
U-Net/SLE: A Java-based User-Customizable Virtual Network InterfaceMatt Welsh, David Oppenheimer, and David CullerComputer Science DivisionUniversity of California, BerkeleyBerkeley, CA, 94720 USAfmdw,davidopp,cullerg@cs.berkeley.eduhttp://www.cs.berkeley.edu/~mdw/proj/unet-sle/July 7, 1998AbstractWe describe U-Net/SLE (Safe Language Extensions), a user-level network interface architecture which enablesper-application customization of communication semantics through downloading of user extension applets, imple-mented as Java class�les, to the network interface. This architecture permits applications to safely specify codeto be executed within the NI on message transmission and reception. By leveraging the existing U-Net model,applications may implement protocol code at the user level, within the NI, or using some combination of thetwo. Our current implementation, using the Myricom Myrinet interface and a small Java Virtual Machine subset,allows host communication overhead to be reduced and improves the overlap of communication and computationduring protocol processing.1 IntroductionRecent work in high-speed interconnects for distributed and parallel computing systems, particularly workstationclusters, has focused on development of network interfaces enabling low-latency and high-bandwidth communication.Often, these systems bypass the operating system kernel to achieve high performance; however, the features andfunctionality provided by these di�erent systems vary widely. Several systems, such as U-Net [26] and ActiveMessages [27], virtualize the network interface to provide multiple applications on the same host with direct, protectednetwork access. Other systems, including Fast Messages [16] and BIP [17], eschew sharing the network in lieu of designsimplicity and high performance. In addition, fast network interfaces often di�er with respect to the communicationsemantics they provide, ranging from \raw" access (U-Net) to token-based ow-control (Fast Messages) to a full-featured RPC mechanism (Active Messages). Complicating matters further is the spectrum of network adapterhardware upon which these systems are built, ranging from simple, fast NICs which require host intervention tomultiplex the hardware [30] to advanced NICs incorporating a programmable co-processor [26].Application programmers are faced with a wide range of functionality choices given the many fast networkinglayers currently available: some applications may be able to take advantage of, say, the ow-control strategy imple-mented in Berkeley Active Messages, while others (such as continuous media applications) may wish to implementtheir own communication semantics entirely at user level. Additionally, the jury is still out on where certain features(such as ow-control and retransmission) are best implemented. It is tempting to base design choices on the resultsof microbenchmarks, such as user-to-user round-trip latency, but recent studies [12] have hinted that other factors,such as host overhead, are far more important in determining application-level performance.Given the myriad of potential application needs, it may seem attractive to design for the lowest common denom-inator of network interface options, namely, the interface which provides only fast protected access to the networkwithout implementing other features, such as RPC or ow-control, below the user level. This design enables applica-tions to implement protocols entirely at user level and does not restrict communication semantics to some arbitrary1



set of \built-in" features. However, experience has shown [10] that in the interest of reducing host overhead, inter-rupts, and I/O bus transfers, it may be bene�cial to perform some protocol processing within the network interfaceitself, for example on a dedicated network co-processor [5]. Such a system could be used to implement a multicasttree directly on the NI, allowing data to be retransmitted down branches of the tree without intervention of theuser application, eliminating overheads for I/O bus transfer and context switch. Another potential application ispacket-speci�ed receive bu�ers, in which the header of an incoming packet contains the bu�er address in which thepayload should be stored. Being able to determine the packet destination bu�er address before any I/O DMA occursenables true zero-copy as long as the sender is trusted to specify receive addresses.A number of systems have incorporated these NI-side features in an ad hoc manner | it would seem desirable tohave a consistent and universal model for fast network access which subsumes all of these features. We have designedan implemented U-Net/SLE (Safe Language Extensions), a system which couples the U-Net user-level networkinterface architecture with user extensibility by allowing the user to download customized packet-processing code, inthe form of Java applets, into the NI. With this design, it is possible for multiple user applications to independentlycustomize their interface with the U-Net architecture without compromising protection or performance. Applicationswhich are content with the standard model provided by U-Net are able to use \direct" access and are not penalizedfor features provided by the underlying system which they do not use.With the U-Net/SLE model, for example, it is possible for an application to implement specialized ow-controland retransmission code as a Java applet which is executed on the network interface. For instance, the semanticsof the Active Messages layer could be implemented as a combination of Java and user-level library code. Thoseapplications which require Active Messages may use those features without forcing all applications on the same hostto go through this interface, while still being able to take advantage of NI-level processing rather than pushing allprotocol code to user level.We have built a prototype of the U-Net/SLE architecture using the Myricom SBus Myrinet interface (whichincludes a programmable co-processor, the LanAI) and JIVE, a subset of the Java Virtual Machine.The key contributions of this paper are the de�nition of a programmatic network interface architecture in whichNIC functionality is directly exposed to user applications; the exploitation of this architecture for user customizationof network interface behavior; and analysis of Java as a safe language for user extensions executed in the criticalpath of communication.Section 2 of this paper describes the U-Net/SLE design in more detail. Section 3 describes JIVE, our implemen-tation of the Java Virtual Machine used in U-Net/SLE. Section 4 summarizes the performance of our prototype,while section 5 describes related work. Section 6 concludes and raises issues for future work.2 Design and ImplementationU-Net/SLE is based on U-Net [26], a user-level network interface architecture which multiplexes the NI hardwarebetween multiple applications such that each application has transparent, direct, protected access to the network. U-Net may be implemented either in hardware, software, or a combination of both, and does not presume any particularNIC design. On NICs with a programmable co-processor, for instance, U-Net multiplexing/demultiplexing functionsmay be implemented directly on the co-processor, while on a non-programmable NIC a protected co-routine on thehost may be used to enforce protection.In the U-Net model an endpoint serves as an application's interface to the network and consists of a bu�er areaand transmit, receive, and free bu�er queues (see Figure 1). The bu�er area is a pinned region of physical host RAMmapped into the user's address space; in order to ensure that the NI may perform network bu�er DMA at any time,all transmit and receive bu�ers are located in this region.1 In order to transmit data, the user constructs the datain the bu�er area and pushes a descriptor on the transmit queue indicating the location and size of the data to betransmitted as well as a channel tag, which indicates the intended recipient of the data. U-Net transmits the dataand sets a ag in the transmit queue entry when complete. When data arrives from the network, U-Net determinesthe recipient endpoint for the packet, pops a bu�er address from that endpoint's free bu�er queue and transfers the1The U-Net/MM architecture [32] extends this model to permit arbitrary virtual-memory bu�ers to be used.2



Buffer areaTx Free RxFigure 1: U-Net endpoint data structuredata into the bu�er. Once the entire PDU (which may span multiple receive bu�ers) has arrived, U-Net pushes adescriptor onto the user receive queue indicating the size, bu�er address(es), and source channel tag of the data. Asan optimization, small messages may �t entirely within a receive queue descriptor. The user may poll the receivequeue or register an upcall (e.g. a signal handler) to be invoked when new data arrives.U-Net/SLE allows each user endpoint to be associated with a Java class�le implementing the user extension appletfor that endpoint. This applet consists of a single class which must implement three methods: a class constructor,doTx (invoked when a user pushes an entry onto the transmit queue), and doRx (invoked when a packet arrives forthe given endpoint). In addition the class must contain the �eld RxBuf, an unallocated array of byte. This arrayis initialized by U-Net/SLE to point to a temporary bu�er used for data reception. When an endpoint is created,if the user has supplied a class�le it is loaded into the network interface, parsed, and initialized by executing theapplet constructor. This constructor could, for example, allocate array storage for future outgoing network packets,or initialize counters.During normal operation, U-Net/SLE polls the transmit queues for each user endpoint while simultaneouslychecking for incoming data from the network. When a user pushes a descriptor onto their transmit queue, U-Net/SLE �rst checks if the endpoint has a class�le associated with it. If not, U-Net/SLE transmits the data as usual.Otherwise, the applet doTx method is invoked with three arguments: the length of the data to be transmitted, thedestination channel, and the o�set into the user's bu�er area at which the payload resides. The doTx method maythen inspect and modify the packet contents before transmitting it to the network (if at all). Multiple packets maybe injected into the network as a result of the doTx call.Similarly, when data arrives from the network, U-Net/SLE �rst determines the destination endpoint. If thisendpoint has a class�le associated with it, the applet's doRx method is invoked with the packet length and sourcechannel as arguments. The packet at this point resides in the applet's RxBuf bu�er, although implementations maychoose not to implement this feature (if, for example, a direct network-to-host DMA engine is available). Thismethod may process the packet contents, allocate and �ll user free bu�ers, push descriptors into the user's receivequeue, or generate and transmit new network messages. If no applet is associated with this endpoint the data ispushed to the user application as described above.Native methods are provided for applets to DMA data to and from the user's host bu�er area, push a packetto the network, allocate user free bu�ers, and �ll in user receive FIFO entries. The exact nature of these nativemethods depends on the facilities provided by the NIC; for example, if separate transmit and receive DMA channelsare available, they could be managed independently by di�erent native methods.These native methods enforce protection between user applets and in essence virtualize the network interfaceresources themselves (such as memory and DMA channels). In e�ect this technique exposes a programmatic interfaceto the NIC which is a lower-level abstraction than either an endpoint data structure (as in the case of U-Net) or amessage-passing API (such as Active Messages). This allows user applications and extension applets to exploit the3



core subcomponents of the NIC to their immediate advantage, while U-Net/SLE handles virtualization, protection,and resource allocation. Higher-level abstractions (such as message passing, memory channels, and a wide variety ofnetwork protocols) can be easily be constructed from the programmatic interface in an application-speci�c manner;di�erent applications on the same machine can implement di�erent communication abstractions on the same NIC.2.1 Myrinet prototype implementationOur prototype implementation uses the Myricom Myrinet SBus interface, which incorporates 256K of SRAM anda 37 MHz programmable processor (the LanAI), with a raw link speed of 160 MBytes/sec. The host is a 167 MHzUltraSPARC workstation running Solaris 2.6. U-Net/SLE is implemented directly on the LanAI processor, withthe raw U-Net functionality being very similar to that of the FORE Systems SBA-200/PCA-200 implementationsdescribed in [26, 31].JIVE, our implementation of the Java virtual machine which runs on the LanAI, executes user extension appletsin response to transmit request and message receive events. Native methods such as doHtoLDMA (DMA data fromuser to LanAI memory) and txPush (push a packet from LanAI memory to the network) are provided which enforceprotection between user applets while exposing NIC resources | applets are not allowed to read or write host memoryoutside of the associated user's U-Net bu�er area, for example.1 public class RawUnet {2 public static byte[] TxBuf;3 public static byte[] RxBuf;4 public static int freebufferlen;5 public static int[] offsets;67 RawUnet() {8 TxBuf = newAlignedArray(4096);9 freebufferlen = getFreeBufferLength();10 offsets = new int[14];11 }1213 private static int doTx(int length, int channel, int off) {14 doHtoLDMA(TxBuf, 0, off, length);15 txPush(TxBuf, 0, channel, length);16 return 0;17 }1819 private static int doRx(int length, int channel) {20 if (length <= 56) { /* Optimization for small msgs */21 dmaRxdPayload(RxBuf, channel, length);22 } else {23 int dma_offset = getFreeBuffer();24 if (dma_offset == -1) return; /* No buffer available; drop */25 doLtoHDMA(RxBuf, 0, dma_offset, length);26 offsets[0] = dma_offset;27 dmaRxd(offsets, channel, length);28 }29 return 0;30 }31 } Figure 2: Sample U-Net/SLE applet source codeFigure 2 shows sample U-Net/SLE applet code that implements the standard U-Net mechanism; that is, itsimply transmits and receives data without modifying it. For simplicity the applet assumes that a single receivebu�er will be su�cient to hold incoming data. A more complicated applet could modify the packet contents before4



transmission, or generate acknowledgment messages for ow-control in the receive processing code. Section 4 evaluatesthe performance of several applets.3 Java Virtual Machine ImplementationIn this section we discuss the design and implementation of the Java virtual machine subset used in our prototype,Java Implementation for Vertical Extensions (or JIVE).3.1 JIVE designJIVE implements a subset of the Java Virtual Machine [11] and executes on the LanAI processor of the Myrinetnetwork interface. Our goals in designing JIVE were simplicity, a small runtime memory footprint, and reasonableexecution speed even on a relatively slow processor. All three goals stem from characteristics common in an embeddedprocessor environment like that of the LanAI: a limited runtime system, limited memory resources, and a CPU slowerthan those found in workstations of the same generation. JIVE class�les can be generated by any standard Javacompiler.We compare JIVE to the standard Java VM in three areas: type-related features, class- and object-relatedfeatures, and runtime features.JIVE supports the byte, short, and int datatypes, and one-dimensional arrays of those datatypes. There is nosupport for char, double, float, or long, or multi-dimensional arrays. We feel that this latter set of datatypes isunlikely to be needed by an applet that performs simple packet processing, which is the design target for JIVE.Because a JIVE applet consists of a single class, JIVE need not support non-array objects except for a singleinstance of the applet's class. Array objects are supported, and arrays are treated as objects (e.g. it is legal toinvoke the arraylength operation on an array reference). Dynamic class loading is not necessary because a classis associated with an endpoint at the time the endpoint is instantiated. Arbitrary user-de�ned methods are fullysupported. Since only one instance of the applet class will ever exist at a time, the semantics of static and non-staticfunctions and class variables are identical.JIVE does not support interfaces, exceptions, threads, or method overloading. These features would increase theruntime overhead and code size of JIVE and many useful packet processing applets can be written without them.The current prototype implementation of JIVE does not support garbage collection; while garbage collection is animportant issue for future work, we feel that it can be circumvented in this by de�ning a simple persistence modelon created objects (for example, that objects created within the doTx or doRx methods live only though that methodinvocation, while those created in the class constructor live for the duration of the class).The current implementation of JIVE assumes a trusted Java compiler. Bytecode veri�cation should be incorpo-rated into a trusted host daemon that is invoked when a JIVE class�le is loaded into the network interface, thusremoving this assumption. In addition to the standard bytecode veri�cation for safety, a bytecode veri�er for JIVEshould also ensure that the class�le being loaded conforms to the subset of the Java VM that JIVE supports.3.2 Java as an extension languageWe selected Java as the user extension language for U-Net/SLE for a number of reasons:� Safety. Java's safety features mesh well with the U-Net model of protected user-level access to the networkinterface. An unsafe language without some external safety mechanism, such as Software Fault Isolation [29]or Proof-Carrying Code [13], requires trusting the compiler that generated the code. The Java sandbox, asenforced by the bytecode veri�er and runtime checks, protects applets from one another.5



� Speed. Java bytecode can be interpreted or compiled to native machine code; future work will explore the useof Just-in-Time (JIT) compilation with respect to JIVE.� Compact program representation. Java class �les are very compact. Many operations take their operandsfrom, and push their result to, the stack, and can therefore be encoded in a single byte because the source anddestination are implicit.� Portability. Because Java bytecodes are platform-independent, a JIVE applet can be written and compiledonce, and then run on any network interface with a Java virtual machine implementation. A Java class�lecould be sent as part of a network packet in an active network [23] and could run on any network interface orrouter with a JIVE runtime system.� Development environment. A number of high-quality Java development environments are currently avail-able, making development of Java code relatively easy on almost any platform. Moreover, Java is gainingpopularity as an embedded programming language, so we expect a proliferation of development tools targetedto the needs of embedded systems.On the other hand, certain Java features are unnecessary for our purposes, such as rich object orientation andthreads. We feel that small extension applets running on a network interface can be written without many of thefeatures provided by the Java programming environment.3.3 JIVE implementationAs mentioned earlier, JIVE aims for a small code size and small runtime memory overhead. In the �rst respect,the JIVE library for the LanAI is only 43K compiled, representing about 2700 lines of C source code. In contrast,Ka�e [33], a free Java Virtual Machine that implements most of the Java Virtual Machine speci�cation, is about15,000 lines of C source code, even when the code for just-in-time compilation and garbage collection is removed.Also, JIVE assumes no runtime library (e.g. no libc): functions for operations such as memory allocation and stringmanipulation are an explicit part of the JIVE library.4 U-Net/SLE Prototype PerformanceIn this section we discuss the performance of the U-Net/SLE Myrinet prototype with JIVE for various micro-benchmarks and a variety of user extension applets running on the LanAI processor.4.1 Latency and bandwidth measurementsFigure 3 shows round-trip latency as a function of message size for four con�gurations: A standard applet implement-ing basic U-Net semantics; a simpli�ed applet assuming that packets will consume a single receive bu�er (shown inFigure 2); an applet which performs pingpong operations between user extension applets only, without propagatingmessages to user level; and standard U-Net without the use of SLE. The standard U-Net applet adds between 41.2�sec (for small messages) and 99.7 �sec (for large messages) of overhead in each direction, while the simpli�ed U-Netapplet reduces large-message overhead to 42.5 �sec. These overheads are detailed in the next section. As can beseen, round-trip latency between Java applets alone is very low, ranging between 64 and 119 �sec. This suggeststhat synchronization between user extension applets on di�erent NIs can be done very rapidly.Figure 4 shows bandwidth as a function of message size for a simple benchmark which transmits bursts of upto 25 messages of the given size before receiving an acknowledgment from the receiver. This is meant to simulatea simple token-based ow-control scheme. The applets demonstrated include the standard U-Net applet; an appletwhich implements the receiver-acknowledgment between applets only (without notifying the user process); an applet6



0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
ou

nd
tr

ip
 ti

m
e,

 m
ic

ro
se

co
nd

s

Message size, bytes

No SLE

SLE simplified

Standard SLE

Pingpong between applets

Figure 3: Round-trip latency vs. message sizewhich transmits a burst of 25 messages for each transmit request posted by the user; and one which does not performtransmit-side DMA, meant to simulate data being generated by the applet itself.2There is a notable drop in bandwidth due to the higher overhead of DMA-setup and packet processing code asimplemented in Java; however, we believe that user applications which are able to utilize the programmability of thenetwork interface to implement more interesting protocols will be able to avoid worst-case scenarios such as thoseshown here. For instance, the SLE applet which implements token-based ow-control relieves the programmer fromdealing with this issue at user level, allowing the application to treat U-Net/SLE as providing reliable transmission(a feature not provided by the standard U-Net model). In this way an application will be able to asynchronouslyreceive data into its bu�er area while performing other computation; no application intervention is necessary to keepthe communication pipeline full. It should also be noted that applications are not required to use SLE features for allcommunication, and may wish to transmit high-bandwidth data through the standard U-Net interface while utilizingSLE extensions for other protocol-processing code.34.2 U-Net/SLE overhead breakdownFigure 5 shows the breakdown of overheads for various U-Net/SLE operations as executed on the LanAI processor.Note that these times do not include, for instance, DMA transfer and packet transmission times; instead they measureonly the overheads for these operations, as executed through JIVE and the U-Net/SLE native methods, over thestandard U-Net code. The transmit overhead regardless of message size is 24.5 �sec, while receive overhead is 16.7�sec for messages 56 bytes or smaller, and 42.5 �sec for messages larger than 56 bytes.The overhead for Java operations can be attributed partly to the fact that JIVE interprets Java bytecodes (ratherthan using just-in-time compilation), and the relatively slow clock speed of the LanAI processor (37 MHz) comparedto modern workstation CPUs. The results in the previous section suggest that applying JIT to U-Net/SLE should2The base U-Net and U-Net/SLE bandwidth can be improved by using both Myrinet DMA engines in parallel; this is not supportedby the current LCP.3While these micro-benchmarks are unable to directly represent application-speci�c protocol performance using the SLE extensions,we believe that they characterize the range of performance that can be expected from our prototype. In the �nal version of this paperwe plan to demonstrate higher-level application benchmark results.7



0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000 4500

B
an

dw
id

th
, m

eg
ab

its
/s

ec

Message size, bytes

No SLE

SLE standard

SLE flow-control

SLE burst flow-control

SLE burst flow-control, Java-generated data

Figure 4: Bandwidth vs. message sizeresult in signi�cant performance advantages. Likewise we believe these results should encourage designers of high-performance network interfaces to consider higher clock speeds for the network co-processor; chips such as the DECStrongARM run at 200 MHz and are intended for such embedded applications. While there is some amount ofsoftware optimization possible in our design, we believe that NIC-side processing can bene�t greatly from higherperformance NIC designs, allowing more complex processing tasks to be executed on the network co-processor.5 Related WorkU-Net/SLE draws on past work in the areas of programmable I/O controllers and user-supplied protocol handlers.5.1 Programmable I/O controllersOne of the earliest examples of a programmable I/O controller was the I/O control units of the IBM System/360 [1].These processors served as the interface between an I/O device's controller and the CPU. They operated indepen-dently of the CPU and could access main memory directly. The Peripheral Control Processors (PPU's) of the CDC6600 [24] were based on a similar idea. Programs running on the PPU's were loaded by the system operator, but thisarchitecture and that of the IBM System/360 represent early systems with support for programmable I/O processors.U-Net/SLE takes advantage of \intelligent" network interfaces by downloading packet processing code to the NI.Unlike early programmable I/O controllers, however, U-Net/SLE allows multiple applications to simultaneously usethe network interface without interfering with one another. The operating system is not involved in providing thisprotection as it was in these early systems.
8



Transmit overhead: 40-byte message 1000-byte messageCheck for class�le, setup applet call 0.7 �sec 0.7 �secCall applet doTx method and return 3.9 �sec 3.9 �sec(Null native method call) (5.5 �sec) (5.5 �sec)DMA setup overhead 11.8 �sec 11.8 �secTransmit data overhead 8.1 �sec 8.1 �secTotal 24.5 �sec 24.5 �secReceive overhead: 40-byte message 1000-byte messageCheck for class�le, setup applet call 0.6 �sec 0.6 �secCall applet doRx method and return 3.2 �sec 3.2 �sec(Null native method call) (5.5 �sec) (5.5 �sec)Get free bu�er 5.85 �secDMA setup overhead 11.8 �secDo Rx descriptor DMA 12.9 �sec 21.0 �secTotal 16.7 �sec 42.5 �secFigure 5: U-Net/SLE transmit/receive operation overhead5.2 User-supplied protocol handlersA number of systems have recently been developed that allow users to supply their own protocol handlers in placeof a generic operating system handler.Application Speci�c Handlers (ASHs) [28] are user-supplied functions that are downloaded into the operatingsystem and are invoked when a message arrives from the network. U-Net/SLE di�ers from ASHs in several respects.First, ASHs run on the host processor, while U-Net/SLE extensions run within the context of the network interface(which may be embodied on a smart network co-processor or the host, or some combination of the two). In addition,ASHs are triggered only when a message is received, while U-Net/SLE extensions are triggered both on receive andtransmit. This second di�erence limits the range of uses for ASHs compared to U-Net/SLE extensions: for example,ASHs cannot turn a single user-level message send into a packet transmission to many hosts (i.e. a multicast) whileU-Net/SLE can.SPIN [4] also allows users to download code into the kernel. SPIN's networking architecture, Plexus, runs userprotocol code within the kernel in an interrupt handler. Extensions are written in Modula-3 [14], and the compilerthat generates the extensions is trusted to generate non-malicious code.SPINE [5] extends the the ideas of SPIN to the network interface, and is the system most similar to U-Net/SLE indesign and scope. Underlying SPINE is a Modula-3 runtime executing on the NI, the current prototype implementa-tion of which uses the Myrinet interface. SPINE di�ers from U-Net/SLE in several ways. First, SPINE targets serverapplications (e.g. it does not include �ne-grain parallel communication as part of its design goals), while U-Net/SLEtargets both server and cluster applications. Second, SPINE requires a trusted compiler, while U-Net/SLE takesadvantage of the safety features of Java. Finally, the use of Java bytecodes in U-Net/SLE allows user extensionapplets to be transported across the network and run on any network interface with a Java virtual machine, whileSPINE's compiled Modula-3 code is architecture-speci�c. We believe, however, that both SPINE and U-Net/SLEwill serve as useful platforms for future research in the areas of user-extensible networks and network interfaces.6 Conclusions and Future WorkWe have presented U-Net/SLE, a fast network interface architecture permitting user extensibility through the down-loading of Java applets which run within the network interface itself, and are triggered by transmit and receive eventson the network. We believe this design enables a wide range of applications to be built which customize the networkinterface in order to obtain new communication semantics, more e�ciently implement protocols, and reduce host9



and application overhead by moving elements of protocol processing into the NI.U-Net/SLE extends the concept of programmable I/O controllers by exposing a direct programmatic interfaceto the I/O controller resources; in this case, the DMA channels, memory, and network hardware of the networkinterface. Pushing the level of virtualization down to the hardware components of the NIC enables a rich set ofhigher-level abstractions to be constructed which utilize the hardware in an application-speci�c way.The performance of our prototype implementation on the Myrinet LanAI processor, while lagging that of thestandard U-Net interface, is promising in that the use of interpreted Java bytecodes for packet processing has notresulted in a larger performance penalty (as one might expect). We believe that the use of just-in-time compilationand incorporation of a faster processor onto the network interface will greatly reduce U-Net/SLE overheads andeventually allow the full exibility of safe extensions on the network interface to be realized with minimal overhead.We hope to study the use of garbage collection and applet scalability in more detail.In the future we would like to explore the design space of user-programmable network interfaces and I/O con-trollers in general. Now that our proof-of-concept design has demonstrated the feasibility of user extensibility in theNI, we hope that future implementations will further exploit the bene�ts of application-customized I/O processing.For example, one could implement the remote memory access operations of the Split-C [2] language directly as aU-Net/SLE extension without requiring the application to execute Active Message handlers for these operations,or implement application-speci�c protocols (such as video and audio streaming) as a user extension applet. Under-standing the tradeo�s of executing protocol code within the NI as opposed to application level, in general, is an areafor future research.References[1] C. Bashe, L. Johnson, J. Palmer, and E. Pugh. IBM's early computers. Cambridge, MA: MIT Press, 1986.[2] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.\Introduction to Split-C." In Proceedings of Supercomputing '93.[3] Y. Endo, J. Gwertzman, M. Seltzer, C. Small, K. A. Smith, and D. Tang. \VINO: The 1994 Fall Harvest."Harvard Computer Center for Research in Computing Technology Technical Report TR-34-94, 1994.[4] M. E. Fiuczynski and B. N. Bershad. \An extensible protocol architecture for application-speci�c networking."In Proceedings of the USENIX 1996 Annual Technical Conference, January 1996.[5] M. E. Fiuczynski and B. N. Bershad. \SPINE - A safe programmable and integrated network environment."SOSP 16 Works in Progress, 1997.[6] S. Goble, D. Barron, M. Bradley, A. Ezzet, and M. Rex. \I2O." Presented at Comdex, Spring 1996.http://www.i2osig.org/Architecture/I2OArch.Comdex.pdf[7] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Reading, MA: Addison-Wesley, 1996.[8] K. Harty and D. R. Cheriton. \Application-Controlled Physical Memory using External Page-Cache Manage-ment." In Proceedings of ASPLOS, October, 1992.[9] M. F. Kaashoek, D. R. Engler, G. R. Ganger, et al. \Application performance and exibility on exokernelsystems." In Proceedings of the 16th Symposium on Operating System Principles, October 1997.[10] K. Langendoen, R. Hofman, and H.E. Bal. \Challenging Applications on Fast Networks." Fourth InternationalSymposium on High-Performance Computer Architecture (HPCA-4), Feb. 1-4, 1998.[11] T. Lindholm and F. Yellin. The Java(tm) Virtual Machine Speci�cation. Reading, MA: Addison-Wesley, 1997.[12] R. Martin, A. Vahdat, D. Culler, T. Anderson. \E�ects of Communication Latency, Overhead, and Bandwidthin a Cluster Architecture." International Symposium on Computer Architecture, Denver, CO, June 1997.10



[13] G. C. Necula and P. Lee. \Safe Kernel Extensions Without Run-Time Checking." In Proceedings of the SecondSymposium on Operating Systems Design and Implementation (OSDI '96), October 1996.[14] G. Nelson, editor. Systems programming with Modula-3. Englewood Cli�s, NJ: Prentice Hall, 1991.[15] J. K. Ousterhout, J. Y. Levy, and B. B. Welch. \The Safe-Tcl Security Model." Sun Microsystems LaboratoriesTechnical Report TR-97-60, March 1997.[16] S. Pakin, M. Lauria, and A. Chein. \High Performance Messaging on Workstations Illinois Fast Messages (FM)for Myrinet." In Proceedings of Supercomputing '95, San Diego, California, 1995.[17] L. Prylli and B. Tourancheau. \Protocol design for high performance networking: a Myrinet experience." Tech-nical Report 97-22, LIP-ENS Lyon, 69364 Lyon, France, 1997.[18] R. Sedgewick. Algorithms in C. Reading, MA: Addison-Wesley, 1990.[19] Sun Microsystems Inc. \Personal Java 1.0 Speci�cation." http://java.sun.com/products/personaljava/spec-1-0-0/personalJavaSpec.html[20] Sun Microsystems Inc. \Embedded Java." http://java.sun.com/products/embeddedjava/[21] Sun Microsystems Inc. \Java Card 2.0 Language Subset and Virtual Machine Speci�cation."http://java.sun.com/products/javacard/[22] Sun Microsystems Inc. \Java Card 2.0 API." http://java.sun.com/products/javacard/[23] D. L. Tennenhouse and D. J. Wetherall. \Towards an active network architecture." Computer CommunicationReview vol 26 no 2, April 1996.[24] J. E. Thornton. Design of a computer: the Control Data 6600. Glenview, IL: Scott, Foresman and Company,1970.[25] The Unicode Standard: Worldwide Character Encoding, Version 1.0, Volume 1 and Volume 2. Reading, MA:Addison-Wesley, 1991-1992.[26] T. von Eicken, A. Basu, V. Buch, and W. Vogels. \U-Net: A User-level Network Interface for Parallel and Dis-tributed Computing." In Proceedings of the 15th Annual Symposium on Operating System Principles, December1995.[27] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. \Active Messages: A Mechanism for IntegratedCommunication and Computation." In Proceedings of the 19th Annual International Symposium on ComputerArchitecture, May 1992.[28] D. A. Wallach, D. R. Engler, and M. Frans Kaashoek. \ASHs: Application-Speci�c Handlers for High-Performance Messaging." In Proceedings of ACM SIGCOMM '96, August 1996.[29] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. \E�cient software-based fault isolation." In Proceedings ofthe Fourteenth ACM Symposium on Operating System Principles, 1993.[30] M. Welsh, A. Basu, and T. von Eicken. \Low-Latency Communication over Fast Ethernet." In Proceedings ofEUROPAR '96, August 1996.[31] M. Welsh, A. Basu, and T. von Eicken. \A Comparison of Fast Ethernet and ATM for Low-Latency Com-munication." In Proceedings of the 3rd International Symposium on High-Performance Computer Architecture,February 1997.[32] M. Welsh, A. Basu, and T. von Eicken. \Incorporating Memory Management into User-Level Network Inter-faces." In Proceedings of Hot Interconnects V, August 1997.[33] T. Wilkinson. \KAFFE: A virtual machine to run Java code." http://www.kaffe.org/11


