study; Section 3 describes
six concurrent access algorithms, including our lock-free
approach; in Section 4, we evaluate performance using both
microbenchmarks and applications; Section 5 provides in-
formation about related work; and Section 6 presents our
conclusions.

2. Background and Environment

Two aspects of hardware performance are critical to
shared memory message-passing: the memory hierarchy
and the cost of synchronization primitives. The memory hi-
erarchy governs the rate at which data moves from one pro-
cessor to another, and synchronization primitives impose the
basic overhead for concurrent access to data by multiple pro-
cesses. Our experimental platform is a Sun Enterprise 5000
server containing eight 167 MHz UltraSPARC processors
with 512 kB of L2 cache each and a total of 512 MB of
main memory in two banks. Processors are connected via
Sun’s Gigaplane Interconnect [21], which is representative
of many modern cache-coherent system interconnects. Its
most unusual characteristic is support for more than one
outstanding transaction on a single cache line, effectively
pipelining concurrent memory traffic between processors.
Cache coherence is maintained with an invalidation proto-
col. Memory accesses on the Enterprise incur 300 nanosec-
onds of latency, while obtaining a line from another proces-
sor’s L2 cache requires 480 nanoseconds. The Enterprise
supports both the universal [11] COMPARE&SWAP primitive
(CAS in the text) and the less powerful TEST&SET primitive
(T&S), each at a cost of roughly 90 nanoseconds for cached
data.

Queue Block
) type
Request Queue Structure ,
,/ bulk index
4
)/ service #
packet queue tail ‘ packet queue head ‘ ,
. , payload
bulk data tail y (32B)
FIFO packet queue (256 x 64 B) L B D
FIFO bulk data queue (16 x 8 kB) I R
claimed flag
S size
Renl S AN payload
eply Queue tructure B (8 kB)
(see above for details) N

Figure 1. Block diagram of a queue block.

This work arose in the context of passing active messages
through shared memory [15]. Active messages are similar to
a highly-optimized RPC mechanism in which each commu-
nication endpoint acts as both client and server. Individual
messages in the request-reply protocol can be either short
messages of up to eight words or bulk data transfers of up to
8 kB. In this study, sets of processes communicate through
single endpoints. Each endpoint statically allocates a Sys-
tem V shared memory segment to hold a queue block for
incoming messages. Multiple clients operate concurrently
on this block, requiring atomic enqueue operations for cor-
rectness. Processes poll their respective endpoints to detect
the arrival of messages.

Our focus on message-passing between processes distin-
guishes this study from most literature on concurrent algo-
rithms. Traditionally, these algorithms are evaluated with
repeated calls to lock and unlock or to enqueue and dequeue.
Although these tests do evaluate an algorithm’s performance
under high contention, they provides little intuition about
application-level performance. In our message-passing sys-
tem, for example, each concurrent operation is accompa-
nied by uncontended computation—passing the message
and handling it. A second difference in this work is the
many-to-one nature of our queues: many processes send to
aqueue, butonly one process receives from a queue. Finally,
our use of a small, statically allocated block of memory re-
stricts our choice of algorithms. Non-blocking algorithms
cannot block when a queue is full and hence rely on dynamic
allocation by their very nature.

The queue block for an endpoint appears in Figure 1. Two
destination queue structures hold request and reply messages
received by the endpoint. Each queue structure divides into
three sections: queue tail information, accessed only by
senders; queue head information, accessed only by the recip-
ient; and two circular data queues, accessed by both senders
and the recipient. Short messages use only the packet queue,

CLAIMPACKET("g)
while TRUE

LOCK(¢".mutex)

index +— ¢ .tail

if ¢".packet[index].type = FREE
q".packet[indez].type < CLAIMED
q .tail < (indez 4+ 1) mod Q_LENGTH
UNLOCK(q".mutex)
return index

UNLOCK(q".mutex)

(back off exponentially and poll)

Figure 2. Generic mutual exclusion algorithm.

which holds the service number (RPC function) and argu-
ments. Bulk data transfers use both queues—the bulk data
queue holds the block of data. The queue structures have
been carefully laid out to reduce cache-coherence traffic.
Each packet occupies a distinct L2 cache line to avoid false
sharing, and bulk data blocks begin on cache boundaries to
increase copying speed.

Entries in the packet queue also contain a fype and a
bulk index. The type differentiates between short messages
and bulk data transfers. It also serves as the handshake
state in transferring data from a sender to a recipient. A
claimed flag serves the latter purpose for the bulk data queue.
The bulk index records the association between a bulk data
transfer packet and the data itself. The bulk data queue
is significantly shorter than the packet queue, allowing the
queue block to fit into a reasonable amount of memory
(293 kB).

3. Concurrent Algorithms

This section describes the six concurrent access algo-
rithms that we evaluate in our study. Five are locking algo-
rithms, with four drawn from the literature [18] and the fifth
being the Solaris implementation of Posix mutexes. The
last is our lock-free algorithm. We chose to implement no
non-blocking algorithms, in part due to the difficulty of re-
solving storage issues and in part due to the added overhead
inherent to queues based on pointers rather than on data
packets. Also, the use of a request-response communication
paradigm makes true non-blocking behavior moot, since an
endpoint that fails to respond blocks application progress.

Each algorithm relies on either T&S or CAS, which
are atomic with respect to all other memory accesses.
TEST&SET(address) sets the value at an address to LOCKED
and returns the previous value at the address. COM-
PARE&SWAP(address, old, new) compares the value at an
address with an expected value, old. If the two values are
equal, the operation writes a third value, new, into the ad-
dress and returns TRUE. Otherwise, CAS returns FALSE.

The amount of cache traffic generated by a locking algo-
rithm serves as the primary metric for abstract evaluation.
Precluding starvation and providing fair access are also at-
tractive qualities. The prevalence of universal primitives on
modern machines has a subtle drawback for the latter issues,
however. As with the simpler non-universal primitives like
T&S, the number of times that a process can fail a CAS
operation is not generally bounded by hardware. Hence
no algorithm that makes use of CAS to manage centralized
control information can eliminate the possibility of starva-
tion. While such a scenario may seem unlikely with existing
machines, it may become more common as the number of
processors in an SMP grows.

The algorithms all use a common approach to message
delivery. To enqueue a short message, a sender claims a
packet in the destination queue structure with CLAIMPACKET
(changing the type of the returned packet from FREE to
CLAIMED), then fills in the packet. Claiming a packet
involves concurrent access to the queue, but only a single
sender accesses a packet while it is being filled. Once a
packet is full, the sender changes its type to READY. This
three-state handshake shortens the critical section by ex-
tracting packet-filling. For bulk data transfers, a sender uses
CLAIMBUIK to claim both a packet and a bulk data block,
fills in both, and changes the packet type to READY-BULK.
When a message at the head of a packet queue is ready for
delivery, the receiver’s poll operation advances the packet
queue head and passes the arguments and, for bulk data
transfers, the associated data block, to the service routine
named by the packet. After this call returns, both the packet
and the data block are marked as FREE.

3.1. Locking algorithms

Pseudo-code for claiming a packet with any of the locking
algorithms appears in Figure 2. The algorithms differ only
in their implementation of the LOCK and UNLOCK opera-
tions. Under the protection of a queue’s lock, CLAIMPACKET
checks for a free packet at the tail of the queue. When
available, the packet is claimed, the queue tail is advanced,
and the packet is returned. The tail packet may already be
claimed—when the queue is full, for example—and, in this
case, the operation stalls until it becomes available. CLAIM-
BULK has the same form as CLAIMPACKET but operates on
both the packet and bulk data queues inside the critical sec-
tion. CLAIMBULK also records the index of the associated
data block in the packet.

When stalled on a full queue, both claim operations poll
for incoming messages to avoid deadlock. Consider a group
of endpoints with full request queues. If these endpoints
simultaneously perform RPC’s in a cyclic fashion, none can
immediately succeed because the queues are full. Polling
during backoff creates space in the queues and breaks the
deadlock.

The first locking algorithm, Test & Set, uses a simple

CLAIMPACKET("g)
repeat
index +— ¢ .tail
next + (index + 1) mod Q_LENGTH
until COMPARE&SWAP(q".tail, index, next)
while TRUE
if COMPARE&SWAP(q".packet[index].type,
FREE, CLAIMED)
return :ndex
(back off exponentially and poll)

Figure 3. Lock-free algorithm.

T&S lock. The second, Test & Test & Set, waits until a
lock is released before making another attempt to obtain
it, thereby reducing the amount of cache-coherence traffic
generated while a lock is held.

Third, the Ticket Lock [20], further reduces cache-
coherence traffic by ordering the processes waiting on a
lock. To obtain a lock, a process obtains a ticket and waits
for a service counter to show its ticket number. The ticket
counter is incremented atomically to ensure that each pro-
cess receives a different ticket. When a process releases
a lock, it increments the service counter to allow the next
process waiting on the lock to proceed. We found that plac-
ing both counters on a single cache line results in slightly
better performance, and we report measurements only for
that layout. The Ticket Lock exemplifies the CAS starvation
phenomena on modern machines. Given hardware support
for FETCH& ADD, the Ticket lock precludes starvation and is
strictly fair [18]. Our implementation uses a FETCH&ADD
operator built from CAS and hence cannot prevent starva-
tion. It is fair only to processes that successfully obtain
tickets.

Fourth is the Anderson Lock [1], which improves on the
Ticket Lock by dividing the service counter into a separate
flag for each process waiting on the lock. The lock opera-
tion obtains a slot assignment with CAS, then waits for the
assigned slot to contain a lock indicator. When releasing a
lock, a process moves the lock indicator from its slot into the
next. The maximum number of processes must be known in
advance to use the Anderson lock.

These four algorithms, together known as spin locks,
have several drawbacks in practice. As the name implies,
spin locks spin in a tight loop while waiting for a lock,
potentially wasting valuable cycles. Spin locks also inter-
act poorly with the operating system scheduler and admit
deadlock when used with preemptive threads. Numerous
preemption-safe locking solutions exist [19] and are sup-
ported in modern thread packages through integration with
the operating system. The Solaris implementation of Posix
mutexes, our final locking algorithm, exemplifies these so-
lutions. A process that tries to obtain a lock held by another
process enqueues itself on the lock and gives up its proces-

sor. Priority inversion is used to allow low priority processes
to complete critical sections while high priority processes
wait, and locks are implicitly reclaimed after abnormal ter-
mination. Unfortunately, the same close coupling with the
operating system results in performance disadvantages on
dedicated systems.

3.2. Lock-Free algorithm

Our lock-free algorithm is more robust than spin locks
to preemption, yet avoids the high overhead inherent to
operating system support. Pseudo-code for the algorithm
appears in Figure 3. The analogue of the critical section in
CLAIMPACKET consists of two steps. First, a sender obtains
a packet assignment by atomically incrementing the queue
tail using CAS. Next, the sender claims the assigned packet
by changing its type from FREE to CLAIMED, again using
CAS. The number of assigned packets may exceed the queue
size, in which case multiple senders compete for a single
packet in the second step. As with the locking algorithms,
the lock-free algorithm avoids deadlock by polling when a
packet claim fails.

For bulk data transfers, a sender uses a similar approach
to claim a bulk data block before claiming a packet. The
order defined by CLAIMBULK avoids a second deadlock sce-
nario. Consider a process performing a bulk data transfer
and holding the packet at the head of the packet queue. If
the bulk data queue is full, the process cannot complete its
operation, but neither can the receiving process receive any
messages holding bulk data blocks until it receives the mes-
sage at the head of the packet queue. By reserving space in
the bulk data queue before competing for space in the packet
queue, the algorithm avoids this situation.

Careful scrutiny of the lock-free algorithm allows us to
predict its performance relative to the locking algorithms
for both high and low levels of contention. The key to both
predictions is the separation between assigning a packet
and claiming it. This separation increases the number of
synchronization primitives performed and results in slightly
worse performance in the absence of contention. The same
separation, however, results in a much shorter window of
vulnerability to contention. The bottleneck step is packet
assignment, but the CAS in this step is vulnerable to failure
only between the completion of the queue tail load and the
execution of the CAS, a period covering roughly a tenth
of a microsecond on the Enterprise. The critical section
in the locking algorithms spans at least two cache misses
(the queue tail and the packet type) and totals at least a
microsecond. Hence we expect the lock-free algorithm to
outperform the locking algorithms under contention.

4. Performance Comparison

We now study performance over a range of access con-
tention using tests from the message-passing literature.

Test & Test & Ticket | Anderson | Posix | Lock-

Set Test & Set | Lock Lock Mutex | Free

Latency (L) -0.1 -0.1 -0.1 -0.2 0 -0.3
Send Overhead (0;) 1.6 1.6 1.7 1.7 22 1.9
Receive Overhead (o,) 1.2 1.2 1.2 1.2 1.3 1.2
Gap (9) 2.9 2.9 2.9 3.0 3.5 3.1
Round Trip Time (RTT) 5.5 54 5.5 5.5 6.9 5.6

Table 1. LogP parameters and round trip times in microseconds.

Test & Test & Ticket | Anderson | Posix | Lock-

Set Test & Set | Lock Lock Mutex | Free

1 writer | 2.98 3.01 2.96 3.05 3.54 3.19
3 writers | 3.03 3.46 3.18 3.22 10.00 | 3.08
7 writers | 4.37 3.83 3.50 3.75 14.10 | 3.03

Table 2. Communication stress test times in seconds.

4.1. LogP microbenchmarks

We first measure point-to-point communication perfor-
mance in terms of LogP. Assuming a small, fixed message
length, the LogP model [7] characterizes communication
networks as a set of four parameters: 7., an upper bound on
the network latency (wire time) between processors; o, the
processor busy-time required to inject a message into the
network or to pull one out; g, the minimum time between
message injections for large numbers of messages; and P,
the number of processors. The overhead o is often separated
into send overhead, o, and receive overhead, o,.

LogP parameters were measured using a microbench-
mark from the suite described in [8] and appear in Table 1.
The test uses one process as an RPC server and a second
as a client and illustrates performance in the absence of
contention. The negative latency values indicate overlap in
time between the send and receive overheads [14], in this
instance due to the poll operation. With the exception of the
Posix mutex, the various algorithms are nearly equivalent,
with send overhead and gap rising slightly as the complexity
of the algorithm increases. Interacting with the operating
system makes the Posix mutex performance significantly
worse (more than 25%) than the others. Peak bandwidth
using bulk transfers has less variation: the algorithms range
from about 158 MB/s (Posix mutexes) to 166 MB/s (lock-
free), or roughly 80% of the memory copy rate.

4.2. Communication stress test

We next observe the performance of many-to-one com-
munication, a difficult if somewhat unlikely scenario for
most message-passing systems. Using one process per phys-
ical processor, the test uses all but one process to write a total
of one million integers to the remaining process. The results
for up to eight processors appear in Table 2. This commu-
nication stress test generates the highest contention observ-

able by an application using our Active Message layer, and
may also be representative of more reasonable workloads on
larger machines.

As apparent from the results, the test with a single writer
is equivalent to the LogP gap measurement. With three and
seven writers, the processes contend for access, and perfor-
mance degrades for the locking algorithms. Surprisingly, the
performance of the lock-free algorithm improves with more
writers, allowing it to demonstrate the best performance
under contention, where such approaches are traditionally
expected to suffer. The shorter window of vulnerability in
the lock-free algorithm accounts for the reduced impact of
contention, but the improvements arise from a gap reduc-
tion effect found in many message-passing systems. The
overhead of a poll operation is amortized over all messages
accepted by that poll, making the gap for many-to-one com-
munication lower than that for one-to-one communication.
For our lock-free algorithm, gap reduction dominates the
small increase in execution time due to contention.

4.3. Application analysis

We have measured performance at the extremes of con-
tention. Extra complexity and multiple synchronization
primitives add overhead at low levels of contention, but can
improve performance when contentionis high. The effect of
this tradeoff at the application level is unclear, however. Ap-
plications are the natural metric for message-passing, since
they use intrinsically interesting communication patterns.
We now present execution times for three applications drawn
from the Split-C application suite [6]. These programs are
written in a bulk synchronous style—processors proceed
through a sequence of coarse-grained phases, performing a
global synchronization between each phase. Table 3 lists
the input parameters and total memory requirement for each
application run.

3-D FFT performs a fast Fourier transform in three di-

Input Parameters Memory
3-D FFT | 256x256x256 values 328 MB
3D underlying lattice
CON/comm | 512,000 nodes/processor | 256 MB
25% edges present
2D underlying lattice
CON/comp | 640,000 nodes/processor | 320 MB
40% edges present
SAMPLE | 262,144 nodes/processor | 72.8 MB

Table 3. Application run input parameters.

mensions and typifies regular applications that rely primar-
ily on bulk communication. The communication pattern is
all-to-all, but is scheduled into many one-to-one phases to
improve performance [3]. CON finds the connected compo-
nents of a distributed graph. CON performs a large amount
of fine-grained communication in a statistically well-defined
pattern. The balance between computation and commu-
nication depends strongly on the input parameters. We
selected both a communication-bound run and a second,
computation-bound run. The input parameters for the first
run result in a period of high contention and load imbalance
near the end of the execution. SAMPLE sorts 32-bitintegers
using sample sort and represents applications that perform
fine-grained, all-to-all communication.

Execution times for each run appear in Table 4. Our
lock-free algorithm generally demonstrates the best perfor-
mance for applications. The shorter window of vulnerabil-
ity outweighs the cost of the second CAS. The exception
is 3-D FFT, which uses primarily bulk communication and
hence requires four CAS instructions for the lock-free algo-
rithm. Despite this extra synchronization overhead, only the
Ticket Lock is able to obtain better performance. Indeed,
among the locking algorithms, the Ticket Lock provides the
best performance for most applications, striking the proper
balance between extra overhead and reduced cache traffic.
As was evident from the microbenchmarks, the Posix mutex
algorithm is not competitive. Binding each process to a sep-
arate physical processor improves Posix mutex performance
by as much as a factor of two, but the cost of operating system
support remains prohibitively expensive. Only the lock-free
algorithm is both fast and robust to multiprogramming.

5. Related Work

The locking algorithms used in our work are drawn from
a survey by Mellor-Crummey and Scott [18]. Herlihy is
a good source for the theory of non-blocking behavior as
well as some general practical approaches [10]. More prac-
tical implementations of non-blocking data structures are
also abundant. Michael and Scott survey a variety of such
algorithms and evaluate their performance on an SGI Chal-
lenge [19]. Massalin and Pu provide evidence that non-

blocking approaches can be efficient when tailored to operat-
ing system data structures [17], and Greenwald and Cheriton
show that more general approaches can also be successful in
this regime [9]. Both kernel implementations make use of
the double-compare-and-swap (DCAS) instruction, which
performs simultaneous CAS operations on two independent
words and is not generally available.

Valois differentiates between non-blocking and lock-free
algorithms. The lock-free, array-based queue algorithm pre-
sented in [22] is similar to ours but requires significantly
more complex operations and unaligned CAS instructions,
making it “infeasible on a real machine.”

The idea of passing messages through shared memory is
not novel. Numerous applications make use of these tech-
niques, as do anumber of operating systems. However, these
systems often avoid concurrent access by creating separate
data structures for each sender-receiver pair. Cheriton and
Kutter touch briefly on shared message segments, but only to
mention their use in establishing a private segment for client-
server communication [5]. Byrd builds optimistic high-level
models of non-concurrent shared memory communication
to aid in the design of a system that minimizes end-to-end
latency [4]. A study by Lim et. al. [13] uses shared mem-
ory to route network traffic between SMP’s through a proxy
process, but again the data structures are duplicated for each
communicating pair. Separate queues deliver superior re-
sults for one-to-one communication, but can be detrimental
for more complex communication patterns. Polling each ad-
ditional queue incurs a significant fraction of total message
overhead in user-level communication layers [15].

Both Brewer et. al. [2] and Karamcheti and Chien [12]
address concurrent message queues on the Cray T3D, a
NUMA machine, with algorithms very similar to ours. Their
algorithms use remote FETCH&INCREMENT support to claim
queue entries from a static queue, but rely on the receiver
to reset the queue after all entries have been claimed and
processed. We avoid this boundary condition through the
use of an additional synchronization primitive.

Although we used multiple processes to explore perfor-
mance, our results also apply to the use of multiple threads.
The main difference between these models lies in the need
for bulk data transfers, since a thread can “send” a block of
data by passing a pointer to the block in a short message.
Karamcheti and Chien [12] describe an interesting “pull-
based” algorithm using dynamic allocation and a link-based
queue in the context of the T3D.

6. Conclusion

We have explored the performance of a variety of algo-
rithms for managing concurrent access to message-passing
queues and have demonstrated improved performance us-
ing a new lock-free algorithm that couples synchroniza-
tion tightly to the data structure. The lock-free algorithm
improves performance by reducing the window of vulner-

Test & Test & Ticket | Anderson | Posix | Lock-
Set Test & Set | Lock Lock Mutex | Free
3-D FFT 8.9 8.8 8.6 8.9 9.0 8.7
CON/comm | 2.04 2.02 1.98 2.20 3.5 1.96
CON/comp 1.43 1.43 1.43 1.45 1.6 1.40
SAMPLE 2.3 2.3 2.5 2.8 9.5 2.2

Table 4. Application execution times in seconds (best performance in boldface).

ability to contention. Breaking the critical section into
multiple steps requires the use of multiple synchroniza-
tion primitives and adds some overhead in the absence
of contention, but the cost of synchronization primitives
on modern hardware is fairly low—about fifteen cycles on
the Enterprise 5000—and the benefits of reduced contention
dominate the behavior of the algorithm for applications.

Fast shared memory message-passing is an important
problem for SMP’s and for clusters of such machines, but
few studies have considered the merits of concurrent access
algorithms for this domain. We have applied approaches
from non-blocking theory to create a fast, lock-free solu-
tion. Our algorithm provides a greater degree of robustness
to multiprogramming and demonstrates performance supe-
rior to traditional locking techniques for real applications. In
the process, we have demonstrated that lock-free techniques
can be effectively applied to a specific, practical problem.
Other interesting problems might also benefit from a reex-
amination of the concurrent access literature.

References

[1] T.E. Anderson. The Performance of a Spin Lock Alternative
for Shared-Memory Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 1(1):6-16, Jan. 1990.

E. A. Brewer, F. T. Chong, L. T. Liu, S. D. Sharma, and J. D.
Kubiatowicz. Remote Queues: Exposing Message Queues
for Optimization and Atomicity. In Symposium on Parallel
Algorithms and Architectures, 1995.

E. A. Brewer and B. C. Kuszmaul. How to Get Good Per-
formance from the CM-5 Data Network. In International
Parallel Processing Symposium, Apr. 1994.

G. T. Byrd. Models of Communication Latency in Shared
Memory Multiprocessors. Tech. Report CSL-TR-93-596,
Stanford University, Dec. 1993.

D. R. Cheriton and R. A. Kutter. Optimized Memory-
Based Messaging: Leveraging the Memory System for
High-Performance Communication. Computing Systems,
9(3):179-215, 1996.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. S. Lumetta, T. von Eicken, and K. Yelick. Parallel Pro-
gramming in Split-C. In Supercomputing, pp. 262-73, Nov.
1993.

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a Realistic Model of Paralle] Computation.
In Principles and Practice of Par. Programming, May 1993.

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

D. E. Culler, L. T. Liu, R. P. Martin, and C. O. Yoshikawa.
Assessing Fast Network Interfaces. IEEE Micro, 16(1):35—
43, Feb. 1996.

M. Greenwald and D. Cheriton. The Synergy between Non-
Blocking Synchronization and Operating System Structure.
In Operating Systems Design and Impl., Oct. 1996.

M. Herlihy. A Methodology for Implementing Highly Con-
current Data Objects. Tech. Report CRL 91/10, DEC CRL,
Oct. 1991.

M. P. Herlihy. Impossibility and Universality Results for
Wait-Free Synchronization. In Symposium on Principles of
Distributed Computing, Aug. 1988.

V. Karamcheti and A. A. Chien. A Comparison of Architec-
tural Support for Messaging in the TMC CM-5 and the Cray
T3D. In Int. Symp. on Comp. Arch., pp.298-307, June 1995.
B.-H. Lim, P. Heidelberger, P. Pattnaik, and M. Snir. Mes-
sage Proxies for Efficient, Protected Communication on SMP
Clusters. Tech. Report #RC 20522 (90972), IBM Almaden,
Aug. 1996.

L. T. Liu and D. E. Culler. Evaluation of the Intel Paragon
on Active Message Communication. In Intel Supercomputer
Users Group Conference, Jun. 1995.

S. S. Lumetta, A. M. Mainwaring, and D. E. Culler. Multi-
Protocol Active Messages on a Cluster of SMP’s. In SC97:
High Performance Networking and Computing, Nov. 1997.
A. M. Mainwaring and D. E. Culler. Active Message Ap-
plications Programming Interface and Communication Sub-
system Organization. Tech. Report #CSD-96-918, U. C.
Berkeley, Oct. 1996.

H. Massalin and C. Pu. A Lock-free Multiprocessor OS
Kernel. Tech. Report CUCS-005-91, Columbia University,
Jun. 1991.

J. M. Mellor-Crummey and M. L. Scott. Algorithms for
Scalable Synchronization on Shared-Memory Multiproces-
sors. ACM Trans. on Comp. Systems, 9(1):21-65, Feb. 1991.
M. M. Michael and M. L. Scott. Relative Performance of
Preemption-Safe Locking and Non-Blocking Synchroniza-
tion on Multiprogrammed Shared Memory Multiprocessors.
In International Parallel Processing Symposium, 1997.

D. P. Reed and R. K. Kanodia. Synchronization with
Eventcounts and Sequencers. Communications of the ACM,
22(2):115-23, Feb. 1979.

A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yuan,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvey,
E. Hagersten, and B. Liencres. Gigaplane: A High Perfor-
mance Bus for Large SMPs. In Hot Interconnects 1V, pp.
41-52, Aug. 1996.

J. D. Valois. Implementing Lock-Free Queues. In Interna-
tional Conf. on Par. and Dist. Computing Sys., Oct. 1994.

