
Ninja: A Framework for Network Services
J. Robert von Behren, Eric A. Brewer, Nikita Borisov, Michael Chen, Matt Welsh

Josh MacDonald, Jeremy Lau, Steve Gribble* and David Culler
University of California at Berkeley

Ninja is a new framework that makes it easy to cre-
ate robust scalable Internet services. We introduce a
new programming model based on the natural parallel-
ism of large-scale services, and show how to implement
the model. The first key aspect of the model is intelligent
connection management, which enables high availabil-
ity, load balancing, graceful degradation and online
evolution. The second key aspect is support for shared
persistent state that is automatically partitioned for
scalability and replicated for fault tolerance. We discuss
two versions of shared state, a cluster-based hash table
with transparent replication and novel features that
reduce lock contention, and a cluster-based file system
that provides local transactions and cluster-wide
namespaces and replication. Using several applications
we show that the framework enables the creation of
scalable, highly available services with persistent data,
with very little application code — as little as one-tenth
the code size of comparable stand-alone applications.

1  Introduction
The Ninja Project is focused on Internet infrastruc-

ture and the need for a better way to create, maintain and
operate robust giant-scale distributed systems. Although
the overall project [GWv+01] addresses wide-area sys-
tems, in this paper we study building robust large-scale
centralized network services. Thus we focus on clusters
within a single administrative domain that act as a cen-
tralized server for many users and potentially many ser-
vices. The primary goal is to deal in full with the word
“robust”, which includes basic problems of scalability,
availability, fault tolerance, and persistence.

Network services include almost all aspects of large
web sites, including many non-HTTP services, such as
instant-messaging, e-mail and the central-server aspects
of peer-to-peer file sharing. These services have a form
of natural parallelism that derives from supporting mil-
lions of independent users; we thus define scalability,
concurrency and high availability in terms of users or
requests. The basic unit of work is thus a query or con-
nection (depending on the service) from a specific user.

We believe that the framework presented here is the
right way to build these services: both that the program-
ming model is the right way to think about the service,
and that the mechanisms we use greatly simplify service
authoring. In some sense, this framework is our fourth

version over a period of five years (starting with
[FGCB97]) and therefore represents considerable refine-
ment of both the model and mechanisms. Unfortunately,
it is nearly impossible to prove that a framework is
“right” — instead we focus on describing the principles
and invariants provided by the framework and why they
simplify service authoring, and we examine the code
size of several representative services and show that
they are remarkably small given that they are scalable,
highly available and persistent in the presence of faults.

We explicitly do not look at those parts of a site built
on top of a database management system (DBMS) for
several reasons. First, there is much work in industry on
this topic and several products that work well. Second,
our work is complementary to database research and
would be easy to integrate with a DBMS by using Ninja
as an “application server”. Third, we tend to focus on
high availability, rather than transactions, and support a
wider range of semantics than ACID [GR97]. However,
we do look at persistence, replication, atomicity, and
consistency, and many things done with a database are
perhaps better done directly in Ninja (see Section 6).

The requirements for network services are very
demanding. By “robust” we mean all of the following:

Scalability: the ability to support 100M users.
High Availability: the ability to answer queries

nearly all of the time. Ninja services should be able
to reach 4 or 5 nines, that is, the probability of
answering a query should be above 0.9999 (when
desired). High availability means that most queries
succeed and that if a query fails, retrying it has a
high probability of success: ideally, retries should
be independent trials. This differs from the harder
goal of “fault tolerance” in which a query must
complete correctly without a client-visible retry.

Persistent Data: Like high availability, this is a
specific form of fault tolerance: that data survives
faults. This requires replication, and much of the
framework will deal with automating replication for
availability and persistence. There is often, but not
always, an implied sub-goal of consistency for the
data. We support a range of performance and
consistency tradeoffs, with the default being
linearizability [HW87].

Graceful Degradation: We cannot assume that there
will be sufficient resources to always handle the
offered load. Instead, we aim for graceful*: Now at the University of Washington 

This work was supported in part by DARPA #DABT 63-98-C-0038.



degradation through admission control and
prioritization of requests. We aim to achieve the
maximum throughput even when overloaded.

Online Evolution: A variation of high availability,
online evolution is the ability to upgrade the service
in place without significant downtime. In most
cases, we can upgrade a service without downtime.
One primary goal is to make achieving these proper-

ties easy for service authors. We have developed several
example applications that exhibit robustness; we judge
ease of authorship primarily by code size. To achieve
ease of authorship, we follow employ three principles:

Exploiting Clusters: In a data-center environment,
we can make many assumptions that are not true in
general for distributed systems. These include a
reliable source of power, temperature control,
physical security, 24-hour monitoring, and a
partition-free internal network. 

Programming Model: We believe that a fully
general programming model makes it impossible to
provide robust services. Instead, we use namespaces
and narrow interfaces to control the sharing,
replication, and persistence of data, which means
that we do not have to provide these properties for
all data at all times. Second, we forsake general
multi-threaded concurrency for a specific style that
matches the natural parallelism. We thus focus on
inter-task parallelism rather than intra-task
parallelism, although we support asynchronous I/O.
We show that this model is sufficiently expressive
to write a wide variety of services.

Hide Complexity: We share with DBMS research the
goal of hiding the complex details of replication,
persistence, load balancing and fault tolerance from
applications. However, we do so through the use of
reusable data structures and libraries rather than via
an abstract data model and a declarative language
(SQL). Both approaches enable strong properties
with relatively little application code, but our
approach fits more naturally with applications
written in imperative languages such as C or Java.
We define the programming model in Section 2, and

our key mechanisms in Section 3. Section 4 describes
the applications and Section 5 presents their evaluation.
Section 6 discusses our principles and related and future
work, and Section 7 provides a summary.

2  Programming Model
The goal of the programming model is to simplify

the creation of complex network services; such services
must map naturally onto the programming model. Sec-
ond, the model must enable an underlying implementa-

tion that hides the details of fault and load management,
scalability, high availability, and online evolution.

Given the natural parallelism described above, we
choose a model based on request parallelism, in which
we aim to partition users’ request streams across nodes.
For ease of authoring, we would like to have a single
program that is automatically spread across the cluster.
Thus we choose to base our model on the single-pro-
gram-multiple-data (SPMD) model commonly used in
parallel computing [DGNP88]. We make two extensions
to the SPMD model: support for shared state1 and man-
agement of connections to the outside world. We refer
to this new model as the single-program-multiple-con-
nection (SPMC) model, as shown in Figure 1. We also
assume many threads per node, which differs from
SPMD in practice, but not in definition. There are
expected to be many connections per node, and there
may be more or fewer threads than connections. One big
practical difference of course is that we seek to achieve
high availability and tolerance for partial failures,
whereas SPMD was developed in the context of the all-
or-nothing fault models of parallel machines.

By “shared state” we mean that the threads and con-
nections active on any subset of nodes may share global
namespaces that support linearizable updates (i.e.
strongly consistent, see [HW87]) to network-accessible
storage in a uniform manner across the cluster. This
notion does not require shared memory, as assumed in
the original SPMD work; instead we provide multiple
global namespaces accessed via method calls rather than
load/store instructions. This narrow interface to shared

1: Although many SPMD systems had at least a shared namespace
(e.g. CM-5 [HT93] and T3E [Sco96]), support was inconsistent and
we thus treat this as an extension.
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Figure 1: The Programming Model
A node consists of threads, local state and shared
state. Nodes use the same “program” (code base),
and receive connections from the Connection
Manager in the style of data parallelism.
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state simplifies consistency, replication and persistence.
Conversely, we define non-shared state as “local

state”, which includes local memory and files. Local
state is simpler and faster to access than shared state,
and is useful for session and thread state (e.g., stacks),
caching shared state, and temporary files.

Invariant: Shared state is strongly consistent across
all nodes used by a service.

Globally named shared state implies that any con-
nection can be serviced from any node, which is a tre-
mendous simplification. Shared state enables simple
construction of groupware services, communication ser-
vices (e.g. chat), and information dispersion (e.g. stock
quotes); it also simplifies service management. For
example, it is easy to count users, put them in (shared)
queues, and track aggregate statistics about the service.

Shared state can also be highly available and persis-
tent (up to some configurable number of faults):

Invariant: Shared state is highly available and persis-
tent (when desired).

High availability requires automatic replication, while
durability requires management of replicas and disk
writes. The power and simplicity of the SPMC model
come from the automatic management of consistent,
highly available, persistent shared state. Finally, we
allow services to relax these invariants for better perfor-
mance (Sections 3.4.1 and 5.5).

We support multiple independent namespaces for
shared data. This provides both encapsulation and logi-
cal isolation of different services and system compo-
nents, thus providing a simple form of security: services
cannot read or write the shared state of other services or
of shared system components. Additionally, support for
many namespaces enables fine-grain control over con-
sistency, availability (replication), and persistence, all of
which are attributes of a namespace.

We have found two kinds of shared state to be par-
ticularly useful: shared data structures and shared files:

Shared Data Structures: These have the same
interface as normal data structures and are therefore
very easy to use. We provide hash tables and B-
trees. Hash tables are sufficient to support other
models including tuple spaces and shared arrays.
We also provide extensible atomic operations that
enable programmers to create high-concurrency
sharing primitives, such as compare-and-swap.

Shared Files: Although we can store large items
persistently in the hash table, we found that file
usage is sufficiently different and common to
support directly. Some of the key differences
include larger objects, larger working set sizes,

lower expectation of being in memory, and the need
for data streaming over the network.
The second extension in SPMC is explicit support

for connection management. The SPMD model does not
define how outside I/O interacts with the nodes, except
for possibly spreading files across the nodes. For net-
work services the problem is much more dynamic: some
state is long lived, and we must isolate down nodes from
the clients to provide high availability. 

Invariant: New or retried connections arrive at
“up” nodes.

Note that we do not promise that connections do not go
down: existing connections are lost when a node goes
down. Although possible in theory, moving active con-
nections when the server side dies is not practical. For
example, every potentially client visible state change
must be durable, which requires tracking those changes
to either a replica or a persistent store, as they occur.
Instead, we promise that retried connections are not
affected by the failure. Using shared state, it is possible
to keep session state across this transition as needed,
which is simpler and much more tractable than tracking
all client-visible state automatically.

To enable more intelligent connection management,
we add one key idea to the programming model: con-
nections are partitioned into application-defined classes,
which we call partitions. By default a service has only
one class, in which case all connections are treated the
same, but in practice explicit partitioning gives the
author more control over the service. In particular, a
partition is the:

Unit of Affinity: Connections in the same partition go
to the same node(s), which enables cache affinity
(similar to LARD [PAB+98]), and reduces
communication for users within the partition. For
example, if all users in a chat room are in the same
partition, then the group state resides on that node.2

Unit of Priority: Partitions allow the author to
control graceful degradation and quality of service.
In particular, we can support application-defined
admission control, by dropping connections in low-
priority partitions first. The same idea enables
differentiated quality of service by partition: we can
support different densities of users/node for high-
and low-priority partitions. For example, high-
paying stock traders might have less congestion and
thus faster trades, especially during overload.

2: Some communication is still required if the chat state is repli-
cated, but typically chat rooms are neither persistent nor highly avail-
able; the application code would be almost identical regardless.



Unit of Migration: Under a load imbalance or a fault,
it may be necessary to migrate users’ state to a new
node. Partitions are the unit of migration for fault
recovery and load balancing. This ability also
simplifies online evolution, as we can do a rolling
upgrade by partition.
In general, explicit partitions are powerful because

we get simple application-level guidance on how to
group connections. We can then use these groups to pro-
vide fine-grain control over replication, cache affinity,
quality of service, graceful degradation and online evo-
lution. Note that we partition connections and not users;
we can use them to partition users or we can have the
same user in different partitions simultaneously depend-
ing on the task. Finally, service authors can ignore parti-
tions if they need only even load balancing.

3  Mechanisms
In this section we examine the four key building

blocks that we use to achieve the SPMC model.

3.1  Clone Groups
The first mechanism is to virtualize the SPMC

model: instead of each service running on a whole clus-
ter, we instead run services on clone groups, which are a
set of clones with common code and state. A clone is a
virtual node that we map onto a real node dynamically;
we refer to them as clones because they share the same
code base (the “single program”) and shared state. Thus
when we discuss shared state or namespaces, it is
always for a specific clone group. Similarly, connec-
tions are managed across clone groups, not the cluster.

Principle: Clone groups provide each service with a
virtual cluster.

Clone groups typically map onto a subset of the real
nodes, and may vary in size depending on load. More
than one clone group may map onto a node, in which
case they are isolated in terms of state and namespaces,
but not in performance. However, the connection man-
ager described below can maintain even load balancing
even if clones have uneven throughput due to differ-
ences in hardware, work per connection, or interference
from other groups. 

Clone groups provide several useful mechanisms to
the programmer, including membership, broadcast and
barrier synchronization. Changes in membership lead to
notification of all clones via birth and death events.
Membership is approximate and eventually consistent,
which has proven sufficient in practice. For example,
we use death notification to instigate recovery within
the shared data structures.

Broadcast is mostly useful for notification, since
there is a better mechanism for sharing state. Barriers

could be implemented on top of shared state, but are
actually done via message passing (i.e. events) because
of the need to integrate dynamic membership informa-
tion. A barrier is considered done when all live nodes
reach the barrier, so death events may complete a bar-
rier. As with SPMD, barriers are used to ensure that all
clones are in the same stage; the biggest use seems to be
to denote the completion of an initialization phase. 

An overall manager, called the “shogun”, dynami-
cally modifies the size of each service’s virtual cluster
based on utilization. Remarkably, most services don’t
care about the size of the cluster, since the shared state is
managed across the transition automatically, and no
connections are lost during the transition (see Section
5.4). A service can track changes using the birth/death
events when needed.

Typically, replication uses subsets of a clone group
of storage nodes. A replica group is thus a subset of a
clone group that handles replication for part of the
shared data, so that we can decouple the degree of repli-
cation from the number of clones. Replicas use the
clone-group mechanisms to handle replica membership
and synchronization. We use many small replica groups
in one storage clone group, with overlapping member-
ship. For example, with 2-way replication, a replica
group is a two-node subset of a larger storage clone
group. The use of lots of small groups reduces the
recovery latency per group, and enables incremental
recovery, where each small group is one step. By
design, the groups are small enough that we can just
copy the whole contents of another replica atomically,
without too much concern for the fact that we prevent
updates to that group (only) during the copy.

3.2  Single-node Run-Time System: SEDA
An important aspect of building scalable services is

to support very high concurrency and to avoid overcom-
mitment of server resources. Building highly concurrent
systems is inherently difficult: structuring code to
achieve high throughput is not well-supported by exist-
ing programming models, and traditional concurrency
mechanisms, particularly threads, make it difficult for
applications to exercise control over their resource
usage.

Ninja makes use of a concurrency design called
SEDA, or staged event-driven architecture. Services are
structured as a set of stages connected by explicit event
queues. This design permits each stage to be individu-
ally conditioned to load (e.g., by performing threshold-
ing on its incoming event queue), and facilitates
modular application construction. SEDA, covered in
detail in [WCB01], enables not only very high concur-
rency, but also graceful degradation through resource
management and adaptive load shedding.



For the purposes of this paper, SEDA provides two
key capabilities: support for more connections/node and
thus better overall performance, and detection of over-
load at the node level, which we need to provide grace-
ful degradation for the overall service.

The scalability limits of threads are well-known and
have been studied in several contexts, including Internet
services [PDZ99] and parallel computing [RV89]. Gener-
ally, as the number of threads grows, OS overhead
(scheduling and aggregate memory footprint) increases,
which leads to a decrease in overall performance. Direct
use of threads presents several other correctness and
tuning challenges, including race conditions and lock
contention.

Principle: Concurrency is implicit in the program-
ming model; threads are managed by the
runtime system.

Since we must avoid excess threads to achieve
graceful degradation, we simply prevent services from
creating threads directly. Instead, services only define
what could be concurrent, via (explicitly) concurrent
stages. Conceptually, each stage has a dedicated but
bounded thread pool, but the allocation and scheduling
of threads is handled by SEDA. Thus the system as a
whole is event-driven, but stages may block internally
(for example, by invoking a library routine or blocking
I/O call), and use multiple threads for concurrency. The
size of the stage’s thread pool must be balanced between
obtaining sufficient concurrency and limiting the total
number of threads; SEDA uses a feedback loop to man-
age thread pools automatically. The particular policies
are beyond the scope of this paper, as they only effect
the node performance. Roughly, allocation is based on
effective use of threads (non idle) and priorities, while
scheduling is based on queue size and tries to batch
tasks for better locality and amortization (as in [Lar00]). 

Internal framework modules, such as the shared-
state mechanisms in Section 3.4, also use stages and
avoid explicit thread creation. The internal modules are
often written in the event-driven style, common for
high-performance servers [PDZ99], which we enable by
providing non-blocking interfaces for all network and
disk activity, and for the shared data structures. 

Invariant: Overload detection is automatic; services
are notified when they are overloaded.

A key property of queues is that it becomes possible
to implement backpressure by thresholding the event
queue for a stage. We use this to detect overloaded
stages and thus to initiate overload mode and graceful
degradation. With only the implicit queues of blocked
threads, it is difficult to detect overload until too late.

Thus our single-node runtime system provides two

key capabilities. First, it provides control over thread
allocation and scheduling, which enables either thread-
based or event-driven programming and ensures thread
limits consistent with the operating range of the node.
Second, it provides backpressure via explicit queues that
enables the detection of overload and thus graceful deg-
radation, which is shown in Section 5.3. 

3.3  Connection Manager (CM)
The Connection Manager (CM) is responsible for all

external names. It dynamically maps external names to
clone groups and connections to an external name to a
specific clone. It must hide failed nodes and balance
load across the clone group. Although it appears in the
figure as a single point of failure, it is actually a pair of
“layer 7” switches [Fou01] that provide automatic
failover for each other. Based on ethernet switch reli-
ability, we estimate the uptime of these switches at
about 1-10-7 each (seven 9’s), so the pair is extremely
reliable.

As an optimization, services can define partitions
that are subgroups of names (and thus connections), to
provide fine-grain control over resource allocation and
graceful degradation. The CM can map partitions to
subsets of clones in a clone group, or in the case of
admission control deny partitions altogether.

3.3.1  External Names
The connection manager provides a level of indirec-

tion for external service names. The CM maps external
names to clone groups, which may change dynamically,
and load balances connections among the clones. In
general, the CM maps external (IP, port) pairs to the set
of internal pairs corresponding to the clone group. When
there are multiple clones, connections are balanced
across the target set based on open connections.

The CM tracks clone birth and death events in order
to maintain high availability. Starting a clone is a two-
step process. During initialization, Ninja allocates
server sockets for a clone and starts it. It then registers
the clone with the CM, which starts to forward connec-
tions to the clone. Stopping a clone is the reverse pro-
cess: the CM stops forwarding connections to the clone
and then removes it from the clone group. To provide
higher availability, the clone may finish processing out-
standing requests before it exits. 

Invariant: Ninja can remap or resize clone groups
without dropping connections.

The ability to shutdown clones gracefully makes it pos-
sible for Ninja to remap clones to nodes dynamically or
to reduce the size of an underutilized clone group. The
same ability enables online evolution to a new version
with no downtime (shown in Section 5.4). 



3.3.2  Partitions
In the current implementation, services can define

partitions in two ways, either via ports or URL string
matching. With ports, services map external port num-
bers to partitions, which are then dynamically mapped
to clones. Typically, services would use one external
port number per partition, although more are allowed.
For HTTP requests, the service can define partitions
based on URL hashing and string matching; we cur-
rently support prefix, suffix, and substring matching.
This can be done at wire speed using current “layer 7”
switches [Fou01]. Given these partitions, the CM will
dynamically map partitions to clones. 

Principle: Partitions enable division of the working
set for higher throughput.

As in LARD [PAB+98], partitions provide better locality
and cache performance as the working set is partitioned
across the clone group. Without partitions, the CM
spreads load evenly, which effectively replicates the
working set at each clone.

Partitions are also the unit of priority which helps
with tiered quality of service and graceful degradation:

Principle: Partitions enable tiered quality of ser-
vice.

First, the CM enables differential qualify of service by
allocating varying resources to different partitions: par-
titions need not map evenly onto clones. Figure 2 shows
this proactive form of uneven load balancing. Partition 1
maps to one clone, while Partition 2 maps to two: the
latter has twice the asymptotic throughput and better
latency, particularly as Partition 1 reaches its overload
point (about time 20). The variance of the one-node par-
tition is higher as well, due to averaging effects. Note
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Figure 2: Delivering different Qualities of Service
A three-node web server is divided into two
partitions: Partition 1 maps onto one node, Partition 2
onto two. The CM achieves twice the asymptotic
throughput and better response time for the larger
partition, and both tiers show graceful degradation. 
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that both graphs show graceful degradation, with
smooth asymptotes and linearly increasing latency.

Second, priorities enable more graceful degradation
during overload. The CM implements an admission-
control policy based on partition priorities: requests to
low-priority partitions are dropped first. Individual
nodes can detect overload directly (Section 3.2) and
notify the CM. In overload mode, the CM drops
requests by routing them to a generic “drop” clone, anal-
ogous to the use of /dev/null in UNIX. This is comple-
mentary with the first strategy and they may be used
together. In addition to admission control, nodes may
take action themselves in overload mode to reduce the
average work per request. We evaluate these mecha-
nisms in Section 5.3. 

There is also a relationship between failures and
overload: when a clone fails, the remaining clones typi-
cally receive increased load, which may put them into
overload mode. The movement of load due to failures
and the reaction to overload are independent mecha-
nisms, but both are automated and overload mode will
kick in only if needed.

Finally, it is important to realize that partitions to do
not effect shared state or replication. In the graph above
for example, all three clones have the same program and
shared state, but the CM allocates traffic unevenly by
partition. This means that any clone can handle any par-
tition, although they do not in normal operation. If a
node fails, the remaining two nodes are given both parti-
tions automatically, which affects the difference in qual-
ity but maintains high availability. 

To summarize, the connection manager provides
management of all external names, including dynamic
mapping of names to physical nodes for load balancing
and fault tolerance. It also implements policies based on
partitions that allow a service to define relative quality
of service and prioritized admission control.

3.4  Shared State
The fourth mechanism provides services with shared

state: currently shared hash tables, B-trees, and file sys-
tems. The shared state mechanisms need to support
robust applications, and therefore must be scalable,
highly available, durable and consistent. By implement-
ing these properties in the shared state mechanisms, we
essentially eliminate the burden of achieving them. In
particular, we hide all of the issues of atomicity, replica-
tion, consistency and recovery from service authors. 

Because high availability and consistency are
incompatible in the presence of partitions [FB99], we opt
to use a redundant system-area network for communica-
tion within our cluster (currently gigabit ethernet with
redundant switches). A partition-free network allows us
to use a two-phase commit protocol (2PC) [GR97] to



ensure consistency and atomicity of updates to shared
state across several nodes. The version of 2PC we use is
optimized for high availability in two ways. First, if a
member of the protocol dies in the second phase, the
2PC completes without it, because the replica will be
able to recover a consistent image of its state from its
peers later. Second, if the coordinator fails, we cannot
afford to wait until it recovers to complete the protocol;
instead, the replicas contact each other proactively after
a timeout and commit the action if any member received
a commit; otherwise, they all abort. The protocol is also
available to application writers to extend the framework
with additional shared state mechanisms.

In the next two sections, we examine the cluster hash
table and file system in more detail. The cluster B-tree is
ongoing work.

3.4.1  Cluster Hash Table (CHT)
Our prototypical shared data structure is the cluster

hash table, which uses the traditional interface of three
operations: get, put, and remove. Each operation is
atomic with strong consistency (equivalent to having a
single copy). The underlying data is partitioned across
the cluster for scalability, and replicated for high avail-
ability (see [GBH+00] for more details). The degree of
replication can be varied based on the requirements of
the application, and different tables in the same service
may use different replication strategies. This control
enables tradeoffs among performance, fault tolerance
and storage requirements, and also enables the composi-
tion of modules without name or policy collisions.

3.4.1.1  Non-Blocking Synchronization
The atomic put operation on the CHT returns the old

value prior to the update, in essence implementing an
atomic swap. Atomic swap can be used to implement
various synchronization primitives, such as locks (using
test-and-set) or read-modify-write (swapping in a
“locked” value first and then the updated value). Such
implementations, however, can be classified as blocking
[Her91], in that a process holding a lock may take an arbi-
trary time to complete. This reduces both scalability,
due to lock contention, and availability, since a process
may die while holding the lock.

To overcome these obstacles, we extended the hash
table interface with an apply operation, which imple-
ments an atomic read-modify-write:

apply (key, update_function) {
temp = get(key)
put(key, update_function(temp))
return temp

} 

The apply operation is implemented by shipping the
name of the update function to the nodes that store the

data and executing it there, analogous to function ship-
ping in databases. We can use the name rather than the
code, because of the “single program” facet of the
SPMC model. Atomicity is ensured, as before, by the
2PC protocol. Read-modify-write is sufficiently general
to implement a wide range of atomic primitives, such as
compare-and-swap, fetch-and-add, etc. Several of these
primitives, such as compare-and-swap, are universal
[Her91], and thus can be used to build non-blocking and
wait-free implementations of a data structure from a
sequential one.

However, we can build non-blocking data structures
directly: unlike conventional shared-memory systems,
each location in a hash table stores an entire object, as
opposed to just a pointer or a primitive value. This
allows us to provide the update function from a sequen-
tial implementation as the argument to the apply func-
tion. The update is atomic and non-blocking.3

Therefore, the operation is naturally wait-free, without
the complexity or overhead usually associated with
wait-free protocols.

The improved scalability of apply-based updates can
be seen in Figure 3. We compare an update imple-
mented using two atomic swaps to one implemented by
an apply operation; the graph shows the aggregate
throughput of several clients continuously updating the
same data value. The atomic swap implementation per-
formance quickly degrades as concurrency increases,
since more time is spent trying to obtain the lock. The
apply-based implementation performs better at the out-
set, since it requires half as many operations to complete

3: This is not strictly true (nor could it be) for an arbitrary update
function; however, we assume simple non-blocking update functions,
which holds in actual use. Our most complex update function appends
to a list represented as an array and sometimes has to resize the array.
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Figure 3: Optimizations for Update Contention
This graph plots single-node throughput under heavy
contention in the CHT (without replication). Atomic
Swap drops off due to long lock-holding times, while
Weak Apply performs twice as well as apply, by not
holding locks across the 2PC round trip.



an update, and the aggregate throughput remains virtu-
ally flat as we scale up to 16 nodes.

The graph also shows performance of a “weak” ver-
sion of the apply operation; this version has exactly the
same interface, but weaker consistency semantics.
Namely, it commits the update in the first phase of the
2PC; the second phase is only to let replicas know that
everyone made the update (in case the coordinator fails).
The update is eventually executed atomically on each
node; however, cluster-wide atomicity is not achieved.
In particular, updates may be executed in different
orders at different nodes. These relaxed semantics allow
for a significant performance improvement, since locks
are held only for the duration of the local update and not
across the round-trip interaction with a coordinator. 

An example data structure that takes advantage of
these weaker semantics is an unordered list. Insert and
remove operations are commutative in unordered lists,
so “weak apply” semantics are sufficient. Such lists are
used by several of our applications. 

3.4.1.2  Replication and Performance
As mentioned above, the CHT replicates data for

high availability. The implementation distinguishes
storage clones from the libraries that clones include to
use the CHT, which decouples clone group size from
which nodes actually store data. The set of storage
nodes remains stable except for faults and explicit oper-
ator-controlled repartitioning. Thus, the replica groups
and recovery are managed entirely within the CHT
implementation, and storage clones are shared by many
tables and clone groups (with namespace isolation).
Replication and durability polices are table-specific, but
the storage clones are not.

The degree of replication can have an impact on per-
formance: more replicas will deliver higher read
throughput, but lower throughput for updates. An
extreme case of the latter effect can be observed when
many updates to a single location in the hash table are
attempted simultaneously: different nodes may prepare
successfully for different instances of the 2PC protocol,
causing all instances to fail. The chances of livelock
increase with the number of conflicting updates and the
degree of replication.

Most data updates are largely independent, so such
conflicts do not happen frequently, but when they do
occur, their impact is significant. We were forced to add
an algorithm that detects livelock and serializes prepare
interactions with each replica. As Figure 4 illustrates,
such detection improves performance of atomic apply to
be tolerable, but there is still significant degradation. If
this is unsatisfactory, the application designer has the
choice of reducing the amount of replication or relaxing
consistency requirements by using “weak” apply, which

does not experience livelock. Another possibility, not
yet implemented, would be to use exponential backoff.
For comparison, we also measured the performance of
atomic-swap-based updates; we found that it becomes
unusable under a moderate amount of contention,
despite livelock detection. 

3.4.2  Cluster File System (CFS)
The second form of shared state is the cluster file

system (CFS). In contrast to the CHT, the cluster file
system manages large blobs of persistent storage that
are normally on disk, and supports the streaming of data
directly from disks to clients. Although it is closely
related to a traditional file system, we chose not to
implement the normal UNIX file system interface for
several reasons:

• The traditional API limits atomicity. First, the only
atomic operation is “rename” which requires
copying whole files even for small updates. Second,
file metadata operations are path based, which
mixes path and file updates, and presents problems
if the path changes during a file update. We provide
first-class i-nodes, which eliminate redundant path
resolutions, and provide natural support for atomic
file updates, since you can name them directly.

• File consistency across multiple nodes is very
limited. We desire a range of consistency and
durability options, including both strong consistency
across the cluster with replication, and local
temporary storage.

• There is only one kind of index on files, the
directory. We would like files to belong to multiple
indices of different types simultaneously, including
hash tables, B-trees, and version trees.

• We would like extensible metadata to simplify
service-specific file operations, such as version
numbers, TCP or MD5 checksums, and caching/
expiration directives.

Figure 4: Update Contention with 2PC (2 replicas)
This graph reveals the impact of livelock on updates
using 2PC. Atomic Swap encounters livelock with
even two competing updates. Proactive livelock
detection is significant for Apply.
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Thus, the basic strategy is to provide a “toolbox”
local file system that can we reuse in multiple ways to
build service-specific cluster-based file systems. The
toolbox deals with entirely local instances of storage,
called volumes. We provide a simple physical global
namespace using (node, volume, i-node) triplets. 

A “file” consists of an i-node that has several values:
typically a segment, which holds the data, and some
metadata attributes. The metadata is extensible, which
allows services to store their own metadata. A “direc-
tory” is just one kind of index on top of the i-nodes.

We provide atomic transactions, which in turn
enables files to have multiple indices (or multiple par-
ents), and simplifies renaming, deletion, and path opera-
tions. Direct exposure of i-nodes also allows database-
style iteration through sets of files. 

The real power of the CFS comes from the ease with
which an author can create file-system like things. To
build a shared file system across a clone group, the
author need only define a global namespace. For exam-
ple, storage for web pages need not have a directory at
all, and can just use the CHT to store name"i-node
mappings, thus enabling single seek access to the data
segment. Or even simpler, a CFS with a fixed number of
nodes can be built just by using a static hash function to
map file names to nodes. Thus with little service-level
code, we can achieve a variety of file systems.

Replication is completely orthogonal to the parti-
tioning of a cluster-wide namespace and is handled
quite differently than in the CHT. For a replicated CFS,
the author must define the replica groups and use 2PC to
update them. Since operations in the file system are
atomic, the general 2PC manager can be used to build
replication easily. This is intentionally quite a different
policy from the CHT, in which replication was managed
transparently. We take a different tack in CFS for two
reasons: 1) there are a wider array of strategies for a rep-
licated file system, making it harder to have any single
one, and 2) the existence of the CHT makes it really
easy to manage replica groups within a service, since it
handles atomicity and recovery of this metadata auto-
matically. This approach enables powerful service-spe-
cific CFSs (a service can have more than one) with very
little application-level code. We have built three differ-
ent service-specific file systems so far.

Finally, as a performance optimization, we support
streaming of data segments across the cluster (versus
store-and-forward copying). Any stage in the cluster
may issue a stream task (acting as stream client) to
another stage (the stream server), thus establishing a vir-
tual channel within the cluster for reading or writing
data. This is particularly useful for streaming data
directly from the CFS out to the wide-area network, and
is used for both our web and e-mail servers.

We have not built a generic cluster file system yet,
although the one in our e-mail server is relatively gen-
eral and could be packaged up for reuse by other ser-
vices. We are still learning about the revised CFS API
and expect to generalize support for replication and par-
titioning in the future, which will eliminate the small
amount of service-level code required now.

4  Applications
In this section, we review three applications built

using the Ninja framework. We then use these applica-
tions in the next section to evaluate the framework and
our goals of robustness and ease of authoring. We have
also built several other applications, including other web
and mail servers, and a Napster-like file-sharing service.

4.1  Ninja Web Server
The prototypical service for Ninja is the web server,

and we thus use it to evaluate all of our goals. The web
server is relatively simple but achieves scalability, high
availability, graceful degradation, and online evolution.

We have implemented several web server proto-
types, serving both static and dynamic pages using
either the hash table or the CFS for page storage. Our
latest prototype builds upon the Haboob web server
[WCB01] and modifies it to retrieve pages from the CHT.
Haboob uses SEDA to handle a large number of simul-
taneous connections, making it an ideal front-end for the
Ninja cluster web server. Haboob maintains an in-mem-
ory cache; we performed minor modifications to the
cache miss component to fetch page data from the hash
table instead of from local disk. Adding a thin wrapper
to make an instance of Haboob behave as a Ninja clone
allows us to create a clustered web service, with the CM
directing external HTTP requests to one of the clones.
Figure 5 shows the structure of the web server.

The shared persistent state maintained by the CHT
allows any front-end node to answer any request; the
CM masks front end failures. The replication policy
used for the tables storing page data can be tuned to

CM

File Cache

Clone Groups

Figure 5: Ninja Web Service
Only Front Ends receive external connections,
Cache nodes serve files locally or retrieve them from
either the hash table or CFS (two different versions).

CHT or CFS: Web Files

Front End



achieve desired tradeoffs between availability and per-
formance, and different classes of pages may be split
among tables with different replication strategies. Simi-
larly, front ends may be partitioned to provide differing
quality of service or achieve better cache performance,
as described in Section 3.3.2.

4.2  Universal Instant Messaging Proxy
NinjaIM is an instant-messaging (IM) proxy that

performs protocol translation among popular instant
messaging protocols and e-mail. It currently supports
AIM, ICQ, MSN, Yahoo!, and IMPP protocols. Users
can use the unmodified MSN client software or our Java
applet-based client to communicate with users on all
five IM systems. NinjaIM forwards messages bidirec-
tionally among the five systems, which allows all users
to reach each other. 

There are several challenges in implementing an IM
service. First, it must scale to a huge number of connec-
tions that are mostly idle; AOL’s AIM has over 90M
registered users [Hu00]. Most IM systems use long-lived
TCP connections for every active user. Second, it
requires scalable persistent storage for user profiles and
buddy lists. Third, it must be able to route messages
efficiently and process buddy status updates.

Figure 6 shows the NinjaIM architecture. The Con-
nection Manager enables NinjaIM to easily scale up the
number of connections linearly with nodes, and provide
high availability. The CHT is used to store user profiles
and buddy lists, which allows users to connect to any
node in the cluster. To provide efficient buddy status
notification, both a forward buddy list and a reverse
buddy list are stored. In addition, we store the node to
which a user is connected, which is used to route mes-
sages between nodes. All of the shared state may be
cached locally (local soft state) to improve performance.
Finally, partitions are used to provide better affinity for
chat sessions. For example, when a user initiates a chat
session, all the parties are given the same partition num-
ber (externalized as a port number) to which to connect.

CM

CHT: Profiles, Buddy Lists

AIM
ICQ
MSN
Yahoo!
IMPP

Protocols:
Routers
Clone Groups

Figure 6: NinjaIM Architecture
Each protocol has a clone group, whose size
depends on the traffic in that protocol. All protocols
use Message Routers to communicate with each
other, and all use the CHT for profiles and buddy lists.

The CM maps the port number to a single node in the
normal case, but need not in the presence of unusual
load or faults.

4.3  NinjaMail
E-mail is one of the most widely used Internet appli-

cations, with hundreds of millions of users world-wide.
Moreover, many of these users are concentrated in large
e-mail services. AOL currently has over 23 million e-
mail accounts [Lei00], while Hotmail has over 110 mil-
lion [WB01]. 

NinjaMail is a scalable, highly available and extensi-
ble e-mail service, built on the Ninja architecture. At
NinjaMail’s core is the MailStore module, a message
access library that uses the CHT and CFS to store user
profiles, e-mail messages, and message indices. Built on
top of this are various access modules, which support
interaction between users and the message store. We
have fully functional modules for sending and receiving
messages via SMTP, and reading messages via POP and
HTML. Additionally, we have nearly completed an
implementation of the IMAP protocol.

Figure 7 shows the architecture for NinjaMail. The
NinjaMail modules keep all long-lived state in the CHT
or the CFS. This allows the infrastructure to create and
destroy clones in response to load changes or faults.
NinjaMail’s use of the underlying mechanisms is illumi-
nated by examining a typical message cycle:

Message arrival (SMTP): 1) Accept a new SMTP
connection from the CM, 2) check the CHT, to
verify that the recipient is a valid user, 3) stream the
message to the replicated file system (MailStore),
and 4) use the CHT apply function to add the
message to the user’s message index.

Message retrieval (POP): 1) Accept a new POP
connection from the CM, 2) check the user’s login
name and password in the CHT, 3) retrieve the
user’s message index, 4) stream messages from the
MailStore to the user, as requested, and 5) use the
CHT apply function to update the persistent copy of
the message index when the user deletes messages
or updates the status flags.
The cluster-based file system of the MailStore is

built using the CFS to provide atomic local storage vol-
umes, and the CHT maintains the mappings from parti-
tions to replica groups, and from replica groups to
MailStore clones. It uses the 2PC library to update the
replicas. This gives us a replicated cluster file system
with very little application code. There are no “directo-
ries” in the file system; the only index on files is the glo-
bal hash table that maps replica groups to storage nodes.



5  Evaluation
In this section, we use the above applications to

evaluate each of our goals: scalability, high availability,
graceful degradation, online evolution, range of seman-
tics, and ease of service authoring.

5.1  Scalability
For scalability, the overall goal is to support a very

large number of users. For most services this corre-
sponds directly to the number of simultaneous connec-
tions, including the web server, IM server and music
server. For NinjaMail, scalability is tied more directly to
messages per second. Ninja also supports linear scaling
of database size, which comes directly from simple par-
titioning; we have built services using the CHT with
more than 1TB of storage and over 100 nodes [GBH+00].

Figure 8 shows the scalability of NinjaMail in a
message receipt, storage, and retrieval test. Each cluster
node functions both as a front-end for SMTP and POP,
and as a member of the CHT. The cluster nodes used for
this experiment were 2-way SMPs with 500-Mhz pro-
cessors and 512 MB of RAM, running Linux 2.4.7.
Each test was performed with a user base of 1 million
times the cluster size. Our test harness executes a simple
loop. It first selects a random user and node, and sub-

Figure 7: NinjaMail E-Mail Service
The service is divided into protocol handlers, each of
which has its own clone group, and the Mail Store,
which uses both the CHT and CFS to manage e-mail,
user and folder information. 
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Figure 8: NinjaMail Scalability
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mits a 4K message. Next, it selects another random user
and node, and uses POP to read and delete all messages
for that user. The per-node performance is excellent, at
about 14 times the performance of a typical sendmail
setup on the same hardware (for the message receipt
portion), perhaps due the efficiency of the CHT for
metadata. Extrapolating, we expect NinjaMail (as is)
should be able to handle the Yahoo! mail workload,
about 12 billion messages per month [Yah01], with a
cluster of around 100 nodes. 

Figure 9 shows the scalability for NinjaIM, mea-
sured in total throughput of IM messages. Simulated cli-
ents saturate the server using the full MSN IM protocol
by sending messages every 5 seconds. Each front end
node ran one message router and one MSN IM server.
At the peak of 4941 messages/sec (with 8 front ends),
this corresponds to almost 25,000 simultaneous
extremely active clients.

Figure 10 shows the scalability of the web server
under the SPECweb99 benchmark with 600MB data/
node; single node performance is consistent with a solid
single-node web server such as Apache [Apa01]. Note
that the Ninja web server is not just a web farm, but
actually reflects strongly consistent data across the clus-
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Figure 9: NinjaIM Scalability
Scalability is measured in terms of total throughput of
IM messages per second. In addition to the n front-
end nodes there are 2 additional nodes that store the
replicated CHTs for NinjaIM.
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ter, and integrated connection management for high
availability and online evolution.

5.2  High Availability
Our goal for high availability is to show that users

have a high probability of success, and that we can pro-
vide independent retry for a given query or connection.
It is not our goal to provide fault-tolerant connections.
Rather, we forfeit active connections on lost nodes, but
retries should automatically locate another node and
work correctly (by using shared replicated state).

Figure 11 shows the recovery after an unexpected
death in a two-node web server. A third clone took over
the affected traffic within 6 seconds, and the overall
server was fully recovered in about 20 seconds.
Response time increased by several seconds during the
recovery process, and active connections on the dead
node were lost.

In the case of graceful shutdown, Ninja normally
does not drop any connections. This case is covered
shortly under the discussion of online evolution, which
uses controlled shut downs to upgrade a running service
without drops.

5.3  Graceful Degradation
At the service level, we support several strategies for

graceful degradation. The goal is to react gracefully to
offered loads that exceed capacity. In practice, peak
loads can be 5x the average load, making it impractical
to provision for peak load [Mov99]. Even with overprovi-
sioning, 10x load spikes still occur [WS00].

The default strategy is simply to reject new connec-
tions when the service is saturated. This preserves the
maximum throughput, but is not all that graceful. We
provide three strategies that exploit service-level knowl-
edge, via partitions, to degrade more gracefully.

The first strategy is simply to prioritize partitions
and assign separate resources for each partition. This
enables low-priority partitions to be overloaded without
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Figure 11: Recovery time for an Unexpected Death
This graph shows the recovery process for a two-
node web server with one failure at time 20. A new
clone takes over the traffic in six seconds, and
recovery completes in about 20 seconds.

affecting high-priority connections, and enables inde-
pendent throughput asymptotes and overprovisioning
ratios. This was shown in Figure 2, in the CM section.

The second strategy, shown in Figure 12, is to prior-
itize partitions and drop low-priority connections during
overload. We refer to this as prioritized admission con-
trol. This ensures that under overload the most impor-
tant connections (or users) are handled first, potentially
to the exclusion of lower priority connections. An
improvement would be to drop connections probabilisti-
cally based on the priority of the partition, but this can
essentially be done by first using different resources for
each partition, and then dropping connections indepen-
dently as each partition becomes overloaded. 

As discussed in Section 3.3.2, Ninja sheds excess
connections by sending them to a “drop” clone. We
have not fully explored the power of this mechanism,
which could be service specific to enable very fine-grain
admission control, since the drop clone could decide on
a case-by-case basis to handle some connections.

The third strategy we employ for graceful degrada-
tion is to try to serve more requests, but in a degraded
form, which is possible because clones know that they
are in overload mode. For example, a web server might
serve generic versions of pages rather than personalized
versions. The degraded service moves out the absolute
scale limit, at which point further degradation using one
of the first two strategies would have to take place.

5.4  Online Evolution
Online evolution is enabled by our ability to shut

down clones gracefully, without dropped connections.
Figure 13 shows online evolution between two versions
of a three-node web server. To upgrade a node, the
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We start with a 2-node clone group with two
partitions, 1 and 2; Partition 1 has higher priority.
Initially both clones handle both partitions. Overload
is detected by one of the nodes, which initiates
overload mode. At “1st drop” the CM drops half the
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infrastructure first updates the CM to stop sending in
new connections to the Version 1 clone. Next, Ninja
starts a Version 2 clone on the node, which begins
receiving new connections. The Version 1 clone exits
once all established connections have been serviced. By
repeating this process on all nodes in sequence, we can
upgrade the entire cluster with no downtime and no
dropped connections.

Note that the two versions typically coexist on the
same node for some time while the Version 1 clone fin-
ishes servicing existing connections. This is possible
because Ninja's virtualization of resources prevents the
two versions from interfering with each other (other
than performance).

5.5  Range of Semantics
Our support for a range of data consistency seman-

tics comes primarily from the CHT and from the ability
to build service-specific file systems. The simplest form
of this is choosing non-replicated storage, which is pos-
sible with both the CHT and the file system toolkit. We
have found this useful for local file caches in some of
our web server implementations and in the Ninja ver-
sion of Napster (not discussed).

Figures 3 and 4 show that we can reduce lock con-
tention if we accept updates that have an inconsistent
ordering across replicas (using “weak apply”). This
approach can achieve five times the throughput with
two replicas under heavy contention. Our primary use
for this so far has been to maintain unordered lists,
which are useful in NinjaMail (since internal message
order is not critical), and in various membership lists,
such as members of a chat room.

Although not discussed, we have also exploited
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Figure 13: Online Evolution for a 3-node Web Server
Each node starts with Version 1 and is then
gracefully shut down and restarted with Version 2. No
connections are dropped during the transition. The
first restart takes longer due to creation of the clone
group for Version 2.

delayed disk writes in the CFS to improve latency and
throughput at the expense of a small window for lost
data (much like NFS updates). Similarly, the CHT
allows two independent memory copies to be consid-
ered “durable”, rather that than more strict definition of
two copies on disk. In the former case, the disks are
updated shortly thereafter in the style of group commit.

5.6  Service Authoring
Overall, we found it hard to write the underlying

mechanisms, but easy to write the services, which ful-
fills our primary goal. Figure 14 shows the code size for
four applications. The Ninku application, which was not
discussed, is the Ninja version of the Napster service. In
comparison, the Ninja infrastructure code is about
20,000 lines of code, not counting various third-party
libraries used by the CHT and CFS. These services are
remarkably small given that they are full-fledged robust
services. For example, the Porcupine scalable e-mail
server [SBL99] is about 30,000 lines by itself. Both the e-
mail and web servers seem to be about one-tenth the
size of comparable stand-alone applications.

The primary burden that we did not lighten is the
difficulty of authoring protocol code, which presents an
obvious place for future work. We also found event-
based programming, used for most internal modules and
some services to be harder than using threads.

One other important point is that none of these appli-
cation require any code for high availability, online evo-
lution or graceful degradation, although some may have
a few configuration lines to define partitions (if used).

6  Discussion
In this section, we review the principles behind

Ninja and discuss related and future work.
The programming model has three important princi-

ples. First, we want to exploit the natural parallelism of
Internet services. The two advantages of this approach
are that applications fit naturally and that we can ban
more general types of concurrency, which are histori-
cally hard to get right and require unknown resources
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for correctness. In particular, services do not create or
manage threads.

Second, like databases, we want to hide the com-
plexity of fault tolerance, persistence and scalability.

Third, the explicit use of shared state allows us to
simplify recovery greatly. The invariant is that anything
that must survive faults must be kept in the shared state.
Local state thus requires no recovery, and the shared
state is recovered transparently. We apply the same
principle recursively to build the shared state mecha-
nisms: we differentiate storage clones, which require
recovery, from all other clones, which do not. It is the
clean recovery story that allows us to provide high
availability, online evolution, and dynamic resizing and
remapping of clone groups.

We have also pursued a bottom-up approach that
provides a range of semantics. For example, the 2PC
library and CFS are really tools that are used to simplify
building complex systems. The primary difference
between the CFS and a traditional file systems is exactly
that the CFS is a toolbox with a more appropriate inter-
face for authoring services that need replicated persis-
tent storage. Even the CHT is used as a tool to build the
cluster-based file system of NinjaMail. Similarly, we try
to make these tools configurable to enable tradeoffs
among performance, consistency and replication. The
“weak apply” function is the best example of this. 

Connection management seems fundamental to
robust Internet services. In general, there must at least
be a dynamic mapping between external names and cur-
rently working internal nodes; otherwise failures are
visible to clients. Partitions enable application input into
how the CM should prioritize connections. This is
essentially a use of static type information (partitions
are usually defined statically) to enable run-time optimi-
zation during overload. They also provide better cache
affinity for all kinds of “front end” clone groups.

The CHT exploits the use of a narrow interface to
simplify the maintenance of consistency. Unlike a
shared address space, the CHT can only be accessed via
method calls and thus only needs to ensure consistency
at these points. This is most noticeable in the ability to
support atomic updates, as a hash table value is simply
not visible during updates.

6.1  Related Work
Lightweight recoverable virtual memory [MMK+94]

provides an integrated approach to in-memory data
structures with durability. It could be used to implement
the non-replicated versions of our shared data structures,
but does not support replication or 2PC.

The traditional way to simplify persistent applica-
tions is to store all data in a DBMS and use a declarative
query language for all access and updates. We intention-

ally desire a “navigational” rather than relational inter-
face for better integration with the rest of the service,
which is navigational. Databases also focus on consis-
tency under faults at the expense in practice of availabil-
ity, where we explicitly provide a range of semantics
and tradeoffs. We find that availability is often more
important for Internet services than strict consistency.
DBMSs also provide a large whole solution with little
ability to customize semantics or make tradeoffs. In
contrast, we may decide to consider something commit-
ted if it is in memory on two independent nodes, and
only later move objects to disk, which increases
throughput for updates. We believe services should use
a combination of our techniques and DBMS solutions.

Object-oriented databases, such as Thor [LAC+96] or
Persistent Java [ADJ+96], share our use of controlled
interfaces, and can implement all of our shared data
structures, although they are more heavyweight and
generally don’t offer a range of semantics. They are
strictly more powerful, with support for transactions and
nested objects. We also find power in our “toolbox”
approach that has allowed us to build a range of persis-
tent data structures out of logging, 2PC, and the apply
function. We also depend on and exploit our partition-
free, high-performance network (typical for a cluster).

Application servers, such as BEA’s WebLogic
[BEA01], provide persistent shared state by wrapping
navigational structures around a relational database.
These servers also target large-scale highly available
services and were developed concurrently. Application
servers typically also provide integration with legacy
systems. Ninja provides better support for in-memory
data structures, variable semantics, graceful degradation
and online evolution. Use of Ninja’s techniques would
complement these servers’ use of RDBMS systems, and
one vendor is incorporating some of our techniques.

“Layer 7” switches, such as the Foundry switch that
we use, provide some aspects of connection manage-
ment, as does HACC [ZBCS99]. In particular, they can
provide load balancing and basic partitioning by URL.
The primary advantage of Ninja is the integration of the
control of the manager into the framework. We dynami-
cally reconfigure the switches as clone groups change,
and we provide integrated support for online evolution
and graceful degradation. In fact, our dynamic use of
these switches was clearly novel, as we uncovered many
new bugs in production hardware that we had to work
around.

The Porcupine mail server [SBL99] shares the goals
of scalability and availability, and even some of the
techniques for replication and scalability. However, Por-
cupine is a single application rather than a framework.
The existence of Ninja makes it easy to write Porcupine:
NinjaMail has about one-tenth the code size of Porcu-



pine for similar functionality and robustness. In addi-
tion, Ninja is more efficient and allows a wider range of
performance tradeoffs than were present in Porcupine. 

The TACC framework [FGB97] is a predecessor to
this work and shares most or our goals, but does not
address persistent shared state, which is the hardest part.
It also uses application-specific front ends to do connec-
tion management, which we avoid.

The Ninja project [GWv+01] that led to this work has
a much broader scope, and includes support for distrib-
uted systems built on top of clusters, which we refer to
as “bases” in the overall architecture. Some of the addi-
tional pieces include support for proxies and end
devices, such as laptops, phones, or PDAs; support for
paths that connect these elements; security; and OS and
proxy support for small devices. There are also papers
that cover subsets of the work here in greater detail,
including the CHT [GBH+00,Grb00] and SEDA [WCB01].

6.2  Future Work
There are at least three key areas of future work:

ease of authoring, ease of use, and support for shared
state. Section 5.6 covered some enhancements to ease
authoring.

To simplify ease of use, there is much we could do
to automate online evolution and graceful degradation.
Evolution should have an explicit publishing process
and a way to revert to the previous version easily.
Graceful degradation is mostly automated, but is still
very service specific. We don’t help much with how a
service should define partitions or trade off quality and
performance. We could also use a unified way to test
overload conditions and in general administer running
services.

Our support for shared state should evolve to include
true transactions rather than the atomic actions that we
support now. This is quite a bit harder and the current
set has proven very useful as is. There is also more we
can do with the interaction between lock contention and
2PC, as discussed in Section 3.4.1. Finally, our recovery
code remains immature due to the difficulty of thorough
testing. However, it is exactly the complexity of recov-
ery code that makes it so valuable to build once for the
framework, rather than separately for each service. The
automation of recovery is the most valuable aspect of
the Ninja framework to service authors.

7  Summary
Ninja defines a new programming model and then

uses the model to simplify the implementation of com-
plex network services. The model exploits the natural
parallelism of large-scale services and hides the com-
plexity of threads, locks, shared state, recovery, load
balancing and graceful degradation. It provides several

invariants that greatly simplify service authoring:
• Each service has its own virtual cluster, which may

vary in size transparently over time. We have shown
linear scalability up to 100 nodes for toy
applications and to 30 nodes for the e-mail server.

• Services can have many shared namespaces. Each
namespace provides strongly consistent shared state
across the nodes of the service.

• Shared state can be persistent and highly available
with automatic recovery from faults.

• Concurrency is implicit in the programming model,
which avoids the creation and management of
threads in applications. Atomicity is provided by the
shared state primitives and by isolation of
namespaces and local state.

• Connections and external names are managed
automatically for load balancing and fault tolerance.

• Overload is detected automatically, which initiates
graceful degradation as needed.

• The CM enables online evolution and graceful
degradation without help from service authors. They
may use partitions for fine-grain control of both
quality of service and graceful degradation.

• The CM and highly available shared state together
enable highly available services.
Because of these powerful invariants, Ninja services

remain remarkably simple despite being scalable, highly
available and persistent. We have been able to write sev-
eral real services using Ninja, including instant messag-
ing, a Napster-like file sharing system, and scalable web
and e-mail servers. In all cases, the code for the service
was small and relatively simple (e.g. no recovery or log-
ging code). In the case of e-mail, we achieved a ten
times reduction in code size for a comparable scalable
server by using Ninja. 
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